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The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 < Z < 126
and isospins 40 < N—Z < 74 are evaluated within the recently developed Fourier shape parametrization.
Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional
deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear
deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the
Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state
equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N. a-decay Q
values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from
asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are
investigated. Good agreement is found with experimental data wherever available. New interesting features about
the population of different fission modes for nuclei beyond Fm are predicted.

DOLI: 10.1103/PhysRevC.97.034319

I. INTRODUCTION

The properties of nuclei at the edge of the nuclear chart
and consequently at the limit of stability, namely in the region
of very-heavy (VHE) and superheavy (SHE) elements, are of
paramount interest, since they constitute a stringent test of any
nuclear model. While many theories are nowadays indeed able
to achieve a fair description of nuclear masses for nuclei on
and close to the B-stability line, these can substantially deviate
when moving to the SHE region. Apart from the fundamental
interest to achieve a better understanding of the involved
physics, the predictive power of these theoretical approaches
is of capital importance to guide the challenging experimental
quest for the so-called SHE island of stability.

Models used in this field can be essentially classified
into two categories: the self-consistent microscopic approach
rooted, on a more or less fundamental level (effective inter-
actions, meson fields, quark degrees of freedom,...) in the
underlying nuclear force, and the macroscopic-microscopic
model that describes the nucleus as a charged liquid drop with
quantal (shell and pairing) corrections. Even though the self-
consistent microscopic theory has been developed substan-
tially, its achievements depend strongly on the specific nuclear
interaction used (see, e.g., Ref. [1]). The large computing-
resources required are, in addition, still a limiting factor
for systematic investigations. The macroscopic-microscopic
approach, on the other hand, has proven to constitute a reliable
method for addressing a very wide variety of questions in the
field, and this with impressively good accuracy [2].

The present work is a continuation of our previous investi-
gation [3] in which we have introduced a new, powerful, and
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rapidly converging description of nuclear deformations based
on a Fourier decomposition of the nuclear shape. Combined
with a well-established macroscopic-microscopic model, nu-
clear deformation-energy landscapes have been investigated
for preactinides and actinides (78 < Z < 94) and shown to be
in good agreement with the available experimental data. The
present study proposes to extend the application of the model
into the less-known SHE region.

The innovative Fourier shape parametrization and the main
features of the macroscopic-microscopic potential-energy cal-
culation are discussed in Sec. II. The results of our calculations
are presented in Sec. III, discussing first the equilibrium
deformations and their dependence on Z and N. Combining
the thus obtained deformation-energy landscapes with a simple
Wentzel-Kramers-Brillouin (WKB) model [4], a-decay prop-
erties, including Q value and half-life, are obtained. Fission
barrier heights are also derived from the potential-energy
landscapes. Finally, the topography of the four-dimensional
(4D) deformation space is investigated in detail to search
for most probable paths to fission, and their evolution with
neutron and proton numbers across the Fm region. All along,
comparison with experiment is made wherever measurements
are available. A summary and conclusions are given in Sec. V.

II. THEORETICAL FRAMEWORK
A. The Fourier shape parametrization

The description of the huge variety of shapes encountered
all across the nuclear chart, from oblate deformations found
in the transition region and corresponding to the progressive
filling of the pf shell, to prolate shapes as realized in nu-
merous rare-earth and actinide isotopes, requires a rich and
flexible nuclear shape parametrization. The requirement is
even more demanding for describing fissioning shapes, which
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are typically very elongated and necked-in. To model the
physical reality as faithfully as possible (as far as that could be
identified), it is desirable that the parametrization involves a
large amount of deformation parameters, in order to take into
account all of the degrees of freedom involved. For a numerical
treatment, on the other hand, a very large number of deforma-
tion coordinates is prohibitive. The challenge therefore is to
isolate the essential degrees of freedom and to describe these
with a few physically relevant deformation parameters. Several
shape parametrizations have been proposed, and are currently
used for investigating the properties and decay of nuclei. The
series expansion of the nuclear radius in spherical harmonics,
proposed by Lord Rayleigh [5] already in the 19th century,
turned out to be able to describe a very rich variety of shapes,
and isto date one of the most widely used prescriptions in nu-
clear structure calculations. The achievement of this expansion
strongly relies on the large amount of degrees of freedom taken
into account. As soon, however, as elongated configurations
are to be modeled, and most crucially for fissioning shapes,
a nearly prohibitive number of deformation parameters is
required (as many as seven parameters were needed to describe
the height of the fission barrier of >**Th when imposing a left-
right symmetric mass split [6,7]). Alternative parametrization
have been proposed since the days of Lord Rayleigh. Among
the most powerful and popular ones we cite the quadratic
surfaces of revolution (QSR) [8], the Cassini ovals [9,10], the
funny-hills (FH) shapes [11] and its modified version [12],
as well as the expansion of the nuclear surface in a series of
Legendre polynomials [13]. All these parametrizations are able
to describe nuclear potential-energy landscapes rather well,
and, in most cases, with a limited number of deformation
degrees of freedom. For all of them, however, except those of
Refs. [5,13], they have the inconvenience that they do not allow
one to control their convergence. In what follows, we are going
to use an innovative parametrization, initially introduced in
Ref. [14], based on a Fourier expansion of the nuclear surface.
This prescription has been shown [3] to be rapidly converging
and to describe nuclear ground-state configurations, as well as
very elongated and necked-in shapes, as they are encountered
in the fission process close to scission with few deformation
parameters only.

Within this Fourier parametrization [3,14], we write, for
axially symmetric shapes (a generalization to triaxial shapes
will be given below), the distance p, (z) from the symmetry axis
of a surface point at coordinate z in cylindrical coordinates as
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where R, is the radius of the corresponding spherical shape
with the same volume. The extension of the shape along the
symmetry axis is 2zo = 2c Ry with left and right ends located
at Zmin = Zsh — 20 and Zmax = Zsh + 20, Where pf(z) vanishes,
a condition which is automatically satisfied by Eq. (1). Here
¢ = 70/ Ry is the funny-hills [11] elongation parameter (¢ < 1
for oblate, ¢ > 1 for prolate shapes) which is related to the
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FIG. 1. Schematic visualization, in cylindrical coordinates, of the
parameters entering the definition of the profile function defined by
Eq. (4). The quantities z; and z, localize the mass centers of left and
right nascent fragments entering the definition of Ry, = z, — z;.

even Fourier coefficients by the volume-conservation relation
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The shift coordinate zg, in (1) is chosen such that the center of
mass of the nuclear shape is located at the origin of the coordi-
nate system. The parameters a,,as,as describe, respectively,
quadrupole, octupole and hexadecapole type deformations,
which in the context of fission, are related to elongation,
left-right asymmetry, and neck thickness, respectively.

Notice that our Fourier shape parametrization is, in a way,
quite similar to the one due to Lord Rayleigh, in the sense
that it is an expansion in a complete basis (trigonometric func-
tions here, spherical harmonics there), but with the essential
difference that, instead of the nuclear radius R(@,¢), it is now
the square of the distance ,of(z) of a surface point from the
symmetry axis that is expanded in the basis functions. Such a
description seems, indeed, to be better adapted to that kind of
physical problem, as the success of the funny-hills [11,12] or
the Trentalange-Koonin-Sierk shapes [13] indicates.

As an example, a nuclear shape typically realized in the
course of the fission process is displayed in Fig. 1. The various
quantities discussed in the text are indicated in the figure.

To describe nonaxial shapes, the cross section perpendicular
to the symmetry axis is assumed to be of ellipsoidal form, and
defined by a nonaxiality parameter

_ b—a

T b+a’
which is the relative difference of the half axes a and b of the
cross section perpendicular to the symmetry axis. Assuming

that this parameter is the same all across the shape, the profile
function can be written in cylindrical coordinates in the form

n 3
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with p2(z) given by Eq. (1). The above defined shape
parametrization is rapidly converging, even for fissioning
shapes, as demonstrated in Fig. 2 of Ref. [3].

A somehow odd feature of the Fourier coefficients a,, which
specify the shape, is their not necessarily transparent physical
meaning. The Fourier coefficient a,, for example, decreases
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with increasing elongation. To cure this inconvenience, we
have introduced the following four new collective coordinates
(see discussion in Ref. [3]):

©=""—"""q" =44

q4 = as4 +
= a5 — (g — 22
qs = ds q> 10

q2 \? 02
g6 = as <IOO> + (ag )" 5
where the a(¥ are the values of the Fourier coefficients for
the spherical shape. Note that the g, coordinates have been
defined in such a way that they all vanish for a spherical shape.
Their physical meaning is more transparent and intuitive when
compared to that of the a, coefficients. In the remainder of
this work, we are therefore going to discuss the deformation
properties of nuclei in a 4D deformation space made of
the collective coordinates (1, g2, g3, g4) which are directly
related to nonaxiality, elongation, octupole, and hexadecapole
(neck-thickness) deformation. An alternative, but completely
equivalent parametrization, based on an expansion of the
deviation of the nuclear shape from a spheroid is proposed
in Ref. [15].

The connection between the here-proposed (g,,n) coordi-
nates and the generally used (8,y) deformation parameters
[16] is certainly worth being discussed, in particular regarding
the 60° symmetry of the latter. Let us recall that the (8,y)
variables are defined as

1
B = }\/m and y = arctan (%) (6)

20

where Q3 and Q3, are the components of the mass quadrupole
tensor

on = (212 - ’”2)1 sz = ()’2 _x2>7

and X = 3r§A5/ 3/3/57 with the radius constant ry.

The connection between the (8,y) and the (g,,n) co-
ordinates is shown in Fig. 2, where the above mentioned
60° symmetry appears. This figure gives us the occasion to
draw the attention of the reader to an inconvenience of both
of these parametrizations at small deformation, and which
calls for some cautious when interpreting the (1, g2, g3, g4)
deformation-energy landscapes. Due to the aforementioned
symmetry, care has to be taken to avoid any “double-counting”
of shapes. Let us take the example of an axially symmetric
oblate shape defined by (g2 = —0.35, n = 0) corresponding
to a deformation of (8 = 0.25, y = 180°). From Fig. 2 one
concludes that the same shape is realized by (¢, ~ +0.17, n =
0.13), equivalentto (8 = 0.25, y = 60°). A similar correspon-
dence can be established when considering prolate instead of
oblate shapes. For example, the configuration (¢, = 0.32, n =
0) is defined equivalently by (8 = 0.30, y = 0°), and due
to the 60° symmetry the latter defines the same shape as
(g2 = —0.19, n = 0.13) equivalent to (8 = 0.25, y = 120°).

80° 60°50° 40° 30°

130° 120° 110° 100°

-0.8 -06 -04 -0.2 0 02 04 06 0.8
d2

FIG. 2. Visualization of the relation between the (8,y) and the
(g,,n) deformation coordinates.

We emphasize that such a strict comparison can only be
carried out for spheroidal-deformed shapes. When higher order
multipolarities come into play, and, importantly, at larger
deformation, this picture is partially distorted.

Before closing the discussion on the relation between these
two shape parametrizations, we notice that a constant value of
B does not correspond to a constant elongation of the shape,
as can be seen from Fig. 2. That is why we believe that,
for investigating the possibility of triaxial shapes, the (g,,7)
deformation space is better suited than the traditional (8,y)
space.

As an illustration of the symmetry property of both these
shape parametrizations, and the caution to be applied in
the analysis of deformation-energy landscapes (calculated as
described in the next subsection), let us consider the case of
two deformations in the nuclei 2*°Ds and ?’°Cn. Different
cross sections of the 4D deformation space are presented in
Figs. 3 and 4. Each of these 2D landscapes has been realized
by performing a minimization with respect to the other two
deformation coordinates, unless specified otherwise.

The (g,,q;) deformation-energy map of 20Ds in Fig. 3
shows two minima, one prolate (g, ~ 4-0.15) and one oblate
(g, ~ —0.15). When investigating the (g,,n) cross section,
one notices, however, that the apparently oblate minimum
corresponds, in fact, to a triaxial solution ( ~ 0.05). When
looking again at Fig. 2, one concludes that a deformation
(g, = —0.15, n ~ 0.05) characterizes the same shape as (g, ~
0.1, n & 0) which is nothing but our prolate shape. In addition,
the energy landscape in n direction is almost flat around the
two minima. All this is a clear indication that this “oblate”
minimum is nothing but the mirroring of the (true) prolate
ground state, and does not correspond at all to a stationary
point in the deformation-energy landscape that has anything to
do with a true oblate deformation. From the above observation,
one has to conclude that the ¢, deformation parameter is related
to the elongation of the nucleus along the z axis. The notion
of oblate and prolate for non-axially-symmetric shapes in
connection with this parameter needs therefore to be handled
with some caution in what follows.
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FIG. 3. Deformation energy of °Ds on the (¢,, ¢3) plane for 7 = 0 minimized with respect to g4 (top left) and on the (¢, 1) plane minimized
with respect to g3 and g4 (top right). The (g4, ¢3) and (g4, n) cross sections around the oblate and prolate minima are shown in the middle and

bottom rows, respectively.

The situation is different for the case of the >’°Cn nucleus
illustrated in Fig. 4. Again two local minima are observed, one
for a spherical shape (g, = 0) and one for a prolate configura-
tion (g, ~ 40.23). When looking at the (g,,7n) cross section,
both solutions appear to be axially symmetric and are well
separated in energy. This indicates a true shape coexistence
with both local minima being left-right symmetric (¢; = 0)
(middle and bottom rows of Fig. 4, left) and having slightly
different hexadecapole deformation (middle and bottom rows
of Fig. 4, right).

B. The macroscopic-microscopic potential energy

The potential energy of a nuclear system is calculated in
our approach within the macroscopic-microscopic model using
the Lublin-Strasbourg drop (LSD) [17] for the liquid-drop-type
energy, including a curvature A'/3 term in the leptodermous ex-
pansion and a deformation dependent congruence energy term
[18], which is well known to give a good description of nuclear
ground-state masses and fission-barrier heights. The micro-
scopic part is determined by the Strutinsky shell-correction
energies [19], and pairing correlations [20,21] are derived

in BCS theory with a seniority force and an approximate
particle-number projection [22]. The single-particle energies
and wave functions that enter such an approach are obtained
as eigenvalues and eigenstates of a Yukawa-folded mean-field
potential [23,24] at given (7, 92, g3, g4) deformation. More
details of the calculation are given in our previous work [3].

III. RESULTS

Within the above outlined theoretical framework, the 4D
potential-energy landscapes of 324 even-even nuclei with
charge numbers in the range 92 < Z < 126 and isospins
40 < N—Z < 74 are evaluated. The considered grid consists
of 32 202 points in the (1, g2, g3, q4) space, with the following
mesh:

n =0(0.03) 0.12,
g2 = —0.45 (0.05) 2.35,

g = 0(0.03) 0.21.
ga = —0.21 (0.03) 0.21.
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FIG. 4. Same as in Fig. 3 but for 27Cn.

The calculated landscapes are analyzed, looking for ground-
state (and possible isomeric) equilibrium deformations, the
corresponding «-decay properties, fission barrier heights, and
the most probable fission paths in the region across Fm. The
results of these investigations are reported in the following
subsections.

A. Equilibrium configurations

For each isotope, the ground-state equilibrium energy and
deformation were determined using the gradient oriented
bisection method.'

A so-determined equilibrium configuration is characterized
by the collective coordinates (7%, g%, g5°, ¢;*) the values of
which are displayed as a function of Z and N — Z in Fig. 5.

'The gradient oriented bisection method (unpublished yet) is an
iterative procedure which allows to find local minima (or maxima) of
an N-dimensional function defined on equidistant grid points. Such a
function can be approximated using, e.g., a very powerful numerical
procedure described in Ref. [25]. This procedure allows one also to
evaluate the partial derivatives of the function.

The top part of Fig. 5 shows that most of the systems
considered in this work are axially symmetric (n°1 =~ 0). A
few exceptions are noteworthy to discuss, though. First, one
observes two somehow isolated cases: the element Ds (Z =
110) which, in particular for A ~ 270, seems to be triaxial, as
well as 220g (Z = 118, N = 174). At first sight, the nuclear
system (Z = 120, N = 166) seems to possess a quite strong
nonaxiality. Having, however, a closer look at its quadrupole
parameter g, (second panel in Fig. 5), one notices that this
parameter turns out to be almost vanishing, and, as we have
explained before, near the spherical shape, the nonaxiality de-
gree of freedom loses its meaning. In addition one observes, for
102 < Z < 110, a diagonal downward-sloping band running
over the isospin interval 64 < N —Z < 72. The corresponding
isotopes (from *’No to 24Ds) are predicted to possess a
slight triaxiality, and/or to be soft with respect to triaxial
deformations. It is interesting to notice that all nuclei in this
band have a neutron number N around 174. As we will see in
the next subsection, these nuclei are prolate deformed. Hence,
the present model predicts a triaxial “window” across N ~ 174
for elements from No to Ds. We nevertheless emphasize that
a value of n = 0.07 corresponds to a nonaxial deformation
where the longer of the two half axes is only 15% larger
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FIG. 5. Values of the collective coordinates (7%, g5%, g57, g4")
(from top to bottom) at equilibrium deformation defined as the
ground-state minimal-energy configuration on the (N —Z, Z) plane.
The circles denote already discovered isotopes and the thick (pink)
line shows the g-stable nuclei. The thin (black) lines correspond to
the constant mass number A.

than the shorter one. That is to say that the observed effect is
small. Please also note that F1 (Z = 114) isotopes with isospin
N —Z values between 54 and 62, for which a nonzero n®
value is deduced from the top part of Fig. 5, have a practically
vanishing g5' value (second panel), and are therefore close
to a spherical shape where the nonaxiality parameters n and
y lose their meaning. The observation about a dominating
axial symmetry in the region and the occurrence of a weakly

LsD

ESI- ESPD [MeV]

tot

FIG. 6. Ground-state microscopic contribution to the potential
energy for the nuclei of Fig. 5.

triaxial “window” around N = 174 for No to Ds are consistent
with predictions by other models, e.g., the self-consistent
approaches of Ref. [26,27].

Equilibrium quadrupole-type deformations are investigated
in the second panel of Fig. 5. Transuranic elements with masses
below A ~ 280 are observed to possess a prolate ground-state
deformation, while beyond A ~ 300 an oblate configuration is
predicted, especially in the vicinity of the nucleus 34122, It is
interesting to note that, up to around Z = 114, the magnitude of
the prolate elongation steadily decreases for all elements with
increasing N (or equivalently N —Z). For heavier elements
the dependence on N is more erratic. These different trends
depending on Z are very likely to be connected to the evolution
of shell corrections with Z and N, as further discussed below.
A similar trend for quadrupole deformation across the region
was anticipated both with macroscopic-microscopic and self-
consistent methods (see, e.g., Refs. [26,28,29]).

Left-right asymmetric shapes are investigated in the third
panel of Fig. 5. One concludes that the ground-state is expected
to be essentially left-right symmetric (g5 & 0) for all nuclei
in the region.

Finally, the last panel of Fig. 5 suggests that, while the
lighter actinides with A &~ 230 have a substantial hexadecapole
ground-state deformation (qu ~ +0.10), corresponding to a
diamond-like (rugby-ball type) configuration, those in the
region between Hs and Cn with A ~ 270 are predicted to have
strong negative hexadecapole deformation (g;! &~ —0.08),
looking a bit like a rounded-off rod. Again, one notes a rather
steady evolution with N for elements up to Z ~ 108, and
presumably structural effects for higher Z’s.

Since the macroscopic energy has no minimum for SHE
isotopes, the equilibrium configuration is governed by shell
effects. The microscopic contribution defined as the total
potential energy at equilibrium relative to the macroscopic
energy at spherical shape, SESS = EX — EP is shown in
Fig. 6, as in Fig. 5, on the (N—Z, Z) plane. Two regions
of strong microscopic effects are visible. The island centered
around Z = 108, N —Z = 54 is driven by the deformed N =
162 shell; large prolate deformation can, indeed, be deduced
from the second panel of Fig. 5. The evidence for stabilization
through deformation in the ?’°Hs region was experimentally
confirmed [30]. Our calculations (see also [31]) predict even
stronger microscopic effects in a band running from Z ~ 114
to Z ~ 118 and with 48 < N —Z < 66. The effect is largest

034319-6



STABILITY OF SUPERHEAVY NUCLEI

PHYSICAL REVIEW C 97, 034319 (2018)

at Z = 116 for the *®Lv and **’Lv isotopes, corresponding
to N = 170 and 174. Fig. 5 shows that nuclei in this band
are characterized by a weak prolate deformation. The present
model therefore predicts that the next “magic configuration”
(not yet reached by the experiment) would be slightly prolate-
deformed and located at Z = 114-116 and N = 170-174.
A separate analysis of the proton and neutron microscopic
corrections shows that this stabilization is mainly driven by
the neutrons in our calculations. No evidence for spherical
magicity at Z = 114 and N = 184 is apparently seen in our
results, contrary to what was anticipated in other macroscopic-
microscopic models [32-34].

While Fig. 6 gives a condensed overview for the nuclei in
the whole region, a more detailed quantitative visualization
is proposed in Fig. 7. There, the evolution of the quantal
corrections to the ground-state energy is shown separately
for each isotopic chain, for all Z values included in the 2D
overview of Fig. 6, as functions of the neutron number. The
shell-stabilized configurations discussed above appear as local,
more or less abrupt dips. The deformed shell effectat N = 162
that develops from U towards Hs, and vanishes beyond Chn, is
clearly seen. Although of weaker magnitude, a similar shell
effect becomes visible at N = 152 for elements between Cm
and Sg, which s also corroborated by experimental observation
[30]. The N = 152 deformed region is located in Fig. 6
“southwest” of the N = 162 island. Finally, the new predicted
“SHE magic shell closure” discussed above first appears as a
dip at N = 174, starting from say Ds. For heavier elements, the
deformed N = 162 and N = 174 shells merge, producing the
wide band of strong stabilization discussed previously from
Z ~ 114to Z ~ 118 and with 168 < N < 178.

The presentation adopted in Figs. 5 and 6 confers a fast
overview of the ground-state properties across the entire
studied region. It is the result of the analysis of the theoretical
4D potential-energy landscapes. To illustrate the richness of
these landscapes in more detail, their progressive evolution
with proton and neutron numbers, and the possible occurrence
of metastable, isomeric states, 2D cross sections of the 4D
deformation space are presented in Fig. 8. The deformation
energy, defined as the total potential energy relative to the
spherical liquid-drop energy, is displayed for three isotopes
of the Rf, Sg, and Hs elements, in the (g, 1) (top part of the
figure) and (g2, g3) (bottom part of the figure) subspaces. Each
of the 2D surfaces is obtained, as already mentioned above,
after minimization with respect to the two remaining collective
variables. The selected isotopes for a given Z are characterized
by the same values of the isospin N —Z = 52, 54, and 56. The
corresponding N values vary between 156 and 164. From the
(92, g3) landscapes, all these nuclei are found to have a prolate
ground-state deformation with g, ~ 0.28, and to be left-right
symmetric (g3 = 0). The analysis of the (g», n) landscapes
further confirms the axial symmetry of these isotopes.

It is interesting to observe in Fig. 8 (not visible in Fig. 5)
that there is a left-right symmetric shape-isomeric state which
appears for the Rf isotopes at g, ~ 0.8, and, though less
pronounced, for Sg and Hs at g, ~ 0.6. The occurrence of the
isomeric local minimum is seen to strongly depend on both
N and Z. Further, for the selected isotopes having the same
N —Z, the observed evolution implies that the appearance
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FIG. 7. Ground-state microscopic contribution to the potential
energy along isotopic chains between U and Hs (top), between Ds and
Og (middle), and between elements Z = 120 and Z = 126 (bottom).

of this state is not governed by N —Z either. Altogether the
appearance of this isomeric state suggests that it originates
from the subtle interplay of neutron and proton microscopic
effects at large deformation.

B. o-decay properties

o radioactivity is the dominant decay mode in the VHE and
SHE region. Most of the currently known heaviest nuclei have
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FIG. 9. Calculated Q, energies for different isotopic chains compared to the experimental data (red crosses) [36] where available.

actually been identified due to their connection via « decay (see
[35] and references therein) to their previously known daughter
nucleus. The availability of reliable O, predictions is therefore
crucial for an assignment of new elements. The energy released
when the nucleus emits an o particle is directly related to the
nuclear masses. Hence, Q, values are also an indirect way
to test nuclear-mass models. The macroscopic-microscopic
model used in the present work provides a particularly good
description of nuclear masses with a rms deviation from the
experimental data of less than 0.7 MeV for all nuclei with
A > 16 [17]. Reliable predictions for Q, values are therefore
anticipated.

The calculated Q, are displayed in Fig. 9 as functions
of the mass number for different isotopic chains from Pu up
to element Z = 124. The aforementioned N = 162 deformed
shell appears as a dip at the corresponding mass for elements
between Fm and Ds. Similarly, a local minimum is predicted,
due to some kind of shell closure in the Sg, Hs, Ds, and
Cn isotopic chains, at N &~ 174. To explain the change of
magic numbers from N = 162 to N = 174, please notice that
it is precisely in this mass region, when going from A ~ 270
to A ~ 290, that the ground-state deformation changes from
strongly prolate to close to spherical, as can be seen on
the second panel of Fig. 5. The weak microscopic effect at
N = 152 appears as a very shallow minimum beyond Cm up

to Sg. One notices the absence of a clear and systematic local
minimum at N = 184, in contrast to the predictions of other
models (see, e.g., Ref. [32]). A comparison of the results of
our calculations with the experiment [36], wherever available,
is observed to be very good. The apparently good description
of nuclei, as a function of Z, at and around N = 152 and 162,
is particularly noteworthy.

Encouraged by the promising results of our model for
Qo energies, we compute the o-decay half-life 7Y, (for
which Q, is the main ingredient) in the framework of the
Gamow-type WKB approach of Ref. [4], with no additional
adjustment of any parameter. The corresponding results are
presented in Fig. 10. In addition to the experimental half-lives,
two types of theoretical estimates are displayed there. Open
black circles correspond to the Q, energies produced by our
macroscopic-microscopic model, while full blue circles are
obtained with the experimental Q, values where available.
These last estimates are found to agree almost perfectly with
the experimental data [37], which, to our understanding, is
a clear indication of the value of our Gamow-type WKB
approach. The difference between the two theoretical curves
demonstrates the strong sensitivity of 7, to the precise value
of Q. Similar to the case of w-decay energies, shell effects
lead to local mimina in the evolution of T‘f/z with mass
number A.
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FIG. 10. Calculated 77, a-decay half-lives on a logarithmic scale for different isotopic chains compared to the experimental data (red
crosses) [37] where available. Two theoretical estimates given by the open black and full blue circles are shown (see the text).

C. Fission barriers

Besides o-decay many VHE and SHE isotopes are char-
acterized by a high probability of decaying via spontaneous
fission [38]. Accurate quantitative predictions of spontaneous
fission properties remain a challenge for theory, due to the poor
knowledge of the many ingredients entering its description
(see [39] and references therein). Improving our understanding
of the process is important even for areas outside traditional
nuclear physics, like astrophysics [40].

To address the question of stability against spontaneous
fission, the fission barrier constitutes a crucial quantity. Its
heights derived from the 4D landscapes calculated in our
approach are displayed in Fig. 11 as a function of N —Z and
Z. The barrier heights are here determined by the so-called
flooding method [41]. One notices a rather high fission barrier
in the region centered around *’°Hs (V3 ~ 9 MeV), but also
around 2*Fm (V; ~ 8 MeV) (see in Fig. 12). These islands
of higher stability against spontaneous fission are related
to the N =162 and N = 152 shell effects, respectively.
Large barriers (V3 ~ 8 MeV) are also predicted near 2’3Fl
(N = 164). These should lead to increased stability against
fission of the corresponding isotopes.

Our estimates of fission barriers are consistent both
qualitatively and quantitatively with the predictions by the

macroscopic-microscopic model of Mgller er al. [33,34] in
Hs and Fm isotopes. Similarly to Mgller, we again observe
enhanced fission-barrier heightsinaband (Z = 114-118, N —
Z = 48-66), even though the effect seems somehow weaker
in our approach as compared to his. Still slightly different
predictions are published in, e.g., Refs. [42—44].

Figure 11 displays our calculated barrier heights as a
function of mass number A for the same isotopic chains
as in Figs. 9 and 10. Comparison with the (unfortunately

114 <
6

] =

N 110N L=
106 s

1021 &}t
N

N-Z

FIG. 11. Fission barrier height for the considered nuclei as a
function of Z and N—-Z.
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FIG. 12. Similar to Figs. 9 and 10 for calculated fission-barrier heights compared to the experimental estimates [45—48].

sparse) experimental estimates [45—48] shows that our barrier
heights are, indeed, very reasonable. Let us insist here on
the fact that a fission barrier height is not an experimental
observable, but has to be extracted from some reaction cross
sections using different model assumptions. In this sense the
comparison between our results on fission barrier heights with
these experimental estimates can only be approximate with an
uncertainty of the order of 1 MeV.

In recent works [49,50] we have also applied the above
quoted simple WKB approach to estimate the spontaneous
fission half-lives. Comparison with experiment between Th
and Fl is presented in Fig. 10 of Ref. [49]. The description
by our model is impressively good, with deviations from the
experimental data which are, on average, less than one order
of magnitude, which is remarkable in the field (see, e.g., the
discussion in Ref. [39]).

D. Fission valleys and fission modes

Fission-fragment properties (mass, charge, and kinetic-
energy distributions) are determined by the evolution of the
fissioning system on the multidimensional deformation-energy
landscape. This path, between the initially compact configura-
tion up to the scission into two separate fragments, is influenced
by both static and dynamical effects, with the former effects

presumably dominating at low excitation energy. High quality
calculations of the potential-energy landscape are therefore
essential for reliable predictions of fragment properties. Con-
versely, measured fragment properties, primarily their mass
distributions, constitute a unique tool for probing the potential-
energy landscape, and thereby testing the underlying model.
Itis an experimentally well-established fact that the fission-
fragment mass distribution in low-energy fission of actinides
around U is asymmetric (see [51] and references therein). On
the theoretical side, there is also general agreement that this
asymmetry originates from the influence of shell effects in the
nascent fragments [52,53]. A further analysis of the correlation
between mass and kinetic energy reveals the presence of
different fission channels or modes [54,55]. Dominant fission
modes are attributed to the influence of shell effects in the
nascent heavy fission fragment, with one channel near the
doubly magic '*>Sn and another at a deformed shell closure
around neutron number N = 88. The competition between
these two modes and the additional symmetric mode depends
on the fissioning nucleus [56,57]. The sharp transition from
asymmetric to symmetric fission which was experimentally
observed between 2°Fm and >>Fm [58], with a very narrow
mass distribution and high kinetic energy, was interpreted
as the signature of the formation of two close-to-magic Sn
isotopes in a compact scission configuration [59]. In other
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FIG. 13. Deformation energy in the (¢,¢3) plane minimized with respect to 7 and g4, for 22Cf and »*>%Fm.

words, with increasing mass of the fissioning system, the
light-mass peak in actinide fission approaches the heavy one.
The same feature was observed for several isotopes of other
elements slightly beyond Fm [38,58-61].

The experimental findings in the Fm region triggered a very
intense theoretical effort, with both macroscopic-microscopic
and self-consistent models, in order to identify the
origin behind this particular fission mechanism (see e.g.
Refs. [62-68]). In our previous work [3] we analyzed the
4D potential-energy landscapes computed within the present
approach for a wide range of pre-actinides and actinides.
Although only qualitative at this level,? the study showed that
our model provides a consistent description of the competition
and evolution of asymmetric and symmetric fission up to Pu.
Motivated by this encouraging result, we propose in the present
work to extend the study to heavier elements. It is, in particular,
interesting to investigate whether the 4D deformation space
based on the Fourier shape parametrization is able to account
for the specific modes which lead to the abrupt transition
observed in the Fm region. The method used to identify fission
valleys in the 4D landscape was detailed in Ref. [3]. In short, we
identify as a fission valley a continuous path, running through
the 4D space, with the criterion of slowly varying values
along each of the collective coordinates. As a first step, we
search for paths to fission in the (q,, ¢3) potential-energy map
obtained after minimization with respect to 1 and q4. Then,

2A more quantitative estimate of the fragment mass distribution
would require dynamical calculations. Static arguments based on the
sole potential-energy landscape remain qualitative, even though, in
low-energy fission, the potential-energy topography allows already
for a faithful estimate of the shape of the distribution.

along each “candidate path” (or valley), step by step in g, we
look whether it is associated with a continuous set of minima
in the other 2D spaces, like (11, ¢2), (g2, q4), (g3, g4), etc.

The (g, g3) potential-energy maps for 2>Cf and >>*2>%Fm
are displayed in Fig. 13. For all these nuclei, one observes a
prolate-deformed ground-state minimum at g, & 0.3 and an
isomeric minimum at ¢, ~ 0.8. For 22Cf the topography of
the landscape resembles that of lighter actinides (see, e.g., the
case of 2*®Ra in Fig. 8 of Ref. [3]), although some structures
at and beyond the outer saddle (¢, ~ 1.1) are somewhat less
pronounced. The maximum at the outer saddle being located
around g3 = 0, the (g2, ¢3) landscape suggests that 2>>Cf will
predominantly fission asymmetrically at low excitation energy.
This is confirmed by the (g3, g4) maps analyzed for successive
q» along the path to scission. In Fig. 14 (upper left) we show the
map of 2°Cf at g, = 1.75. This value was selected correspond-
ing to an elongation beyond the outer-saddle region, where the
descent to scission is already initiated. The choice is somewhat
arbitrary, but since the fission valley runs nearly parallel to the
q» axis once the descent is initiated (see Fig. 13), the location
in g3 (equivalently, mass asymmetry) of the actual scission
does not depend strongly on this precise choice of g,. As noted
previously, the left-right asymmetry of the valley is determined
rather early, slightly beyond the outer saddle [52]. The (g, ¢3)
map shows two minima, one at (¢3 =~ 0.07, g4 ~ —0.075) and
the other at (g3 &~ 0.0, g4 ~ 0.03), corresponding respectively
to asymmetric and symmetric mass splits, with compact and
elongated scission configurations [3]. The former minimum is
much deeper, suggesting the dominance of mass-asymmetric
fission, with alocation in g3 corresponding to a heavy fragment
mass around 140, consistent with experiment [69]. Comparing
this result in particular with Fig. 8 of Ref. [3] one concludes
that the pattern and location of the fission valleys in the 4D

034319-12



STABILITY OF SUPERHEAVY NUCLEI

PHYSICAL REVIEW C 97, 034319 (2018)

020 {q,=1.75

0.15
& 0.10
0.05
0.00
0.2 0.1 0.0 0.1 0.2
a4

-0.2 -0.1 0.0 0.1 0.2

20 -18 -16 -14 -12 -10 -8

Etot - E

020 {q,
0.15
& 0.10
0.05
0.00
0.2 0.1 0.0 0.1 0.2
a4

0.20
0.15
& 0.10
0.05

0.00

-6

h
ng [MeV]

FIG. 14. Deformation energy in the (¢4,¢3) plane for g, = 1.75, for 22Cf and *>**Fm.

landscape for 2>Cf are similar to those obtained for the lighter
actinides.

Moving to the Fm isotopes, a close inspection of Fig. 13
suggests a progressive departure from the above trend with
increasing Fm mass. For 2>*Fm the potential-energy landscape
in the outer-saddle region (g, &~ 1.1) is rather flat in the g3
direction with the absence of a maximum centered at gz =
0, as was the case for 22Cf. For heavier Fm isotopes, the
potential energy even decreases towards symmetry. In other
words, there is a progressive migration of the lowest outer-
saddle point from (g3 ~ 0.07) to (g3 &~ 0.0) between >>*Fm
and 2°8Fm, suggesting the emergence of a favored symmetric
splitting. This preference of equal-mass partition increases
further for still heavier Fm isotopes (not shown). In order
to get a deeper insight into the reason for this migration, let
us consider the (g3, g4) maps for g, = 1.75 in Fig. 14. For
all three Fm isotopes, one notices the presence of the same
minima as for 22Cf, identified as the compact asymmetric and
elongated symmetric (so-called superlong) modes. However,
with increasing Fm mass, a third distinct minimum starts to
develop, localized at g3 = 0 and g4 in the range —0.2 to —0.15,
suggesting a second mode of symmetric fission. The profiles of
the nuclear shapes corresponding to the three minima identified
in Fig. 14 are displayed in Fig. 15. The two minima, common
to Cf and Fm, are recognized as the compact asymmetric and
elongated symmetric channels, while the third mode emerging
for the heaviest Fm is seen to correspond to a particularly
compact symmetric configuration. This result is completely
in line with the experimental finding [58], as well as with
the observations by other models [64,67], which confirms the
capability of the Fourier shape parametrization to describe the
rich variety of shapes encountered in fission [3], as well as the
accuracy of the potential-energy calculation.

We would like to emphasize at this point that this achieve-
ment of our shape parametrization was a priori not at all

0y=1.75 q3=0.09 (,4=-0.06

0o=1.75 q3=0.00 (4=0.04

qp=1.75 q3=0.00 q,=-0.17

FIG. 15. Nuclear shape for three different sets of collective
variables (q2, g3, 44).
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FIG. 16. Deformation energy as in Fig. 14 at g, = 1.75, for *2%Rf and 2%%-2"*Hs.

guaranteed, due to the limited number (four, actually only three
in the present case, since the nonaxial deformation 7, plays here
arather minor role) of collective coordinates. This investigation
demonstrates that the Fourier parametrization is indeed able
to generate the appearance of two distinct symmetric fission
valleys across the fermium region, with properties that are
supported by the experimental data. It shall be noted that
the relative strength of the different fission modes cannot be
deduced quantitatively from the present study. To do so, an
extended range in g, starting from before the outer saddle, and
the influence of the dynamics, have to be taken into account.
This is beyond the scope of this work.

Encouraged by the above achievement of the model, we
propose to extend its application to still heavier elements.
In particular, we are interested in investigating what happens
beyond the abrupt change evidenced in the heavy Fm isotopes.
Very little experimental information exists only up to Rf [60],
due to the difficulty in accessing this region of the nuclear chart
with standard methods.

The analysis of the No isotopic chain exhibits a tendency
very similar to that of the Fm one: the prevalence of asymmetric
fission slowly changes to favored symmetric fission between
No mass 256 and 262. Similarly to Fm, depending on the
fissioning system, two (for lighter No) or three (for heavier
No) distinct fission paths are predicted.

Along the chain of Rf, the same kind of pattern is again
observed. A few (g2, g3) maps were shown in Fig. 8. The
(g4, g3) maps projected atg, = 1.75 are displayed in Fig. 16 for
two isotopes. As for Fm and No, a second compact symmetric
fission path appears for the heavier isotopes. Notice, however,
that the outer barrier decreases below 2 MeV, when it does not
nearly vanish for the heaviest Rf isotopes displayed (see 2Rf
in Fig. 8). The barrier disappears completely when going to still

higher Z numbers. In addition, as seen for some Hs isotopes
in Fig. 8, the potential-energy landscape along the descent
to scission can be rather flat in the g3 direction. In spite of
that softness, well-localized and well-defined valleys persist.
This is demonstrated for 2/Rf and ?’*Hs in the (g4, ¢3) maps
of Fig. 16, where three distinct minima are again predicted.
One concludes from this analysis that, in order to localize
these different fission valleys, it is absolutely essential to
analyze the multidimensional energy landscape, as we have
done here, and that a pure consideration of say the (g2, g3)
map would have failed to evidence these different fission
valleys.

Interestingly, it is also observed that the minimum corre-
sponding to the elongated symmetric scission configuration
tends to disappear with increasing Hs mass, and this is in favor
of the compact symmetric configuration. This result suggests a
new change in the picture of fission above the Fm chain. Below
Fm, there is a coexistence between an asymmetric compact and
a symmetric elongated mass split. In the Fm region, an addi-
tional contribution from a symmetric compact configuration
emerges. For heavier elements, the pattern transforms into the
coexistence of an asymmetric and a symmetric partition, where
both of these correspond to a compact shape. To our knowledge
the question of the evolution of fission modes beyond the Fm
transition is addressed here for the first time. The new feature
predicted by our model arises from the complex structure of
the multidimensional potential-energy landscape. It would be
very interesting to investigate our predictions both theoretically
(with other models), and experimentally as a next probe of the
richness of available deformation spaces and the precision of
potential-energy calculations. Robust and accurate predictions
are indeed of prime importance for a further extension of fission
calculation in the SHE region.
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IV. CONCLUSIONS

The recently developed four-dimensional Fourier
parametrization of nuclear shapes, combined with the
extensively tested and successful macroscopic-microscopic
approach of the potential energy based on the Lublin-
Strasbourg drop and microscopic shell and pairing corrections,
is employed to predict the properties of very heavy and super-
heavy nuclei. A careful analysis of the 4D potential-energy
landscapes of 324 even-even isotopes with 92 < Z < 126 and
isospins 40 < N—Z < 74 allows us to study the evolution
with proton and neutron number of the equilibrium ground-
state configuration, the possible presence of isomers, and the
properties of ground-state « radioactivity (Q, value and half-
life) and of spontaneous fission (barrier heights and fission half-
lives). The results of our calculations have prove been to repro-
duce the experimental data for all these observables to a good
accuracy, whenever such data were available. The enhanced
stability of SHE with N = 162, and to a lesser extent for N =
152, is, in particular, clearly evidenced in our model results.

These calculations anticipate that nearly all investigated
isotopes in the discussed region are characterized in the ground
state by axial and left-right symmetry. In general, nuclei with
A < 280 are prolate, those with 280 < A < 300 are spherical
or transitional, while for Z > 122 and A > 300 an oblate
configuration tends to dominate. For the majority of nuclei
with Z < 104, prolate-deformed shape isomers are predicted.

The results by our model suggest that the next shell closure
will appear in the vicinity of Z = 116 and N = 174 with a
rather wide island of relative stabilization from Z = 114 to
Z =~ 118 with48 < N — Z < 66.

The present theoretical framework is finally employed to
investigate the evolution across the Fm region of the properties
of possibly multiple fission paths. The abrupt change in
the fragment-mass and kinetic energy distributions observed
experimentally between >>*Fm and **Fm, and attributed to
the appearance of “double shell-stabilized” symmetric splits, is
consistent with the calculated emergence in the 4D deformation
space of a fission valley leading to a compact symmetric
scission configuration. The model anticipates a change in the
fission mode picture beyond the Fm transition. Shell-stabilized
asymmetric and symmetric channels are predicted to domi-
nate, whereas the macroscopic-driven symmetric (superlong)
partition tends to disappear. The evolution of fission modes
beyond Fm is addressed here for the first time. Our conjecture
of shell-dominated channels for fission in the vicinity of Hs
would be interesting to investigate further, from theoretical
and experimental points of view.

Altogether, the achievement presented here of the Fourier
shape parametrization in a four-dimensional deformation
space, combined with reliable potential energy calculations,
offers an attractive basis for dynamical calculations related
both to collective rotational and vibrational excitations as well
as to fission.
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