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Fourier-over-spheroid shape parametrization applied to nuclear fission dynamics
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We propose a new, rapidly convergent shape parametrization, the so-called Fourier-over-spheroid (FoS)
approach, to model fission of heavy nuclei. Four collective coordinates are used to characterize the shape of
the fissioning system: its elongation, left-right asymmetry, neck size, and nonaxiality. The potential energy
landscape is computed within the macroscopic-microscopic approach, on the top of which the multidimensional
Langevin equation is solved to describe the dynamics. Charge equilibration at scission and deexcitation of the
primary fragments after scission are further considered. The model gives access to a wide variety of observables,
including fission fragments’ mass, charge, and kinetic energy yields, fragment mean N/Z and postscission
neutron multiplicities, and, importantly, their correlations. The latter are crucial to unravel the complexity of
the fission process. The parameters of the model were tuned to reproduce experimental observation from thermal
neutron-induced fission of 235U, and next used to discuss the transition from the asymmetric to symmetric fission
along the Fm isotopic chain.
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I. INTRODUCTION

Fission is a dynamical process during which a nucleus pro-
gressively deforms (either spontaneously or triggered by an
external perturbation) from an initial compact configuration
until a point where it splits into two fragments. This evolution
is an intricate puzzle, involving a complex rearrangement of
the many-body neutron and proton quantum systems. Intense
effort has been invested in fission studies since its discovery,
on both the experimental and theoretical fronts, due to the
impact on fundamental nuclear physics and astrophysics, as
well as for a wide variety of societal applications.

Modeling fission, in general, implies four stages: (i) the
definition of the initial conditions of the system, (ii) its dynam-
ical evolution, and rearrangement in specific configurations
of fragment pairs with corresponding probabilities, (iii) the
(fast) prompt deexcitation of the excited fragments, and (iv)
the (slow) decay towards β stability of those fragments which
are radioactive. The recent review by Schunck and Regnier [1]
gives an excellent panorama on contemporary fission theories,
and further details about foundations can be found in the
textbook by Krappe and Pomorski [2]. In spontaneous and
low-energy (mostly induced by neutrons) fission, the initial
conditions are well defined. The radioactive decay of the
fission products is well known also. To understand fission,
the challenge thus mainly resides in the description of stages
(ii) and (iii). These are not independent each other: Stage (iii)
critically depends on the properties (N , Z , excitation energy,
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and angular momentum) of the (primary) fragments produced
at scission at the end of stage (ii).

While experimental information was restricted to fission-
fragment mass distributions with limited resolution for several
decades [3], recent developments give access to a widespread
variety of observables and their correlations, with unprece-
dented resolution [4–8]. Such information is essential to
unravel in an un-ambiguous way the intricacies of the fission
process. It is obviously of primary importance for constraining
theory, but it poses also a tremendous challenge, which is the
requirement of modeling all aspects of the mechanism and
their mutual interdependences.

According to the complexity of the fission process, its
description remains a challenge for theory, and various models
have been proposed over the years. The last decade has seen
the tremendous development of microscopic, self-consistent
models. Unfortunately, the quantitative description remains
limited so far, and computing time makes systematic calcu-
lations impossible even with supercomputers [1]. Transport
models within the macroscopic-microscopic approach have
been established as a very good alternative. In this framework,
the process is given by the solution of a classical equation of
motion picturing the real-time evolution of the system on
its potential energy landscape (PEL) under the influence of
inertia, dissipation, and fluctuations [9]. Systematic studies
covering different regions of the nuclear chart are nowadays
computationally tractable. Such widespread investigations are
indispensable to converge towards a universal understanding
of the process [10].

Sophisticated macroscopic-microscopic models based on
the solution of the multidimensional Langevin equation, or
some variant of it, were developed during the last two decades
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[1,11]. In these models, three main ingredients are required:
a parametrization of the nuclear shape involving as few as
possible deformation coordinates, a prescription for the po-
tential energy of the nucleus, and a modelization for inertia
and friction forces. Aritomo et al. [12] and Usang et al. [13]
developed, respectively, three- and four-dimensional (3D and
4D) dynamical models to explain fragment mass and total
kinetic energy (TKE) distributions in spontaneous and low-
energy fission. Unfortunately, these models do not compute
the postscission deexcitation of the fragments. Furthermore,
the hypothesis of unchanged charge density (UCD), i.e., the
fragments have the same N/Z ratio as the fissioning system,
is assumed in the model of Aritomo et al. Finally, evaporation
prior to scission (so-called multichance fission) is not consid-
ered, making these codes unsuited for fissioning system initial
excitation energy above 10 MeV or so [14]. The Brownian
shape motion model by Randrup and Möller [15] is based on
the current highest-quality 5D potential energy landscapes.
While its enhanced version by Albertsson et al. [16] adds
the postscission stage, similarly to the early code, the UCD
assumption is made. Möller and Ichikawa [17] went beyond
this hypothesis, treating independently neutrons and protons,
which renders the model 6D. Unfortunately, this version is
still to be combined with the postscission stage of Ref. [16].
Furthermore, as in Refs. [12,13] the possibility of multichance
fission is not implemented. In our previous works [18,19],
we developed an innovative nuclear shape parametrization,
the Fourier parametrization, which demonstrated gathering
within 4 collective coordinates the main features of the shapes
relevant to fission. The new shape parametrization was suc-
cesfully used within the Born-Oppenheimer approximation
[20] to describe fission fragment mass yields [21,22]. We
further implemented this parametrization (restricted to 3D),
with a suited PEL prescription, and inertia and friction forces
borrowed from classical mechanics, into a Langevin code. The
latter was able to reasonably describe fragment mass and TKE
distributions from low-energy fission of typical actinides [23].
It was used also for predictions in the superheavy element
region [24]. The present work is a twofold extension of these
papers. First, we present an enhanced version of our shape
parametrization, called Fourier over spheroid (FoS) [25,26].
Second, we develop the previous Langevin code by proposing
a method to compute (i) the fragments’ (N, Z ) compositions,
i.e., leveling off the UCD assumption, and (ii) their properties
in terms of excitation energy and deformation at the instant
of scission.1 This information is finally used as input in the
extension of the code to the calculation of the postscission
stage. Altogether we offer a demonstration of a particularly
fast and flexible way to compute a wide variety of observ-
ables. Comparison with experiment is made wherever possible
for spontaneous and low-energy fission. Although not treated
in this paper, work to account for multichance fission is in
progress.

1At present, the angular momentum of the fragments is not treated
in the model.

II. MODEL

In this section the various ingredients entering in the here-
developed model are presented. Thermal neutron-induced
fission of 235U is taken as an example to illustrate the main
features of the theory and the variety of observables computed
by the code. In Sec. III the model is applied to spontaneous
fission of fermium.

A. Nuclear shape parametrization

The surface of the fissioning nucleus is described in the
cylindrical coordinates (ρ, ϕ, z) by the following formula
[26]:

ρ2(z, ϕ) = R2
0

c
f

(
z − zsh

z0

)
1 − η2

1 + η2 + 2η cos(2ϕ)
, (1)

where ρ(z, ϕ) is the distance from the z axis to the surface.
Function f (u) defines the shape of the nucleus having half-
length c = 1:

f (u) = 1 − u2−
n∑

k=1

{
a2k cos

(
k − 1

2
πu

)
+a2k+1 sin(kπu)

}
,

(2)

where −1 � u � 1 and the expansion coefficients ai are
treated as the the deformation parameters. The first two terms
in f (u) describe a sphere. The volume conservation condition
implies a2 = a4/3 − a6/5 + · · · . The parameter c determines
the elongation of the nucleus, keeping its volume fixed, while
a3 and a4 describe the reflectional asymmetry and the neck
size, respectively. The half-length is z0 = cR0, where R0 is
the radius of a sphere with the same volume. The z coordi-
nate varies in the range −z0 + zsh � z � z0 + zsh. The shift
zsh = −3/(4π ) z0 (a3 − a5/2 + · · · ) places the mass of the
nucleus at the origin of the coordinate system. The parameter
η describes a possible elliptical, nonaxial deformation of a
nucleus.

The formula (1) is entirely equivalent to those based on
the Fourier expansion and described in Refs. [19]. Here, the
deviation from a sphere with radius ρ = 1 is first expanded
in the Fourier series, and subsequently this deformed object
the length 2R0 is scaled to the elongation equal to 2cR0. The
formula (1) is more adapted to the calculation of the PEL of
nuclei made on a mesh in the multidimensional deformation
parameter (c, a3, a4, . . . , an) space since the range of variabil-
ity of the ai coefficients does not depend on the elongation
c. In addition, the mass ratio of the fragments, their relative
distance, and the radius of the neck between them, measured
in z0 units, do not depend on the elongation of the nucleus. It is
also worth noticing that, for the reflection symmetric shapes,
the geometrical scission points appear when a4 = asc

4 = 3
4 +

6
5 a6 + · · · independently of the elongation c. Such properties
of the present FoS shape parametrization make it very useful
for all kinds of calculations related to nuclear fission.

The PELs of fissioning nuclei are obtained in the 4D
space of deformation parameters (c, a3, a4, η) using the
macro-micro model [27]. The macroscopic part of the en-
ergy is evaluated according to the Lublin-Strasbourg drop
(LSD) formula [28], while the microscopic energy correc-
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FIG. 1. Potential energy surface of 236U on the (c, a4) plane for
the temperature T = 0. Each point is minimized with respect to the
nonaxial (η) and the reflectional (a3) deformations.

tions are calculated using the Yukawa-folded single-particle
potential [29] and the Strutinsky shell correction method
[27,30]. The pairing correlations are described using the
BCS formalism [31] using an approximative projection on a
good particle number[32,33]. All parameters of the macro-
micro model used in the present paper are the same as in
Ref. [34].

A typical PEL of the 236U fissioning nucleus, as an exam-
ple, is shown in Fig. 1. It is a projection of the 4D PEL onto
the (c, a4) plane, i.e., each energy point in the (c, a4) map
is minimized with respect to the nonaxial η and reflectional
a3 deformation parameters. The ground state (g.s.) and the
first (A) and second (B) saddle points are marked in the plot.
Beyond the second saddle B, two separate paths develop, an
asymmetric one and a symmetric one. The exit points from
the fission barrier leading to the asymmetric (C) and symmet-
ric (D) fission valleys are also marked. The upper value of
the neck parameter a4 = 0.72 corresponds to a neck radius
approximately equal to the nucleon radius, rneck = r0, which
we assume in the following as the scission criterion. Here r0 is
the nucleus radius constant. The nonaxial degree of freedom
is important at a smaller elongation of the nucleus until the
neighborhood of the second saddle. At larger deformation, its
effect is negligible, allowing us to restrict the Langevin cal-
culations to 3D when discussing fission dynamics. Moreover,
the role of the higher-order deformation parameters a5 and
a6 is rather small even in the region of well-separated fission
fragments, as shown in Ref. [24]. The (c, Ah) cross section of
the PEL of 236U at a4 = 0.72 is presented in Fig. 2. This
cross section corresponds roughly to scission (rneck � r0), as
noted above. Here Ah is the heavy fragment mass number. The
close-to-scission configuration of the asymmetric valley evi-
denced in Fig. 1 corresponds to the minimum at Ah = 140 and
c = 2.2, while the end of the symmetric valley of Fig. 1 oc-
curs at c = 2.83. As expected, asymmetric fission of uranium
leads to a more compact scission configuration compared to
symmetric splitting.

B. Dynamical evolution

The Langevin equation governs the dissipative fission dy-
namics. In the generalized coordinates ({qi}, i = 1, 2, . . . , n)

FIG. 2. Potential energy surface of 236U around the scission
configuration (a4 = 0.72) on the (c, Ah) plane for the temperature
T = 0. Each point is minimized with respect to the nonaxial (η)
deformations.

it has the following form [2]:

dqi

dt
=

∑
j

[M−1(�q )]i j p j

d pi

dt
= − 1

2

∑
j,k

∂[M−1] jk

∂qi
p j pk − ∂V (�q)

∂qi

−
∑

j,k

γi j (�q) [M−1] jk pk + Fi(t ), (3)

Here V (�q ) = Epot (�q ) − a(�q )T 2 is the free energy of a fis-
sioning nucleus having temperature T and the single-particle
level density a(�q ). The potential energy Epot (�q ) at a given de-
formation point (�q) is given by the macroscopic-microscopic
prescription quoted in the previous section, and the level
density a(�q ) at corresponding deformation is taken from
Ref. [35]. The inertia M jk and the friction γi j tensors are
evaluated in the irrotational flow and the wall approximation,
respectively, as described in Refs. [24,36].

The vector �F (t ) stands for the random Langevin force,
which couples the collective dynamics to the intrinsic degrees
of freedom and is defined as

Fi(t ) =
∑

j

gi j (�q ) Gj (t ), (4)

where �G(t ) is a stochastic function whose strength g(�q ) is
given by the diffusion tensor D(�q ) defined by the generalized
Einstein relation

Di j = T ∗γi j =
∑

k

gik g jk, (5)

where

T ∗ = E0/tanh

(
E0

T

)
. (6)

Here E0 = 3 × 0.5 MeV is the zero-point collective energy.
The temperature T is obtained from the thermal excitation
energy E∗ defined as the difference between the initial energy
(Einit) and the total collective energy, which is the sum of
the kinetic (Ekin) and potential (V ) energies of the fissioning
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FIG. 3. Fission fragment mass yield of nth + 235U as a function
of the mass of the fragment. The experimental data are taken from
Ref. [37].

nucleus at a given deformation point (�q):

a(�q )T 2 = E∗(�q ) = Einit − (Ekin + V ). (7)

For a given fissioning system, several thousand Langevin tra-
jectories leading to scission are run. From such samples, the
properties of the primary fragments are evaluated, giving the
mass and kinetic energy distributions presented below.

1. Mass yields

The primary or so-called preneutron fission fragment mass
yield, as obtained for thermal neutron-induced fission of 235U,
is shown in Fig. 3. Note that it was assumed here that each
Langevin trajectory begins randomly at the region of the sec-
ond saddle (B) with the half-width of the initial distribution
equal to the distance between the mesh points (δqi = 0.03). It
was observed that this leads to a predicted mass yield of 236U
which is almost independent of the starting point: similar mass
distributions are obtained when starting from the ground state
deformation or from the first saddle (A). Our result describes
pretty well the maxima and the tails of the experimental mass
yield at large asymmetry [37]. However, the yield at symmetry
is slightly overestimated.

2. Total kinetic energy

For each Langevin trajectory, the total kinetic energy
(TKE) of the fragments E frag

kin is given by the sum of the
Coulomb repulsion energy (VCoul), the nuclear interaction en-
ergy of fragments (Vnuc), and the prefission kinetic energy of
the relative motion (EColl

kin ) evaluated at the scission point (qsc):

E frag
kin = VCoul(qsc) + E coll

kin (qsc) + Vnuc(qsc). (8)

The Coulomb repulsion energy is equal to the difference be-
tween the total Coulomb energy of the nucleus at the scission
configuration and the Coulomb energies of both deformed
fragments:

VCoul = 3e2

5r0

[
Z2

A1/3
BC(�qsc) − Z2

h

A1/3
h

BC(�qh) − Z2
l

A1/3
l

BC(�ql )

]
,

(9)

FIG. 4. Total kinetic energy yield of nth + 235U as a function of
the mass of the fragment. The experimental data are taken from
Ref. [5].

where r0 = 1.217 fm is the same charge radius as in the LSD
mass formula [28] and BC is the ratio of the Coulomb energies
of the deformed and spherical nuclei.

The nuclear interaction between the fragments at the scis-
sion point is approximately equal to the change of the nuclear
surface energy when the neck breaks:

Vnuc(qsc) = −2 × Esurf (0)
πr2

neck(sc)

4πR2
0

= −1

2
Esurf (0)

(
rneck

R0

)2

. (10)

Here Esurf = bsurf A2/3, where bsurf is the surface tension LD
coefficient. For rneck = r0 and the nucleus radius R0 = r0A1/3

one obtains Vnuc(qsc) = − 1
2 bsurf , i.e., Vnuc(qsc) ≈ −9 MeV for

the neck radius equal to the nucleon radius. We note that this
prescription for E frag

kin is undoubtedly a more accurate estimate
of the fission-fragment kinetic energy than the frequently used
point-charge approximation, Ekin = e2ZhZl/R12, where R12 is
the distance between the fragment mass centers.

The mean TKE as a function of fragment mass as obtained
from the model is compared in Fig. 4 with the experimental
data [5]. These are reproduced well on average. Some discrep-
ancy is noted though. First, the predicted TKE around Ah =
140 is too large. The yield in this mass region is nevertheless
well described; see Fig. 3. Thus, we ascribe the discrepancy in
TKE to the limitation of the 4D parametrization in describing
the scission shapes characteristic of the so-called Standard II
mode, corresponding to a deformed heavy fragment and a
slightly or even close to spherical light partner [3]. Second,
the maximum of the calculated TKE, expected to occur for
the Standard I mode with a heavy fragment in the vicinity of
132Sn, is seen to be shifted to larger masses around Ah = 136.
The reason for this discrepancy is twofold: (i) the difficulty
of describing in a 4D deformation space the compact shapes
characteristic of Standard I mode, and (ii) the too large con-
tribution of the symmetric mode, noted already in Fig. 3, in
the Ah ≈ 130 region, which corresponds to very elongated
scission shapes, and thus lowers the average TKE in this
region.
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C. Charge equilibration at scission

At the end of the Langevin trajectory, once the system has
reached the scission point, the mass of the two fragments is
determined by integrating the volume of the shapes at the
left and right of the point of rupture. In the wide majority
of macroscopic-microscopic models available, the isotopic
composition, equivalently N/Z ratio, of the fragments is next
assumed to be identical to the one of the fissioning nucleus
(see, e.g., [12,15,16,23,24]). The UCD assumption was re-
cently levelled off by Möller and Ichikawa [17] in a “6D”
model by computing the probability of proton transfer be-
tween the two fragments along the dynamical evolution. In
the fully microscopic approach, neutron and proton sharing at
scission can in principle be obtained from the corresponding
density distributions; see, e.g., Ref. [38] for a recent discus-
sion. In the present work, we go beyond the UCD assumption
which we employed in our previous model [23,24] as follows.

Starting from the fragment deformation at scission, we
determine for each fragment mass the most probable charge
based on the LSD energy and the pairing correlation energy.
Such charge equilibration can be determined by looking at the
change of the total energy of the fissioning system with the
charge number of the heavy fragment Zh:

E (Z, A, Zh; Ah, �qh, �ql )

= ELSD(Zh, Ah; �qh)

+ ELSD(Z − Zh, A − Ah; �ql )

+ e2Zh(Z − Zh )/R12 − ELD(Z, A; 0), (11)

where Z, A, and Zh, Ah are the charge and mass numbers of the
parent nucleus and the heavy fragment, respectively. The mass
as well as the deformation parameters of the heavy (Ah, �qh)
and the light fragments (Al, �ql) are given by the division of the
volume according to the shape of the nucleus at scission at the
end of the Langevin trajectory, as mentioned in the previous
work [23,24].

The total energy as a function of the fragment charge num-
ber is shown in the upper panel of Fig. 5. The odd-even energy
(Eodd), taken from Ref. [28], is added to the LSD energy
(ELSD) for the odd proton of the fragment. The distribution
of the heavy-fragment charge number can be estimated using
a Wigner function corresponding to the energy E given by
Eq. (11) for different values of Zh:

W (Zh) = exp
{ − [E (Zh) − Emin]2

/
E2

W

}
, (12)

which gives the distribution probability of the fragment charge
shown in the bottom panel of Fig. 5. Emin in Eq. (12) is
the lowest discrete energy as a function of Zh. Furthermore,
the following random number determines the charge number
Zh of the heavy fragment, with Zl = Z − Zh. The energy EW

should be comparable with the energy distance h̄ω0 between
harmonic oscillator shells since we have a single-particle (pro-
ton) transfer, here, between the touching fragments.

The above outlined prescription permits one to go beyond
the UCD hypothesis by accounting for charge equilibration
for a given mass split. The resulting fission fragment charge
yield is compared with the data [39] in Fig. 6. As one can
see, the odd-even effect for the most probable fission frag-

FIG. 5. Energy of 240Pu at scission as a function of the heavy
fragment charge number in the LSD mass formula [28] (top) and
the Wigner distribution probability of the fragment charge number
(bottom).

FIG. 6. Fission fragment charge yield of nth + 235U. The experi-
mental data (red points) are taken from Ref. [39].
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ment elements are well reproduced with our simple model,
which is solely based on the LSD macroscopic energy, for the
largest yields. Theory overestimates the staggering for most
asymmetric splits and at symmetry. This dependence of the
magnitude of the staggering with fragment charge is under
intense debate [40] due to its connection with the influence of
shell effects and dissipation in fission [41]. Within the present
modeling, it will be the subject of future development. We
note that a similar procedure could be introduced to account
for neutron pairing. However, since evaporation after scission
widely washes it out, it is hardly seen in experiment, and is
not very exploitable.

D. Postscission evaporation

The primary fragments produced right at scission are
in general excited. They return to their respective ground
states by emitting neutrons and γ rays. Our previous model
[23,24] was extended to account for postscission evaporation
of neutrons. Competition with γ -ray emission has a negligible
impact on neutron evaporation, as it occurs mostly below
the fragment neutron separation energy. Inclusion of γ -ray
emission is thus left for future development.

The excitation of the fissioning nucleus available at scis-
sion, and to be shared between the primary fragments, is
evaluated as specified above with Eq. (7). It is then assumed
that the thermal energy of a given fragment, E∗

i , at the scission
point is proportional to its single-particle level density:

E∗
l

E∗
h

= a(Zl, Al; defl )

a(Zh, Ah; defh)
(13)

with E∗ = a(�q) T 2 = E∗
l + E∗

h given by Eq. (7).
Since the fragments have usually a deformation at scission

which differs from their equilibrium configuration, they very
quickly relax to the ground-state shapes. The deformation
energy released by this relaxation is transformed into exci-
tation energy. The deformation energy of each fragment can
be evaluated in the LD model [28]:

E (i)
def ≈ ELD(Zi, Ai, def i ) − Eexp(Zi, Ai, g.s.). (14)

The total excitation energy (E (i)
exc) of fragment i is then the sum

of its thermal and deformation energies:

E (i)
exc = E (i)

def + E∗
i = a(i) T 2

i . (15)

For each fragment, this excitation energy is available for neu-
tron emission.

The maximal energy of a neutron emitted from a fragment
(parent) can be obtained from the energy conservation law:

εmax
n = MM + E∗

M − MD − Mn, (16)

where MM, MD, Mn are the mass excesses of parent and
daughter nuclei and of the neutron, respectively. These data
can be taken from a mass table [42]. The thermal excitation
energy of the daughter nucleus is

E∗
D = εmax

n − εn. (17)

Here en is the kinetic energy of the emitted neutron.
The neutron emission probability for a (parent)

fragment with excitation energy E∗
M is given by the

FIG. 7. Postscission neutron multiplicity as a function fragment
mass for nth + 235U. The experimental data (red points) are taken
from Ref. [4].

Weißkopf formula [43]:

�n(εn) = 2μ

π2h̄2ρM(E∗
M)

∫ εn

0
σinv(ε) ε ρD(E∗

D) dε. (18)

Here μ is the reduced mass of the neutron, σinv is the neutron
inverse cross section [44],

σinv(ε) = [0.76 + 1.93/A1/3

+ (1.66/A2/3 − 0.050)/ε] π (1.7A1/3)2, (19)

while ρM and ρD are, respectively, the level densities of parent
and daughter nuclei:

ρ(E ) =
√

π

12a1/4E5/4
exp(2

√
aE ), (20)

As in other parts of the model, the single-particle level density
parameters a of the parent and the daughter are taken from
Ref. [35].

Neutron evaporation is assumed to take place until the
fragment reaches an excitation energy comparable to the neu-
tron separation energy, for which we take an average value
of 6 MeV (this energy is further exhausted by γ rays as also
observed in experiment; see, e.g., Ref. [45]).

The number of neutrons emitted by the fragments as func-
tion of their mass is displayed in Fig. 7 and compared with
the measurements [4]. The sawtooth shape observed in the
experimental data is only roughly reproduced by the theoret-
ical results. The too large multiplicity predicted in the range
between A ≈ 116 and 130 is partly due to the too large amount
of very elongated scission shapes originating from the LD
fission mode in this region, as already discussed in Fig. 3.
The fragments of this mode experience a substantial shape
relaxation after scission, which increases the excitation energy
available for evaporation (see also Figs. 9 and 10). Further-
more, the too large amount of evaporation in the vicinity of
132Sn is additionally due to the limitation of the model to
describe the specific shapes of the Standard I mode. The small
underprediction at A ≈ 155 may similarly point out the issue
of shape parametrization for those elongated heavy fragments.
When the influence of structural effects in the heavy fragment
dominates, energy minimization will naturally favor those
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FIG. 8. Average postscission neutron to proton 〈N〉/Z ratio for
nth + 236U. The dashed line represents the ratio of the compound
nucleus.

prescission configurations which reproduce best the shape of
the heavy “side” of the mononucleus approaching scission.
The limited number of collective coordinates will necessarily
bias the shape of the light counterpart and thus its excitation
energy and postscission evaporation. That partly explains the
discrepancy between theory and experiment in the region A ≈
(90–010). It is expected that inclusion of higher deformation
parameters, namely a5 and a6, which allow one to better
control the fragments’ deformation, will substantially improve
the description of postscission neutron multiplicities.

The average fragment neutron to proton ratio 〈N〉/Z after
postscission evaporation for fission of 236U at thermal energies
is shown in Fig. 8 as a function of the fragment charge number.
The N/Z ratio of the initial system is given by the dashed
line for reference. The change of the fragment 〈N〉/Z with
respect to the parent nucleus is due to charge equilibration
at scission and postscission neutron evaporation. The general
behavior observed in experiment (see, e.g., Ref. [7]), with the
heavy fragment being relatively neutron rich and the lighter
one neutron poor for fission of typical actinides, is reproduced.
However, the influence of shell effects in the vicinity of 132Sn
is weaker in theory as compared to the measurement. As dis-
cussed above, we mostly attribute this to the limitation in the
description of the particularly compact scission shapes char-
acteristic of those fragmentations. The excitation of the heavy
partner is then slightly overestimated and the neutron multi-
plicity gets too large, which lowers the 〈N〉/Z ratio. To be best
of our knowledge, apart from the present work, there are only
two dynamical models that have addressed the experimentally
observed evolution of 〈N〉/Z with fragment charge (or mass):
While the enhanced “6D” macroscopic-microscopic model of
Möller and Ichikawa [17] achieved a very good quantitative
description [46], the description by the self-consistent model
of Verriere et al. [38] remained qualitative only.

The model developed in the present work calculates all
fragment properties (except the angular momentum) in a
consistent manner, and takes proper care of the correlations
between the various quantities. For instance, the primary frag-
ment N and Z distributions and associated shapes predicted
by the calculation of the dynamical evolution up to the scis-

FIG. 9. Fission fragment yield (top), TKE (middle), and the pre-
fission kinetic energy (bottom) for nth + 235U on the (Nf, Zf ) plane.

sion point determine the TKE. The primary (N, Z ) population
together with TKE gives the total excitation energy (TXE).
The fragment deformation at scission together with the TXE
enters the calculation of the intrinsic excitation energy of the
fragments, which finally determines the neutron multiplicity
and N/Z neutron excess. Correlations are essential to get
further insight into the process, as well as to understand pos-
sible deviation between experiment and theory. The primary
fragment yield, TKE, and the prefission kinetic energy [E coll

kin ,
Eq. (8)] of 236U are shown in Fig. 9 on the (Nf, Zf ) plane.
In our model, the most probable primary fragments are 140Xe
and 96Sr, consistent with what was suggested by combining
the experimental observations of Refs. [32,37,47]. The largest
TKE � 190 MeV corresponds to neutron-rich fragments with
mass A ≈130–040 and correlated with light fragments around
A = 100 having smaller neutron excess. The prefission kinetic
energy for the most probable fission fragments is only around
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FIG. 10. Fission fragment excitation energy (top) and neutron
multiplicity (bottom) for nth + 235U on the (Nf, Zf ) plane.

3 MeV. Rather small values of the TKE of the fragments,
equal to approximately 140 MeV, are calculated for symmetric
fission. The larger TKE for the Standard I and II modes as
compared to the LD symmetric mode well established from
experiment [47] is thus reproduced. However, the measured
difference between Standard I and Standard II is not evident
in the calculation, presumably due to the limited number of
collective coordinates. That translates into a fragment exci-
tation in the vicinity of 132Sn which is somehow too large,
and consequently an overestimation of the number of neutrons
emitted, as noted above. This is indeed seen in Fig. 10 which
displays the fragment excitation energy and neutron multiplic-
ity on the (Nf, Zf ) plane.

A further stringent test of the model is presented in Fig. 11,
where the experimental data on the average neutron multiplic-
ity as a function of the fission fragment TKE for nth + 235U
[4] are displayed for various mass gates, and compared to
the predictions of our model. The description is pretty good,
except for those pairs of fragments substantially contributed
by the Standard I mode. For the latter, the theoretical neutron
multiplicity is too large for the heavy fragment, which is
in line with the interpretation of the discrepancies observed
above. However, it is to be noted that at the same time the
neutron multiplicity of the light partner is underestimated.
That is mostly attributed to the impact of the aforementioned
bias introduced by the restriction to four dimensions. Within
the 5D Brownian shape motion model, Albertsson et al. [16]
obtained a better description for these fragment pairs. That
supports our conjecture that an increase in dimensionality
of our model, with the inclusion of independent deforma-

FIG. 11. Average neutron multiplicity as a function of TKE for
selected mass pairs, as indicated in the top right corner of each panel.
Experimental data of Ref. [4] for the light and heavy fragments
separately, and their sum, are compared to the calculation.

tion variables for the light and heavy fragments (a5 and a6),
will cure most of the deviation of the current theory. This
conjecture is supported also by the analysis of the N/Z ratio
reported above, where the “6D” model of Ref. [17] based on
the same 5D deformation landscape as Ref. [16] achieves a
better description than the present 4D model. Nevertheless,
we do not exclude that part of the discrepancy observed here
may be due to the prescription of excitation energy sharing
and charge equilibration at scission. For both aspects we
consider for the fragments the macroscopic energy only (i.e.,
shell effects are omitted). This simplification is planned to be
removed in future developments of the model. Furthermore,
unlike Ref. [16], we use an approximate formula [7] for the
density of states of the deformed fragments, rather than the
actual s.p. level densities with the shell effects.
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FIG. 12. Potential energy surface of the even-even 252–262Fm isotopes on the (c, a4) plane. Each point is minimized with respect to the
nonaxial (η) and the reflectional (a3) deformation. The asymmetric a and symmetric s exit points from the fission barrier are marked.

The present investigation demonstrates that high-fold cor-
relation data, which nowadays are becoming available in
experiment, when they are properly propagated in the cal-
culation along the real-time evolution of the fissioning
system, are crucial in order to evidence in an unambigu-
ous manner the origin of possible weak points of a model.
That is important to guide further development of the
theory.

III. APPLICATION TO THE Fm CHAIN

Experiments have well established that the Fm isotopic
chain exhibits a very peculiar trend in fragment properties
with the size of the fissioning system: the fragment mass
distribution changes abruptly from asymmetric for 256Fm to
narrow and symmetric in 258Fm [48,49]. At the same time,
the TKE has a double-humped shape for the heavier isotope.

This is certainly the best example of bimodal fission. The first
theoretical papers providing an explanation for the origin of
this observation appeared at the end of the 1980s; they were
all based on a static analysis of the PEL (see, e.g., [50]).
Thanks to the development of theory and increase in com-
puting resources since then, advanced dynamical calculations
are now possible within both the macroscopic-microscopic
approach (see Refs. [13,16,51] for 3D, 4D, and 5D models,
respectively) and the microscopic self-consistent framework
[52]. There is a wide consensus that the sudden transition
observed along the isotopic chain of Fm (and of a few more
trans-fermium elements) is caused by the proximity of strong
shell effects at symmetry in fragments approaching 132Sn
with increasing fissioning isotope mass. As obvious from the
quoted theoretical papers, a proper description of the mass and
TKE yields along the Fm isotopic chain is a good test for any
theoretical model.
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FIG. 13. Fragment mass yield calculated for spontaneous fission
of 258Fm corresponding to Langevin trajectories starting from either
the asymmetric (a) or the compact symmetric (s) turning point.

The model described in the present work was used to
calculate the fission fragment properties (mass, charge, TKE,
postscission neutron multiplicity) along the Fm chain. All
parameters were set identical to those employed in the previ-
ous section for thermal neutron-induced fission of 236U. The
4D PELs of the even-even 252–262Fm isotopes projected onto
the (c, a4) plane are shown in Fig. 12. Each point of the
maps is minimized with respect to the nonaxial (η) and the
pearlike (a3) deformation as for 236U. For the lightest isotopes
252,254Fm, the outer saddle point is rather well defined and
located at c ≈ 1.5 and a4 ≈ 0.18. Its exit point, denoted a
in all maps, marks the beginning of a valley which corre-
sponds to asymmetric fission (as seen from the corresponding
minimized a3; not shown here). Between 256Fm and 258Fm
the pattern in the outer saddle region clearly changes, and
still another outer saddle (at c ≈ 1.45 and a4 ≈ 0.27) appears.
A new fission valley develops beyond this additional outer
barrier in 258Fm. It corresponds to compact symmetric fission
configurations and is denoted s. The PELs of Fig. 12 suggest
that the symmetric valley might attract most of the flux for the
heaviest Fm isotopes.

The mass yields calculated for spontaneous fission of
258Fm and corresponding to the starting points a and s are
shown separately in Fig. 13, being respectively asymmetric
and symmetric as noted above. The final mass yield is, of
course, a weighted sum of these two distributions. The weight
suited for a and s depends on the penetration probability (Pi)
of the fission barrier evaluated along the path Li, which ends
at the t th turning point (a and b). As deduced from Fig. 12,
there are two distinct outer saddle points for the 256–660Fm
isotopes, and tentatively also for 254Fm. The heights of the
corresponding outer barriers are plotted in Fig. 14. They are
almost identical for 256Fm, while in the heavier isotopes, the
symmetric barrier is lower than the asymmetric one. This
difference in the saddle-point heights indicates that compact
symmetric fission should prevail for isotopes heavier than
256Fm. In order to calculate the final mass yield expected for
spontaneous fission and compare quantitatively with experi-
ment (wherever available), we proceed as follows.

The final fission fragment yield (Yth) is taken as the
weighted sum of the yields Ya and Ys obtained using the points

FIG. 14. Second barrier heights along the Fm chain correspond-
ing to the asymmetric a and symmetric s fission paths as a function
of Fm isotope mass.

a and s as initial points of the Langevin trajectories:

Yth(A f ) = PaYa(A f ) + PsYs(A f ), (21)

where Pa and Ps are the relative probabilities of reaching
points a and s by tunneling of through fission barrier. We
follow here the approximation described in Ref. [34] to
evaluate Pi.

In the Wentzel-Kramers-Brillouin (WKB) approximation,
the barrier penetration probability is given by

Wi = 1

1 + exp[2S(Li )]
, (22)

where S(Li ) is the action integral taken along the Li path,

S(L) =
∫ sr

sl

√
2

h̄2 Bss(s)[V (s) − E0] ds. (23)

Here sl and sr are the left and right turning points at the path
L. Bss and V (s) are the collective inertia and potential along
the path L respectively, and E0 is the ground state energy. The
total penetration probability of the barrier is the sum of the
probabilities along the asymmetric and symmetric paths. So,
the relative populations of the asymmetric and the compact-
symmetric valleys are

Pa = Wa

Wa + Ws
and Ps = Ws

Wa + Ws
. (24)

Following the above recipe, the final fission fragment mass
yields (thick black line) predicted for spontaneous fission of
the even-even 246–662Fm isotopes are shown in Fig. 15. The
yield distributions due to path a (thin purple line) and to path
s (dotted blue line) are also displayed for reference. For the
lighter 254–456Fm isotopes, the mass yields do not depend on
the choice of the starting point, while for the heavier ones they
differ significantly. One obtains the asymmetric mass yield
(solid line) when starting from the point a and the symmetric
distributions corresponding to the initial point s. The maxi-
mum of the asymmetric component in the final distribution
is located between A ≈ 146 and 150 for the heavy fragment
depending on fissioning mass, while for the symmetric com-
ponent, there are two close-lying maxima, with the heaviest
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FIG. 15. Fission fragment mass yields along the Fm isotopic
chain. The calculation (solid black line) is compared with experimen-
tal data for preneutron yields (red +) [53,54] or postneutron yield
(red ×) [11,48] depending on availability (the little shift between
pre- and postneutron mass distributions is of no importance for the
present comparison). The theoretical curves corresponding to the
asymmetric (thin purple line) and symmetric (dotted blue line) fission
paths are shown separately for reference; see the text.

one is sitting at Ah = 132; the light partner is given by the
fissioning mass. Comparison between the final calculation and
experiment is seen to be pretty good, bearing in mind the
simple recipe outlined above. Further improvement requires
one to consider the full dynamics of the process starting from,
e.g., the second minimum as in Ref. [13] (rather than assum-
ing simple tunneling through each barrier separately). Work in
this direction is the scope of future enhancement of the model.

The calculated final fission fragment TKE distribution for
spontaneous fission of 258Fm is shown in the top panel of
Fig. 16. This weighted TKE yield (thick black full line) can
be compared with the experimental data (red histogram) [48].
The TKE yields corresponding to the starting points a (thin
purple) and s (dotted blue) are drawn also. The theoretical
result is seen to reproduce very reasonably the measurement.
In particular it exhibits the two-humped pattern mentioned in
the Introduction. According to the discussion above, for the
258Fm isotope, the contribution from path s dominates. In this
respect, it is important to note that Fig. 16 suggests that the
low-energy component of the TKE distribution originates al-
most exclusively from path s rather than from path a. In other
words, path s has itself a two-humped distribution, i.e., it has
contributions from two different modes. This could already
been seen in Figs. 13 and 15, where some asymmetric wings
appear next to the symmetric peak in the mass distribution of
path s. The mean TKE as a function of the fission fragment
mass is plotted in the bottom part of Fig. 16. It is seen there

FIG. 16. Top: fission fragment TKE distribution for spontaneous
fission of 258Fm. The final calculated distribution is shown with the
thick black full line, while the distributions characteristic of paths
a (thin purple full) and s (dotted blue) are displayed for reference.
Experimental data (red histogram) are taken from Ref. [48]. Bottom:
mean TKE as a function of the fragment mass for paths a and s.

that for A f = 258/2 the TKE corresponding to the path s is
about 50% larger than the one related to the path a. It shows
that in the case s, for most symmetric events, one deals with
a compact symmetric path. The TKE spectra confirm conclu-
sions drawn from the mass yields comparison: in 258Fm, the
compact-symmetric fission predominates.

To get a deeper insight into the above observations and
discussion, we consider higher-fold correlations. Figure 17
displays the fragment yield (top) and the elongation of the
system just before scission, at the end of the trajectory (bot-
tom) as a function of fragment mass and TKE for spontaneous
fission of 258Fm. The upper panel exhibits the dominant sym-
metric component with TKE ≈ 234 MeV (dark blue and red
blob) and the small contribution from the asymmetric Stan-
dard II mode at (Al , Ah) ≈ (113, 145) and TKE ≈ 180 MeV
(light blue bands); see also the bottom of Fig. 16. In addition,
some slightly less asymmetric component is dragging from
the symmetric high-TKE region down to TKEs as low as
≈129 MeV. These events correspond to the asymmetric wings
of path s mentioned above. A further insight can be obtained
from the bottom panel of the Fig. 17, which informs us about
the elongation close to scission. The dominant symmetric
component originating from path s is seen to be characterized
by the smallest elongation c ≈ 2 at scission, confirming that
it corresponds to a compact symmetric mode. The Standard II
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FIG. 17. Fission fragment yields (upper panel) and correspond-
ing average elongation 〈c〉 close to scission (bottom panel) for
spontaneous fission of 258Fm as a function of fragment TKE and
mass Af .

asymmetric mode has a somehow larger mean c ≈ 2.2–2.4 at
scission, as expected. But maybe most interesting is that the
slightly asymmetric wings dragging from symmetry to very
low TKE, which end as distinct blue blobs clearly separated
from Standard II, have a mean elongation at scission above
c ≈ 2.7, viz., larger than Standard II. That corroborates that
the asymmetric wings from path s discussed above do not
originate from the Standard II mode due to path a, but rather
shall be considered as the asymmetric tails of a symmetric
elongated mode stemming from path s. It is to be noted that
these tails dominate the mass distribution of path s in 256Fm,
while the symmetric compact mode prevails in 258Fm (see pur-
ple curves in the corresponding panels of Fig. 15). This can be
best understood from a detailed look at Fig. 12, which shows
that these two “subpaths” separate at c ≈ 1.7 and a4 ≈ 0.54.
The small differences between the PELs of 256Fm and 258Fm
drive the system in one or the other subpath (in addition to the
influence of the dynamics).

Finally, the predicted postscission neutron multiplicities
for spontaneous fission of 258Fm are shown in Fig. 18 as a
function of the fragment (Nf, Zf) isotopic composition. The
diagonal purple lines correspond to constant masses. Obvi-

FIG. 18. Postscission neutron multiplicity for spontaneous fis-
sion of 258Fm as a function of fragment neutron number Nf and
proton number Zf.

ously, the number of emitted neutrons at a given mass grows
with the distance from the β-stability line. For the Standard
II mode, the heavy and light fragments emit on the average a
comparable number of neutrons, consistent with experimental
observation in the region (see, e.g., [55]), although evapo-
ration may be slightly overestimated for the heavy partner
(see also Fig. 11). The compact symmetric mode exhibits
the lowest postscission multiplicity, only 0.5 neutron on av-
erage, in line with the above discussion: the fragments of this
mode are close to magic nuclei, poorly excited at scission and
which experience very little shape relaxation after scission.
The asymmetric wings of the mass distribution of path s
which we identified above as stemming from an elongated
symmetric mode show postscission multiplicity values which
are somehow intermediate between those of Standard II and
of the compact symmetric mode, while it would be expected
that these events exhibit the largest postscission multiplicities.
Overall the model thus describes the main trends observed
in experiment in the region. The deficiency regarding a more
detailed quantitative description is mostly due to the limitation
of the theory in terms of full variety of shapes, in particular at
scission, of the energy sharing prescription already mentioned
above.

IV. CONCLUSIONS

We have proposed the innovative Fourier-over-spheroid
(FoS) prescription as a fast and flexible nuclear shape
parametrization to model fission by means of four collec-
tive coordinates, i.e., elongation, left-right asymmetry, neck
size, and nonaxiality. Neglecting nonaxiality from the outer
saddle region to scission, we have developed a new 3D
Langevin code, based on the FoS, the LSD + Yukawa folded
macroscopic-microscopic potential energy landscape, a pro-
cedure to account for charge equilibration at scission, and
a method to compute the excitation energy available in the
primary fragments. Finally, the deexcitation of the latter after
scission was computed. Altogether it gives access to a wide
palette of observables, treated in a consistent way, which per-
mits one to analyze high-fold correlations. Such information
is crucial to evaluate in a unambiguous way the reliability of
specific theoretical prescriptions which are often entangled in
the intricate fission process.
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The model was first tested and tuned to reproduce at best
experimental observation from thermal neutron-induced fis-
sion of 235U. In a second step, it was applied to fission along
the Fm isotopic chain, and seen to explain the famous abrupt
transition observed in the fragment properties between 256Fm
and 258Fm.

The achievement of the present model is considered to
be impressive considering its relative simplicity. Remaining
discrepancies are ascribed to limitations mainly in terms of
dimensionality of the shape parametrization, restriction to the
outer saddle to scission dynamics, charge equilibration and
energy sharing recipes at scission, and possibly the neglect of
angular momentum. Work to improve the model along these
lines is foreseen. Also, the extension of the model to account
for multichance fission is underway. This enhancement is very
important for calculations of interest in nuclear energy ap-
plications. Further calculations for wider mass and excitation
energy ranges of the fissioning nucleus, and comparison with
experiment wherever available, are in progress in parallel.
These are important to constrain more and more the model
ingredients, and refine them. Independently of these develop-
ments, the model constitutes already a useful tool for various
domains where systematic and fast predictions are required.
Additionally, the conclusions drawn from its comparison with
experiment can be a useful guide for more fundamental theory.

ACKNOWLEDGMENTS

We acknowledge discussions with F. A. Ivanyuk. The
authors would like to thank A. Göök and A. Al-Adili for
supplying us with some experimental data. This work was
supported by the Polish National Science Center (Grant No.
2018/30/Q/ST2/00185) and by the Natural Science Founda-
tion of China (Grants No. 11961131010 and No. 11790325).

APPENDIX: DEFORMATION OF FISSION FRAGMENTS

At the end of each thousand Langevin trajectories, i.e., at
scission configuration, one has to determine the deformation
parameters of both fission fragments. This procedure has to be
repeated several thousand times, so it should be rapid. Knowl-

FIG. 19. Shape of the parent nucleus (black line) and the frag-
ments fitted using only the elongation parameter c (dotted line), c
and the pearlike deformation a3 (dashed line), and three deformation
parameters c, a3, and a4 (red line).

edge of the fragment deformations is necessary to estimate
its deformation energy, which contributes significantly to the
fragment excitation energy (13).

Let us assume the fission fragments have the masses A1

and A2, where A = A1 + A2 is the mass of the parent nucleus
described by the profile ρ2(z), Eq. (1). The following data on
the parent nucleus around scission are needed to determine the
deformation of the fragments:

zmin = −z0 + zsh, zneck, zmax = z0 + zsh,

zcm(1), zcm(2), ρ2

(
zmin + zneck

2

)
, ρ2

(
zneck + zmax

2

)
.

The corresponding spherical radii are R01, R02, and R0, where
R0i = R0(Ai/A)1/3. The fragment elongations are

c1 = zneck − zmin

2R01
,

c2 = zmax − zneck

2R02
. (A1)

One evaluates the reflection asymmetry parameter a3i from the
shift of the fragment mass center with respect to its geometri-
cal center:

a31 = − 2π

3c1R01

[
zcm(1) − zneck − z0 + zsh

2

]
,

a32 = − 2π

3c2R02

[
zcm(2) − z0 + zsh − zneck

2

]
. (A2)

To determine the a4i deformation of the fragment i one uses
the FoS relation:

ρ2
i (0) = R2

0i

ci
f (0) = R2

0i

ci

(
1 − 4

3
a4i − 4

5
a6i − · · ·

)
, (A3)

where

ρ2
1 (0) = ρ2[(zneck + zmax)/2],

ρ2
2 (0) = ρ2[(zneck + zmin)/2]. (A4)

Assuming that a6 = −a4/10 (LD energy minimum) one ob-
tains

ρ2
i (0) = R2

0i

ci

(
1 − 96

75
a4i

)
, (A5)

which implies

a4i = 75

94

(
1 − ci

R2
0i

ρ2
i (0)

)
. (A6)

The quality of the shape described above is shown in Fig. 19.
It is seen that taking into account the pearlike deformation
significantly improves the quality of the fit, while the a4 de-
formation has only a tiny effect.
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