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Impact of the pairing interaction on fission of U isotopes
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The role of pairing interactions on the scission configurations, the total kinetic energy, and the mass distribu-
tions in U isotopes is investigated using the deformed mean-field plus standard pairing model. The total kinetic
energy and the mass distributions of 232–238U isotopes obtained using the shape-dependent probability distribution
expressed by the Wigner function reproduces the experimental data remarkably well. The model calculations
show that the scission region is sensitive to the variation of the pairing interaction strength, particularly for the
asymmetric and symmetric scission points. The apparent changes in the peak-to-valley ratio in mass distribution
by varying the pairing interaction strength confirm that the pairing interaction plays an important role in
achieving the scission process for 236U under the present model. These results also suggest that the pairing
interaction strength in the current work should increase with the elongation of the nucleus to yield better fission
products. Through numerical analysis, we provide possible microscopic pictures of spontaneous fission around
the scission configurations in the exactly solvable pairing model.
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I. INTRODUCTION

Despite decades of research in nuclear fission, there are
still several open questions about this complex reaction pro-
cess, and a deeper understanding of the fission mechanism
is strongly motivated [1–6]. The final state in nuclear fis-
sion is the neck rupture between the two nascent fragments,
leaving them to interact only through long-range potential
fields. The quantum dynamics of this scission process is
pretty complex and has been discussed many times [7–13].
In recent work, the new technique directly determines the
evolution of the scissioned shape distribution according to the
number of random-walk steps rather than the statistical ac-
cumulation of fission events [14]. One should emphasize that
the physics of scission remains poorly known. How fission
fragments acquire their identity and the connection of this pro-
cess with the physics of quantum entanglement has not been
studied.

As one of the dominant residual correlations in atomic
nuclei, pairing interaction around the scission point is cru-
cial to understand many aspects of the final fission state,
including, for example, the total kinetic energy (TKE) dis-
tribution of the fragments and the odd-even effects in mass
distributions [15–17]. The macroscopic-microscopic studies
have demonstrated that pairing fluctuations can significantly
reduce collective action and can affect the predicted sponta-
neous fission lifetimes [18]. The BCS approximation and the
generalized Hartree-Fock-Bogoliubov (HFB) approach have
been used to describe the pairing properties. It has also shown
the dynamical coupling between shape and pairing degrees
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of freedom can lead to a dramatic departure from the static
picture [7]. Based on the density-functional theory (DFT), cal-
culations in Refs. [19,20] have shown that increasing pairing
correlations decrease the fission barrier and lead to scission
occurring at lower elongations. The collective inertia strongly
depends on the pairing gap [21,22]. The inertia is inversely
proportional to the square of the pairing gap parameter, and
the larger pairing gaps imply a smaller inertia. Therefore, this
leads to shorter fission half-lives [23–27]. The analysis of the
dynamical description of nuclear fission based on the density-
functional theory (DFT) showed that the particle-particle
correlations should be considered on the same footing as those
associated with the shape degrees of freedom [28]. Recent
theoretical works based on the time-dependent Hartree-Fock
method have shown that fission could also be very sensitive to
nongeometric collective variables such as pairing correlations.
For instance, Sadhukhan et al. demonstrated that the inclusion
of pairing collective degrees of freedom had a significant
impact on the spontaneous fission half-lives of 264Fm and
240Pu [29]. The study of the compound nucleus 240Pu displays
that the dynamical pairing is vanishing at high excitations. For
driving fission, the random transition between single-particle
levels around the Fermi surface to mimic thermal fluctuations
is indispensable [30]. Using the relativistic energy density
functionals, the induced fission of 226Th was investigated [31].
It showed that increasing static pairing interactions reduces
the asymmetric peaks and enhances the symmetric peak in
the charge distribution. Also, the fission-fragment yields are
characterized by several components in the mass distributions
from different fission channels. This is attributed to shell ef-
fects in the potential energy and an odd-even staggering in
proton and neutron numbers due to the influence of pairing
interactions. [32].
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In the current work, based on an iterative algorithm
[33,34], we have investigated the fission barriers and the static
fission path in Th, U, and Pu isotopes based on the deformed
mean-field plus standard pairing model with the exact pairing
solution. It indicates that the pairing interaction plays different
roles in different stages of the fission process. The first and
second saddle points are very sensitive to the variation of the
pairing interaction strength [35]. The systematic investigation
of the inner and outer fission barriers of even-even nuclei Th,
U, and Pu isotopes shows that the standard pairing model
reproduces the inner and outer barrier heights considerably
closer to the experiment than the BCS scheme. The results
display that the standard pairing model can be applied to study
the static and dynamic properties of the fissioning system.
However, the deformed-shape description in Ref. [35] cannot
be applied to the configuration corresponding to the separated
fragments and to the physics of scission. The role of the pair-
ing interaction around the scission point is still far from clear.
In particular, the effect of the dynamical coupling between
shape and pairing interactions on the scission configurations
and the mass distributions of fission fragments has yet to be
resolved. Furthermore, based on the DFT with BCS pairing
theory, the results in Ref. [19] suggest that a predictive theory
of nuclear fission will require a very accurate description
of pairing correlations. Therefore, exploring possible mech-
anisms with the exactly solvable pairing model is essential to
account for the scission configurations and mass distributions.
Recently, it has been observed that the developed Fourier
parametrization of deformed nuclear shapes is very efficient
at describing the essential features of the shapes involved
up to the scission configuration [36,37]. The Fourier shape
parametrization combined with the Lublin-Strasbourg drop
(LSD) + Yukawa-folded single-particle potential was used in
studying the dynamical process of nuclear fission by using a
Langevin approach [38]. The calculated fragment mass distri-
butions and TKE distributions in 14 MeV n + 233,235,236,238U
and 239Pu fission agree with experimental data. The corre-
lation between the deformation parameters at the scission
point is studied as well. These studies have provided a valid
model to investigate the fission properties of the scission
configurations.

This work systematically analyzes the scission config-
urations, the mean value of total kinetic energy, and the
mass distributions in U isotopes within the deformed mean-
field plus standard pairing model. The potential energy is
calculated under the macroscopic-microscopic framework.
The Fourier shape parametrization combined with the LSD
model + Yukawa-folded potential has been used in the cur-
rent calculations. As an extension of our previous work in
Ref. [35], the role of the pairing interaction on the scission
configurations and mass distributions will also be addressed.

II. THEORETICAL FRAMEWORK AND NUMERICAL
DETAILS

A. Deformed mean-field plus standard pairing model

The Hamiltonian of the deformed mean-field plus standard
pairing model for either the proton or the neutron sector is

given by

Ĥ =
n∑

i=1

εin̂i − G
∑

ii′
S+

i S−
i′ , (1)

where the sums run over all given i-double degeneracy levels
of total number n, G > 0 is the overall pairing interaction
strength, {εi} are the single-particle energies obtained from
mean-field, such as Hartree-Fock (HF), Woods-Saxon poten-
tial (WS), Yukawa-folded single-particle potential, or Nilsson
model. ni = a†

i↑ai↑ + a†
i↓ai↓ is the fermion number operator

for the ith double degeneracy level, and S+
i = a†

i↑a†
i↓ [S−

i =
(S+

i )† = ai↓ai↑] is the pair creation (annihilation) operator,
The up and down arrows in these expressions refer to time-
reversed states.

According to the Richardson-Gaudin method [39–42], the
exact k-pair eigenstates of (1) with νi′ = 0 for even systems
or νi′ = 1 for odd systems, in which i′ is the label of the
double degeneracy level that is occupied by an unpaired single
particle can be written as

|k; ξ ; νi′ 〉 = S+(
x(ξ )

1

)
S+(

x(ξ )
2

) · · · S+(
x(ξ )

k

)|νi′ 〉, (2)

where |νi′ 〉 is the pairing vacuum state with the seniority νi′

that satisfies S−
i |νi′ 〉 = 0 and n̂i|νi′ 〉 = δii′νi|νi′ 〉 for all i. Here,

ξ is an additional quantum number for distinguishing different
eigenvectors with the same quantum number k and

S+(
x(ξ )
μ

) =
n∑

i=1

1

x(ξ )
μ − 2εi

S+
i , (3)

in which the spectral parameters x(ξ )
μ (μ = 1, 2, . . . , k) satisfy

the following set of Bethe ansatz equations (BAEs):

1 + G
∑

i

�i

x(ξ )
μ − 2εi

− 2G
k∑

μ′=1 ( �=μ)

1

x(ξ )
μ − x(ξ )

μ′
= 0, (4)

where the first sum runs over all i levels and �i = 1 − δii′νi′ .
For each solution, the corresponding eigenenergy is given by

E (ξ )
k =

k∑
μ=1

x(ξ )
μ + νi′εi′ . (5)

In general, according to the polynomial approach in
Refs. [43–45], one can find solutions of Eq. (4) by solving
the second-order Fuchsian equation [46] as

A(x)P′′(x) + B(x)P′(x) − V (x)P(x) = 0, (6)

where A(x) = ∏n
i=1(x(ξ )

μ − 2εi ) is an n-degree polynomial,

B(x)/A(x) = −
n∑

i=1

�i

x(ξ )
μ − 2εi

− 1

G
, (7)

V (x) are called Van Vleck polynomials [46] of degree n − 1,
which are determined according to Eq. (6). They are defined
as

V (x) =
n−1∑
i=0

bix
i. (8)
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The polynomials P(x) with zeros corresponding to the
solutions of Eq. (4) is defined as

P(x) =
k∏

i=1

(
x − x(ξ )

i

) =
k∑

i=0

aix
i, (9)

where k is the number of pairs. bi and ai are the expansion
coefficients to be determined instead of the Richardson vari-
ables xi. Furthermore, if we set ak = 1 in P(x), the coefficient
ak−1 then equals the negative sum of the P(x) zeros, ak−1 =
−∑k

i=1 x(ξ )
i = −E (ξ )

k .
If the value of x approaches twice the single-particle energy

of a given level δ, i.e., x = 2εδ , one can rewrite Eq. (6) in
doubly degenerate systems with �i = 1 as [43,45]

(
P′(2εδ )

P(2εδ )

)2

− 1

G

(
P′(2εδ )

P(2εδ )

)
=

∑
i �=δ

[(P′(2εδ )
P(2εδ )

) − (P′(2εi )
P(2εi )

)]
2εδ − 2εi

.

(10)

In Ref. [33], a new iterative algorithm is established for
the exact solution of the standard pairing problem within
the Richardson-Gaudin method using the polynomial ap-
proach in Eq. (10). It provides efficient and robust solutions
for both spherical and deformed systems at a large scale.
The key to its success is determining the initial guesses for
the large-set nonlinear equations involved in a controllable
and physically motivated manner. Moreover, one reduces the
large-dimensional problem to a one-dimensional Monte Carlo
sampling procedure, which improves the algorithm’s effi-
ciency and avoids the nonsolutions and numerical instabilities
that persist in most existing approaches. Based on the new
iterative algorithm, we applied the model to study the actinide
nuclei isotopes, where an excellent agreement with experi-
mental data was obtained [33–35].

B. The Fourier shape parametrization

In the macroscopic-microscopic approach, the potential-
energy surface (PES) is a function of all the parameters needed
to describe the nuclear shape. How to precisely describe
the nuclear shapes, especially in connection with fission, in-
volving as few variables as possible is a demanding task.
Numerous parametrizations have been introduced over the
years, and several powerful shape parametrizations have been
developed [47]. In Ref. [36], the nuclear shape is described
by using the Fourier shape parametrization, which can cover
a wide variety of shapes with only four collective deforma-
tion parameters. The current works show that the innovative
Fourier parametrization of nuclear shapes, combined with
LSD + Yukawa-folded macroscopic-microscopic potential-
energy prescription turns out to be very efficient [36,38]. The
macroscopic-microscopic framework given in Ref. [36] will
be mainly adopted in this work, in which the single-particle
energies {εi} in the model Hamiltonian (1) are obtained from
the Yukawa-folded. The expansion of the nuclear surface in
the form of the Fourier series of dimensionless coordinates is

as follows:

ρ2
s (z)

R2
0

=
∞∑

n=1

[
a2n cos

(
(2n − 1)π

2

z − zsh

z0

)

+ a2n+1 sin

(
2nπ

2

z − zsh

z0

)]
, (11)

where ρ2
s (z) is the distance from a surface point to

the symmetry z axis, and R0 = 1.2A1/3 fm is the radius of the
corresponding spherical shape having the same volume. The
extension of the shape along the symmetry axis is 2z0 with left
and right ends located at zmin = zsh − z0 and zmax = zsh + z0,
respectively. z0 is the half of the extension of the shape along
the symmetry axis, which can be obtained from the volume
conservation, and zsh is determined by imposing the condition
that the center of mass of the nuclear shape is located at the
origin of the coordinate system. According to the conver-
gence properties discussed in Ref. [37], the first five orders
a2, . . . . , a6 were retained here as a starting point and the
parameters an are transformed to the deformation parameters
qn as follows, respectively:

q2 = a(0)
2 /a2 − a2/a(0)

2 ,

q3 = a3,

q4 = a4 +
√

(q2/9)2 + (
a(0)

4

)2
,

q5 = a5 − (q2 − 2) a3/10,

q6 = a6 −
√

(q2/100)2 + (
a(0)

6

)2
, (12)

where a(0)
n are the values of the Fourier coefficients for the

spherical shape. The higher-order coordinates q5 and q6 are
generally set to be zero within the accuracy of the current
approach. It indicates that the set of qi has explicit physical
meaning in describing the shape of the fissioning nucleus, i.e.,
q2 denotes the elongation of the nucleus, q4 is the neck pa-
rameter, and q3 is the left-right asymmetry parameter. In this
work, the dynamic process of nuclear fission will be described
in the three-dimensional deformation space (q2, q3; q4) within
the Fourier shape parametrization. It should be noted
that the nonaxially symmetric shape is not taken into account
in the present work since it plays an important role only in the
vicinity of the ground state and the first saddle point.

C. The mass and total kinetic-energy distribution

It has been observed recently [37,48–50] that a Wigner
function is used to approximate the probability distribution
related to the neck and mass asymmetry degrees of freedom.
It is shown that the agreement of this model’s predictions
with the experimental yields is pretty good [51]. Based on
the previous works [37,48–50], the fundamental idea of the
fission dynamics discussed in this work is that the relatively
slow motion towards fission, mainly in q2 direction, is accom-
panied by the fast vibrations in the perpendicular q3 and q4

collective variables. The wave function corresponding to the
total eigenvalue E of the fissioning nucleus approximately as

ψnE (q2, q3, q4) = μnE (q2)φn(q3, q4; q2). (13)
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Here, μnE (q2) is the eigenfunction corresponding to the
motion towards fission, which depends mainly on a single
variable q2. φn(q3, q4; q2) simulates the n-phonon fast col-
lective vibrations on the perpendicular two-dimensional (2D)
{q3, q4} plane for a given elongation q2. For μnE (q2) one can
use the Wenzel-Kramers-Brillouin (WKB) approximation for
a single q2 mode [49]. For low-energy fission, only the lowest
energy eigenstate φn=0 is considered.

The density of probability W (q3, q4; q2) of finding the
system for a given elongation q2,within the area of (q3 ±
dq3, q4 ± dq4), is given as

W (q3, q4; q2) = |ψ (q2, q3, q4)|2 = |φ0(q3, q4; q2)|2. (14)

Instead of the square of the collective wave function in
Eq. (14), we take the following Wigner function:

W (q3, q4; q2) ∝ exp

{
−V(q3, q4; q2) − Vmin(q2)

E0

}
, (15)

where Vmin(q2) is the minimum of the potential for a given
elongation q2, and E0 is the zero-point energy, which is treated
as an adjustable parameter.

To obtain the fragment mass yield for a given elongation
q2, one has to integrate the probabilities (15) coming from
different neck shapes, simulated basically by the q4 parameter

w(q3; q2) =
∫

W (q3, q4; q2)dq4. (16)

Following the idea in Ref. [49], one assumes the neck rupture
probability P to be equal to

P(q3, q4, q2) = k0

k
Pneck (Rneck ), (17)

where k is the momentum in the direction towards fission and
the constant parameter k0 plays the role of scaling parameter.
Rneck is the deformation-dependent neck radius, and Pneck is
a geometrical factor indicating the neck-breaking probability
proportional to the neck thickness. The expression for the
geometrical probability factor Pneck (Rneck ) can be chosen ar-
bitrarily to some extent, such as, e.g., Fermi, Lorentz, and
Gaussian functions [50]. In this paper, we used the Gaussian
form as follows:

Pneck (Rneck ) = exp[−ln2(Rneck/d)2], (18)

where d is the half-width of the probability, treated here as
another adjustable parameter. The momentum k in Eq. (17)
simulates the dynamics of the fission process, which, as usual,
depends both on the local collective kinetic energy E − V (q2)
and the inertia towards the leading variable q2

h̄2k2

2M(q2)
= Ekin = E − Q − V (q2), (19)

where M(q2) standing for the averaged inertia parameter over
q3 and q4 degrees of freedom at a given elongation q2, and
V (q2) is the averaged potential. Here, the part of the total
energy converted into heat Q is assumed to be negligibly
small. A good approximation of the inertia M(q2) is to use the
irrotational flow mass parameter Birr [52], which is derived
initially as a function of the single collective parameter R12,

the distance between fragments, and the reduced mass μ of
both fragments

M(q2) = μ[1 + 11.5(Birr/μ − 1)]

(
∂R12

∂q2

)2

. (20)

To make use of the neck rupture probability P(q3, q4; q2) in
Eq. (17), one has to rewrite the integral over q4 probability
distribution in Eq. (15) in the form of

w(q3; q2) =
∫

W (q3, q4; q2)P(q2, q3, q4)dq4. (21)

The above approximation implies a very crucial fact that, for
a fixed q3 value, the fission may occur within a certain range
of q2 deformations with different probabilities. Therefore, to
obtain the true fission probability distribution w′(q3; q2) at a
strictly given q2, one has to exclude the fission events occurred
in the previous q′

2 < q2 configurations, i.e.,

w′(q3; q2) = w(q3; q2)
1 − ∫

q′
2<q2

w(q3; q′
2)dq′

2∫
w(q3; q′

2)dq′
2

. (22)

The normalized mass yield is then obtained as the sum of
partial yields at different given q2:

Y (q3) =
∫

w′(q3; q2)dq2∫
w′(q3; q2)dq3dq2

. (23)

Since the scaling parameter k0 introduced in Eq. (17) does not
longer appear in the definition of the mass yield, the only free
parameters, the zero-point energy parameter E0 in Eq. (14)
and the half-width parameter d appear in the probability of
neck rupture (18). In this work, we follow the parameter d =
0.15R0 in Ref. [37], which has been successfully reproduced
the experimental fragment mass yields measured in the low-
energy fission of Pt to Ra isotopes, and the zero-point energy
parameter E0 = 1.5 MeV.

D. The potential energy

In Ref. [35], we systematically analyzed fission barriers
and static fission paths in Th, U, and Pu isotopes within
the deformed mean-field plus standard pairing model, which
indicates that the pairing interaction plays different roles
in different stages of the fission processes. That results
encouraged us to investigate the possible impact of pair-
ing interactions in the scission configuration and on the
mass distribution for the low-energy fission of U isotopes.
The potential energy of the system is calculated within the
macroscopic-microscopic approach in this work. The total
energy Etotal(N, Z, qn) of a nucleus with a given deformation
is calculated as

Etotal(N, Z, qn) = ELD(N, Z ) + EB(N, Z, qn), (24)

where ELD(N, Z ) is the macroscopic term approximated
by the standard liquid drop model with proton number Z
and neutron number N [53]. In the current calculation for
the potential-energy surface, we just consider the energy
EB(N, Z, qn) related to the shape parameter {q2, q3, q4}:

EB(N, Z, qn) = Edef (N, Z, qn) + Eshell(N, Z, qn)

+ Epair (N, Z, qn). (25)
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In this work, the deformation correction energy
Edef (N, Z, q2, q3, q4) is taken from tables of Ref. [54].
The microscopic term consists of the shell correction energy
E ν(π )

shell (N, Z, {εi}, q2, q3, q4) proposed by Strutinsky [55,56]
and the pairing interaction energy E ν(π )

pair (N, Z, {εi}, q2, q3, q4)
calculated from Eq. (1). Here, ν (π ) is the label of the neutron
(proton) sector. In the current study, we consider 18 deformed
harmonic-oscillator shells in Yukawa-folded single-particle
potential to obtain single-particle levels for the microscopic
calculations. For the pairing correction energy, we perform
66 single-particle levels around the neutron Fermi level
and 51 single-particle levels around the proton Fermi level.
The multidimensional potential-energy surface is minimized
simultaneously in all axial degrees of freedom: elongation of
the nucleus q2, asymmetry of left and right mass fragments
q3, and the neck size q4.

Generally, the pairing interaction strength G is determined
by the empirical formula or by fitting the odd-even mass dif-
ferences [57,58]. The recent study [35,59] reveals that pairing
interactions play a crucial role in the regions of the inner and
outer barriers, the first and second saddle points are sensitive
to the variation of the pairing interaction strength. Therefore,
the odd-even mass differences (ground-state property) and the
height of barriers (excited-state property) should be used as
experimentally observable quantities to determine the realistic
values for pairing interaction strength in the fission process. In
this work, realistic values of pairing interaction strengths for
U isotopes are obtained by fitting the experimental values of
the odd-even mass differences and the inner and outer barriers.
The odd-even mass difference is given by

P(A) = Etotal(N + 1, Z ) + Etotal(N − 1, Z ) − 2Etotal(N, Z ),

(26)

which is usually attributed to the existence of nucleonic pair-
ing interactions. It is sensitive to the changes in the pairing
interaction strength G [60]. When the pairing interaction
strength Gν = 0.08 MeV and Gπ = 0.10 MeV, it is clearly
shown in Fig. 1(a) that odd-even mass differences obtained by
using the present approach reproduce the experimental data
remarkably well for the 224–238U isotopes. Moreover, as shown
in Figs. 1(b) and 1(c), the results of the inner and outer fission
barriers for 231–240U isotopes calculated in the current model
are very close to the corresponding experimental values.

III. RESULTS AND DISCUSSIONS

A. The role of pairing around the scission

First, for investigating the microscopic mechanism of the
interplay between the pairing interaction and the deformation
of the scission configuration under the present model, the
three-dimensional (3D) contour map of the potential-energy
surface (PES) of the nucleus 236U is projected in Fig. 2
constrained by the elongation parameter q2, the octupole
deformation parameters q3 and minimized the degree of
freedom q4.

As shown in Fig. 2, at the beginning of the fission process
q2 < 0.5, the PES displays very soft octupole deformation,
and the minimum of the PES (ground state) is located at
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noted as “Expt.” and the theoretical values calculated in the present
model are denoted as “Theor.” Experimental data are taken from
Refs. [60,61] (in MeV). A typical uncertainty in the experimental
values, as suggested by the differences among various compilations,
is of the order of 0.5 MeV [61].

q3 = 0. It is consistent with the analysis of the relativistic
Hartree-Bogoliubov (RHB) calculations in Ref. [62]. It shows
that the nucleus of the A < 236 for U isotopes remains in the
octupole vibrational regime, and the PES of this nucleus are
very soft in the q3 direction. For the fission barrier heights,
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TABLE I. The q2, q3, q4 values of the four characteristic
points (black points with the capital letters in Fig. 2) in the three-
dimensional deformation space based on the results of the static
fission path (black trajectory).

q2 q3 q4

Prescission point (A) 1.40 0.10 −0.12
Scission process point (B) 1.85 0.10 −0.12
Asymmetric scission point (C) 2.20 0.08 −0.09
Symmetric scission point (D) 2.60 0.00 −0.06

the inner barrier height is 4.57 MeV, the outer barrier height
is 5.67 MeV calculated from the present model, and the cor-
responding experimental results in Ref. [63] are 5.0 and 5.11
MeV. The barrier heights obtained by using the present model
are found to reproduce the experimental data remarkably well.
In addition, it is clearly shown in Fig. 2 that there is a plateau
at high deformation followed by a cliff (beyond q2 = 2.20,
q3 = 0.08, q4 = −0.09). The sudden jump at the cliff edge
highlights the key point of understanding scission dynamics.
The dynamics around the scission point are crucial for under-
standing many aspects of the final fission state, including the
mass and kinetic-energy distribution of the fragments [7,8].
In this work, the scission point of the asymmetric path is
determined by a fixed neck radius Rneck equal to 1.16 fm,
which is close to the value (1.0 fm) adopted in Ref. [64]. To
investigate the pairing interaction’s role on the scission con-
figurations, we consider the four characteristic points (black
points with the capital letters in Fig. 2). The corresponding q
values are shown in Table I. The points (A)–(C) are located
on the asymmetric static fission path. As we discuss later,
point (A) corresponds to the exit point from the fission bar-
rier, where the fission energy shows little effect from pairing
interaction. On the other hand, the scission process point (B)
is associated with the position where the pairing interaction
varies drastically, and the pairing interaction energy has a
local minimum. The points (C) and (D) denote the asymmetric
and symmetric scission point, respectively. Figure 3 describes
the geometric shapes for the four characteristic points of
236U within the Fourier shape parametrization. Rneck is the
deformation-dependent neck radius in Eq. (17). The fission
probability described by the present model should depend on
the neck radius Rneck. It is observed that the shape profile
in Fig. 3 provides a very accurate description of the fission
shapes from the prescission point to the asymmetric scission
point. Following the fission process, the geometric shape is
continuously elongated, the neck radius Rneck is becoming
“thin,” and the corresponding Rneck value decrease from 3.34
fm (the prescission point) to 1.16 fm (the asymmetric scis-
sion point). Beyond the scission point, the Rneck value will
become very small (Rneck < 0.50 fm) until Rneck = 0, which
corresponds to the totally separated fragments.

Figure 4 displays the energy curve related to the static
fission path for 236U with different pairing interaction strength
Gν(π ) (in MeV). The ground-state energy is normalized to
zero. It is clearly shown that the energy curves become lower
when the original pairing interaction strengths are varied from

prescission point

(b)R
neck

=3.34 fm(a)

scission process point

R
neck

=2.56 fm

asymmetric scission point

(d)(c) R
neck

=1.16 fm

symmetric scission point

R
neck

=1.21 fm

FIG. 3. Geometric shapes generated by the expansion in the
Fourier series (3) of the 236U for the four characteristic points. The
prescission point, the scission process point, the asymmetric scission
point, and the symmetric scission point are indicated by capital letters
(A)–(D). Rneck is the deformation-dependent neck radius.

80% to 120%. As shown in Fig. 4, the inner and outer barrier
heights decrease by increasing pairing interaction strength
under the present model, which is consistent with the results
obtained from our previous work [35]. The relativistic, non-
relativistic mean-field + BCS framework displays the same
results, too [61,65]. The second minimum (q2 ≈ 0.75, q3 ≈ 0)
is much higher than the first minimum (ground state). More-
over, there is a very shallow third minimum at (q2 ≈ 1.2),
which has been reported in Ref. [66] for U isotopes. In ad-
dition, as we mentioned before, a remarkable concurrence of
the energy curves with different pairing interaction strengths
occurs at q2 ≈ 1.45, which means the effect of pairing inter-
action at this point [prescission point (A)] is very weak. These
results are consistent with our previous work in Ref. [35].
In contrast, beyond the prescission point q2 ≈ 1.45, the scis-
sion process seems more affected by the pairing interaction
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minimized in the remaining degrees of freedom (q3, q4) for 236U with
different pairing interaction strength Gν(π ) (in MeV). Energies are
normalized to zero energy at the ground-state value.
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FIG. 5. Neutron and proton pairing interaction energy E ν(π )
pair cal-

culated from Eq. (1), as functions of q2 with different pairing
interaction strength Gν(π ) (in MeV) for 236U. (A)–(C) indicate the
prescission point, the scission process point, and the asymmetric
scission point, respectively. The arrows show the gap between the
E ν(π )

pair values with different Gν (Gπ ) values (in MeV).

strength in the present work. These results encourage us to
explore the possible impacts of the pairing interaction in the
scission region for 236U. To elaborate more on this behavior of
pairing interaction, the pairing interaction energy E ν(π )

pair along
the asymmetric scission process from q2 = 1.2 to q2 = 2.6
in Fig. 4, with different pairing interaction strengths with Gν

(Gπ ) varied from 80% to 140% have been studied in Fig. 5.
It is shown that the magnitudes of the pairing interaction
energies at the scission process point (B) and at the asym-
metric scission point (C) grow faster than at the prescission
point (A) with the variation of the pairing interaction strength,
which is consistent with the result obtained from Fig. 4. As
we mentioned above, the total pairing interaction energy has a
local minimum at the scission process point (B). Those results
agree with the analysis in Refs. [8,19], which demonstrate that
pairing interaction plays different roles in the different stages
of the scission process. The scission process (B) and asym-
metric scission point (C) seem much more sensitive to the
pairing interaction strength G variation than the prescission
point (A).

Nuclear fission is a process through which the initial com-
pound nucleus divides predominantly into two fragments. The
problem of neck rupture between nascent fragments has been
discussed many times [7,8,14,19]. Any theoretical description
or simulation of nuclear scission inevitably requires defining
the condition under which scission occurs. In the adiabatic
approximation, it is necessary to invoke reasonable physics-
based arguments to justify introducing scission configurations
before the fragments are far apart. The total kinetic energy,
which is extremely sensitive to the characteristics of scission
configurations, seems suitable to prove the definition of scis-
sion configurations [67].

In this work, the scission point for the asymmetric static
fission path is determined by a fixed neck radius Rneck = 1.16
fm, which is related to −10 MeV in the energy curve in Fig. 4
at point (C). When describing fission in the q2-q3 collective
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FIG. 6. The mean value of the total kinetic energy (in MeV) as
a function of fragment mass for 232–235U, and 238U. Experimental
values are denoted as “Expt.” and the theoretical values calculated
in the present model are denoted as “Theor.” Experimental data of
neutron-induced fission are denoted as “Expt.” for 232,233U [68], 234U
[69], 235U [70], and for 238U [71].

space, scission is characterized by a discontinuity between
the two domains of prescissioned and postscissioned config-
urations. In the current work, the scission lines for 232–238U
isotopes are described by considering both the neck radius
Rneck (in the region of 1.0–1.2 fm) as well as the total kinetic
energy (TKE). The total kinetic energy for a particular pair of
the fragments is evaluated in the point-charge approximation
of the Coulomb interaction energy between the fragments
ETKE = e2ZH ZL/R12. e is the proton charge, ZH (ZL ) is the
charge of the heavy (light) fragment, and R12 is the distance
between fragment centers of charge at scission. The TKEs
shown in Fig. 6 correspond to the fragment masses A f (q2, q3)
evaluated for each U isotope separately along its scission-line
on the plane (q2, q3; q4). The consistency between the exper-
imental and the theoretical results shown in Fig. 6 indicates
that the present model describes the mean value of the total
kinetic energy of these nuclei rather well. It is observed that
the neck radius Rneck and the total kinetic energy may be suit-
able to describe the scission configuration based on the present
model. According to the above results, the scission configu-
ration of 236U calculated by the present model is shown in
Fig. 7.

Moreover, as shown in Fig. 8, we calculate the pairing en-
ergy E ν(π )

pair with different pairing interaction strengths G from
80% to 140% along the scission configuration in Fig. 7. The
model calculations show that the pairing energy magnitudes
at the asymmetric scission point (C) and symmetric scission
point (D) grow faster with the variation of the pairing inter-
action strength. It reveals that the asymmetric and symmetric
scission points seem sensitive to the variation of the pairing in-
teraction strength G. Similar results for 240Pu are provided by
using the HFB method in Ref. [19]. The consistent behavior
shown in Figs. 5 and 8 demonstrate that the pairing interaction
strength may play a crucial role in the scission region of 236U
under the present model.
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FIG. 7. The scission configuration of 236U in the q2-q3 plane.

B. Impact of pairing on the mass distribution

The dynamics around the scission configuration are crucial
to understand many aspects of the final fission state, including
the mass, TKE, and the odd-even effects in mass distributions
[7,8,37,50]. Figure 9 presents the results of our calculations
for the odd-even mass difference of 236U in the asymmetric
and symmetric scission points with different pairing inter-
action strengths G. The corresponding experimental values
of nuclei obtained by Eq. (9) with masses around 140, 96
(asymmetric scission fragment), and 118 (symmetric scission
fragment), respectively, are shown for comparison. One as-
sumes here that the ground-state odd-even mass differences
represent the odd-even binding-energy differences in the scis-
sion configuration, despite some differences in the shapes.
It is clearly shown that the calculations with 120% pairing
interaction strength at the asymmetric scission point (C) re-
produce well the experimental data. On the other hand, for the
symmetric scission point (D), a stronger pairing interaction
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FIG. 8. Neutron and proton pairing interaction energy E ν(π )
pair

calculated from Eq. (1), as functions of q3 along the scission con-
figuration with different pairing interaction strength Gν(π ) (in MeV)
for 236U. (C), (D) indicate the asymmetric scission point and the
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FIG. 9. The odd-even mass differences (in MeV) of 236U at the
asymmetric scission point (C) and the symmetric scission point (D)
with different pairing interaction strengths Gν and (Gπ ) varied from
80% to 140% (in MeV). The theoretical values calculated in the
present model based on the Eq. (20) in Ref. [58] are denoted as
“Theor.” The experimental values of the odd-even mass difference
for 96Kr, 96Sr, 96Zr, 140Xe, 140Ba, 118Cd, 118Sn, and 118Pd denoted as
“Expt.” are taken from Ref. [60] (in MeV).

strength (120%–140%) is required to generate a better pairing
interaction. The mass yields Y (q3) of the 233–236U, and 238U
isotopes are calculated according to Eq. (23) with the pairing
interaction strength parameters Gν = 0.096 MeV and Gπ =
0.120 MeV (120% pairing interaction strength). As shown in
Fig. 10, the mass yields of the 233–238U isotopes calculated by
the present model are systematically close to the correspond-
ing experimental values. The preneutron experimental data for
234–236U are used in Fig. 10. For 238U, the postneutron data are
plotted just to get a piece of information about the experimen-
tal situation. The theoretical mass yields are convoluted with
a Gaussian folding function of FWHM = 4.9 u [72]. These
results indicate that the current model can describe the main
features of the fragment mass yields in U isotopes.

Moreover, to gain insight into the possible impact of pair-
ing interactions in mass distributions described under the
present model, the mass yields of 236U as a function of mass
numbers (A f ) with the variation of the pairing interaction
strengths are studied. Figure 11 shows that the asymmetric
fission dominates the mass yields with peaks at (A f ≈ 96)
and (A f ≈ 140). By varying the pairing strength G from 80%
to 140%, the two asymmetric peaks of the theoretical mass
yields become lower; meanwhile, the symmetric valley is en-
hanced. Similar results also be produced by the 3D Langevin
model for 235U +nth in Ref. [73]. The apparent changes of
the peak-to-valley ratio in the mass distribution by varying
the pairing interaction strength in Fig. 11 are consistent with
changes in the pairing interaction energies along the scission
configurations in Fig. 7. The results demonstrate that the mass
distribution is sensitive to the characteristics of scission con-
figuration [7], and the pairing interaction plays a crucial role
in achieving the scission process under the current work. It is
also interesting to compare our results with the calculations
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of 226Th using the self-consistent relativistic energy density
functionals + BCS framework [31]. As shown in Ref. [31],
the scission points on the static fission path do not change
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FIG. 11. The mass yields for 236U as a function of mass numbers
(Af ) with the variation of the pairing interaction strengths. Exper-
imental data of thermal-neutron-induced fission denoted as “Expt.”
are taken from Ref. [74].

significantly with the variation of the pairing interaction
strength, which is different from our results. The charge dis-
tribution provided in Ref. [31] exhibits that the increasing
static pairing interaction reduces the asymmetric peaks and
enhances the symmetric peak, which is consistent with the
results of the mass distribution obtained in the current work.
We should clarify that the systems considered in Ref. [31]
(226Th) and in the present work (236U) are different, and the
model used in Ref. [31] is more self-consistent than the cur-
rent model. On the other hand, the results in this work are
based on the exactly solvable pairing model, which avoids the
artificial effect produced by the BCS calculation.

Furthermore, as shown in Fig. 11, the theoretical mass
distributions with 120% pairing interaction strength yield a
close agreement with the experimental data, which is consis-
tent with the results in Figs. 9 and 10. It suggests that the
pairing interaction strength in the current work should in-
crease with the elongation of the nucleus to yield better fission
products.

C. The information entropy

The microscopic mechanism of this behavior shown in
Figs. 4–11 may be related to the dynamical coupling between
shape and the pairing interaction [8,33]. The usual approach
to show the effects of the pairing interaction is through a
phenomenological analysis of the single-particle level density
[55,76]. As suggested in the previous studies [33,77–79], the
information (Shannon) entropy seems suitable to reveal the
dynamic mechanism of this behavior in the pairing model. In
Ref. [33], the analyzes of the dramatic change of the infor-
mation entropy IH and the derivative dIH/dG at the first and
second saddle points reveal that there is an intense compe-
tition between the deformation and the pairing interaction at
the inner barrier and outer barrier. To confirm that the effect of
the pairing interaction at the scission point at the asymmetric
fission valley of 236U are stronger in the present model than
at the symmetric one, the information (Shannon) entropy is
calculated in the four characteristic points. The information
entropy is used to measure the correlations among the mean-
field single-pair product states with k pairs in the ground state
|g〉 ≡ |k; x; νi′ 〉g in Eq. (2), and it is defined as [79]

IH (|g〉) = −
d∑

i=1

|wi|2 logd (|wi|2), (27)

where {wi} are the expansion coefficients of |g〉 in terms of the
mean-field single-pair product states, and d is the dimension
of the space spanned by all possible single-pair product states,
namely, k pairs distributed over the n levels. The information
entropy IH varies within the closed interval [0,1]. IH = 0 cor-
responds to the case that the deformation mean field without
the pairing interaction among valence nucleons dominates.
When the pairing interaction is turned on, the system moves
from the localized normal phase toward the delocalized su-
perconducting (pair condensate) phase with IH > 0. The most
extreme situation occurs when the pairing interaction strength
is sufficiently large, in which all valence nucleon pairs are
most delocalized at IH ≈ 1.
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FIG. 12. The information entropy IH for the four characteristic
points of 236U as functions of Gν (Gπ ) (in MeV) in the present model.
(A)–(D) indicate the prescission point, the scission process point,
the asymmetric scission point, and the symmetric scission point,
respectively. The blue balls are the realistic values of Gν = 0.08 MeV
and Gπ = 0.10 MeV.

As shown in Fig. 12, the values of IH for all the four
points calculated from the present model indicate that the
nuclear system undergoes a rapid change from Gν (Gπ ) = 0
MeV and IH = 0 to sufficiently large Gν (Gπ ) = 0.24 (0.4)
MeV and IH ≈ 1. Obviously, the variation of IH as a function
of the pairing interaction strength sketches the evolution from
the deformation dominate case towards the pairing dominate
case (pair condensate). Particularly, for the realistic pairing
interaction around scission region with Gν = 0.096 MeV for
neutron and Gπ = 0.12 MeV for proton, the scission process
point (B), the asymmetric scission point (C), and the symmet-
ric point (D) are closer to dramatic change region for both
neutron and proton cases. This indicates that those three points
are sensitive to the variation of the pairing interaction strength.
While for the prescission point (A), the system is more
dominant by deformation, which means it is mainly driven
by deformation and less affected by the pairing interaction.
This is consistent with the results obtained from our previous
work [35].

Furthermore, the derivative dIH/dG of IH as function of
Gν (Gπ ) in Fig. 13 shows the differences in those behavior
more clearly. Particularly, the derivative dIH/dG for the scis-
sion process point (B), the asymmetric scission point (C), and
the symmetric point (D) reaches their maximum when Gν and
Gπ equal 0.092 and 0.12 MeV, respectively. This confirms that
the scission region is sensitive to the variation of the pair-
ing interaction strength G. The differences of the derivative
dIH/dG for those points seem to be directly correlated with
the behavior shown in Figs. 5 and 8, which thus provides
the origin of the behavior shown in Fig. 11. Therefore, the
results of the information entropy demonstrate that the pair-
ing interaction indeed plays an important role in achieving
the scission process, which thus naturally explains the origin
of the behavior shown in Fig. 11 for 236U in the present
model.

0

2

4

6

8

0.0 0.1 0.2 0.30.0 0.1 0.2
0

1

2

3

4

5

6

  C

d
I H

/d
G

G

dI
H /dG

(b)

 

 

A

B

  C

  D(a)

protonneutron

A

B

  D

 

G 

 

 

 

 

FIG. 13. The derivative of information entropy dIH/dG for the
four characteristic points of 236U as functions of Gν (Gπ ) (in MeV).
(A)–(D) indicate the prescission point, the scission process point,
the asymmetric scission point, and the symmetric scission point,
respectively. The blue balls are the realistic values of Gν = 0.08 MeV
and Gπ = 0.10 MeV. The shadowed area indicating the width of the
peak in dIH/dG is provided to guide the eye.

IV. CONCLUSION

In summary, the current investigations systematically an-
alyze the scission configurations and the mass distributions
in U isotopes within the deformed mean-field plus standard
pairing model. Compared with the corresponding experimen-
tal data, the systematically calculated results of the model for
232–236U isotopes, including the mass yields and TKE dis-
tributions of the fragments, reproduce the experimental data
reasonably well. The magnitudes of the pairing interaction en-
ergies at the asymmetric and symmetric scission points grow
faster than at the prescission points with the variation of the
pairing interaction strength. Those calculations display that
the asymmetric and symmetric points are much more sensitive
to the variation of the pairing interaction strength than the
prescission point. The apparent changes in the asymmetric
peaks and symmetric valley of mass distribution with the
variety of the pairing interaction strength for 236U are con-
sistent with changes in the pairing interaction energies along
the scission configurations. Which confirms that the pairing
interaction plays an important role in achieving the scission
process for 236U.

The analysis of the information entropy and its derivative
dIH/dG at the asymmetric and symmetric scission points
show a strong competition between the deformation and the
pairing interaction around the scission region. While, for the
prescission point, the systems are more like the deform domi-
nant case, which means the scission processes at those points
are mainly driven by deformation and less affected by the
pairing interaction. It thus naturally explains that the pair-
ing interaction plays a crucial role in achieving the scission
process. The model calculations also suggest that the pairing
interaction strength in the current work should increase with
the elongation of the nucleus in order to yield better fission
products.
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In particular, the present studies provide an accurate de-
scription of pairing interactions on nuclear fission, which
avoids the artificial effects produced by the BCS calculation
[19,31,73]. In contrast to the previous results in Ref. [31],
our studies demonstrate more consistent effects of pairing
interaction on the scission configurations, the total kinetic
energy, and the mass distributions in U isotopes. However, the
analysis shown in this work is based on the deformed mean-
field plus standard pairing model, in which possible residual
interactions between protons and neutrons are neglected. It
should be interesting to explore the role of the interactions
between protons and neutrons in the fission process.
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