
Phys. Lett. B 862 (2025) 139302

Available online 4 February 2025
0370-2693/© 2025 Published by Elsevier B.V. Funded by SCOAP³. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

Letter

Demystifying the fusion mechanism in heavy-ion collisions: 
A six-dimensional Langevin dissipative dynamics approach
Y. Jaganathen, M. Kowal ,∗, K. Pomorski

National Centre for Nuclear Research, Pasteura 7, 02-093 Warsaw, Poland

A R T I C L E I N F O A B S T R A C T 

Editor: A. Schwenk

Keywords:

Heavy-ion collision
Fusion mechanism
Dissipative dynamics
Langevin equation

We present an in-depth investigation of heavy-ion fusion dynamics using a six-dimensional Langevin framework 
that enables unrestricted motion of the asymmetry parameter. The stochastic formalism naturally incorporates 
friction effects and energy fluctuations, providing a detailed understanding of the fusion process. The dynamics 
transition into the overdamped regime, facilitating rapid neck stabilization while effectively capturing the 
interplay between shape and rotational degrees of freedom. This approach achieves excellent agreement with 
experimental spin distributions and fusion cross-sections, establishing a robust foundation for forthcoming studies 
on the synthesis of superheavy elements and the exploration of the enigmatic fusion hindrance mechanism.

1. Introduction

Over the past decades, remarkable progress has been made in the 
synthesis of superheavy nuclei; however, the underlying reaction mech
anisms driving their production remain incompletely understood. The 
fusion mechanism in cold synthesis reactions, in particular the interme
diate fusion phase, plays a pivotal role in the success of these processes. 
Dissipative dynamics frameworks, such as Langevin and Fokker-Planck 
equations, have emerged as powerful tools to address these challenges 
[1]. These approaches provide insights into experimental observables 
such as deep-inelastic cross-sections, energy dissipation, and mass and 
charge transfer [2]. Furthermore, they have been successfully applied 
to quasfission, offering precise reconstructions of fission mass distribu
tions [3].

The Langevin approach provides an intuitive framework for nuclear 
dissipative dynamics, modeling phenomena such as heavy-ion reactions 
and nuclear fission as diffusion over a barrier [4]. Early studies iden
tfied the role of the one-body dissipation and the fissility scaling in 
understanding the hindrance to compound nucleus formation [5]. These 
models laid the groundwork for stochastic approaches, which employed 
Langevin and Smoluchowski equations to capture the interplay between 
deterministic and stochastic forces in nuclear reactions [6].

Subsequent work applied these models to explore fusio-fission dy
namics, emphasizing the critical role of asymmetry in the entrance 
channel and demonstrating that neutron-rich beams enhance fusion 
probabilities [7,8]. A combined Langevin/statistical approach was de
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veloped to calculate fusion and evaporation residue cross sections and 
was validated on 48Ca-induced reactions [9]. Later studies rfined these 
methods, incorporating multidimensional stochastic descriptions and 
microscopic transport coefficients to align theoretical results with ex
perimental data [10,11].

Recent studies using stochastic dynamics emphasized the interplay of 
shell effects, Coulomb barriers, and reaction Q-values in superheavy el
ement formation. These insights guide the design of future experiments 
targeting new isotopes beyond 𝑍 = 118 [12,13].

This letter introduces a six-dimensional Langevin framework for 
heavy-ion fusion, which explicitly incorporates angular momentum, re
laxes the constraint of a fixed mass asymmetry parameter, and includes 
all the off-diagonal elements of the relevant tensors, offering a signifi
cant improvement over the prior model [14].

2. Shape parametrization

Given the complexity of tracking all internal degrees of freedom 
during the fusion process, a common approach is to identify relevant 
collective degrees of freedom which effectively characterize the system. 
Within these frameworks, the slow collective degrees of freedom are 
viewed as being immersed in a bath of faster dynamics, representing the 
surrounding environment of individual particles. Friction and random 
forces arise naturally by defining an appropriate correlation function for 
the stochastic force governing interactions between the collective vari
ables and the reservoir.
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Fig. 1. Examples of bipartite (top) and monopartite (bottom) shapes using the 
Błocki parametrization [15]. Please note that, as the total volume is constant, 
the radii of the fragments in both shapes are different. For aesthetic reasons, 
distinct elongation and deformation variables were chosen for the cofigurations 
to match to the same distance 𝑑 between the fragments, but the asymmetry 
variable was kept the same.

In Ref. [15], Błocki and Świątecki introduced a parametrization 
for a system of two spherical ions, well suited for the description of 
cold fusion reactions. This parametrization captures both separated and 
monopartite shapes, maintaining a constant volume while progressively 
transitioning between shapes. Two sphere caps of different sizes form 
the axially symmetric shapes joined smoothly by a convoluted quadratic 
surface. The shapes are unequivocally dfined by the radius 𝑅0 of the 
associated spherical compound system, which acts as a scaling factor, 
and the three dimensionless coordinates:

𝜌 = 𝑑

𝑅1 +𝑅2
, 𝜆 =

𝑙1 + 𝑙2
𝑅1 +𝑅2

, Δ=
𝑅1 −𝑅2
𝑅1 +𝑅2

, (1)

namely the distance (or elongation), the neck (or deformation) and the 
asymmetry collective variables. 𝑑 denotes the distance between the cen
ters of the spheres of radii 𝑅1 and 𝑅2 and 𝑙1 and 𝑙2, the distances from 
the innermost points of the spheres to their respective junctions with 
the quadratic surfaces (see Fig. 1). Unlike many other parametrizations, 
this approach offers the key benfit of precisely defining the scission 
moment, which occurs along the line 𝜆 = 1−1∕𝜌, making it particularly 
suited for the description of fusion and fission processes.

To investigate the impact of angular momentum dissipation and 
rotational effects, we additionally incorporate collective variables for 
rotational angles: the overall system angle is represented by 𝜃0, while 
the angles for the first and second spheres are respectively denoted 𝜃1
and 𝜃2, as represented in Fig. 1.

3. Langevin formalism

Defining the vectors of collective variables 𝑄 and their conjugated 
momenta 𝑃 as:

𝑄 = (𝜌, 𝜆,Δ, 𝜃0, 𝜃1, 𝜃2), (2)

𝑃 = (𝑝𝜌, 𝑝𝜆, 𝑝Δ, ℏ𝓁0, ℏ𝓁1, ℏ𝓁2) , (3)

the Langevin system of equations reads:

𝑄̇ =−1𝑃 , (4)

𝑃̇ = −∇ −∇ − Γ𝑄̇+𝐺𝑊 . (5)

For the shape degrees of freedom, the mass tensor  is determined 
in the incompressible and irrotational fluid approximation [16]; in the 
rotational space, it is diagonal and its elements are the corresponding 
moments of inertia. The collective kinetic energy  = 1

2 𝑄̇
𝑇𝑄̇ is cal

culated from the mass tensor and includes all the 𝑞̇𝑖𝑞̇𝑗 cross-terms in 
our calculations. The collective deformation potential  is obtained by 

subtracting the energy at the deformation 𝑄 from the energy of the 
undeformed initial system. To ensure accurate excitation energies, 
is adjusted by applying a shift equal to the difference 𝑄𝑒𝑥𝑝

𝑓𝑢𝑠
−𝑄𝑐𝑎𝑙𝑐

𝑓𝑢𝑠
be

tween the calculated and experimental fusion 𝑄-values. The −∇( + )
term thus represents the conservative forces acting on the macroscopic 
variables, while the remaining forces originate from the intrinsic de
grees of freedom: the friction force −Γ𝑄̇, which contributes to the irre
versible production of heat, and the Langevin random force 𝐺𝑊 , which 
induces energy fluctuations. Γ and 𝐺 stand for the friction and fluctua
tion tensors, and 𝑊 a vector of random distributions discussed in detail 
further in the text. The shape friction is calculated using the wall-plus
window friction model [17,18], in which a smooth transition between 
the mononuclear and dinuclear dissipation regimes was implemented 
following Ref. [1]. We also assume the proximity formalism [17,18] via 
the definition of an effective window opening, larger than the geomet
rical one. This proximity formalism allows the fragments to undergo 
friction even without direct contact and thus accounts for quantum ef
fects, such as wavefunction tail effects or quantum tunneling. In our 
calculations, we use the universal proximity distance 𝑠𝑝𝑟𝑜𝑥 = 3.2 fm, 
which indicates the distance at which the fragment surfaces are close 
enough for the fragments to interact [18]. The angular friction con
sists of the sliding friction as given in Refs. [19,20]; the rolling part 
which is an order of magnitude smaller is neglected [19]. The fluctua
tion tensor 𝐺 appearing in the Langevin force satifies 𝐺2 =𝐷, where 
𝐷 is the diffusion tensor governed by the Einstein relation 𝐷 = 𝑇 ∗ Γ. 
The quantum-corrected temperature 𝑇 ∗ is related to the classical tem
perature 𝑇 through 𝑇 ∗ = 𝐸0∕ tanh(𝐸0∕𝑇 ) [21,22], with 𝐸0 being the 
zero-point collective energy of the oscillators forming the heat bath. For 
surface oscillations, 𝐸0 was estimated as 0.45 MeV (quadrupole/elonga
tion) and 2.23 MeV (hexadecapole/neck) [23]. Recent studies [24,25] fit 
𝐸0 to experimental data, yielding a standard value of 𝐸0 = 1−1.5 MeV. 
Here, we adopt a higher value 𝐸0 = 2 MeV to account for the signifi
cant neck increase at our initial condition, resembling the hexadecapole 
mode from Ref. [23]. The classical temperature 𝑇 is calculated from the 
internal excitation energy 𝐸∗ along each trajectory, using the formula 
𝑇 =

√
𝐸∗∕𝑎, in which the level density parameter 𝑎 is given by 𝑎 =𝐴∕𝑛

MeV−1. Standard values 𝑛 = 8 − 12 yield similar results beyond 𝑇 = 2
MeV [26], which is our choice for 𝐸0, and we adopt 𝑛= 8 in this study.

The Langevin equations, as presented in Eqs. (4), (5), treat the shape 
and the angular variables on the same footing. However, ensuring the 
angular momentum conservation 𝓁0 + 𝓁1 + 𝓁2 = 𝐿𝑡𝑜𝑡, requires address
ing coflicts with the randomness introduced by the Langevin force. 
While independent angular variables can be approximately extracted in 
exceptional cases [19,20], or expressed via the estimation of a mean 
tangent friction in bipartite systems [27], our formalism accommodates 
both monopartite and bipartite regimes. In this work, each component 
(fragments 1, 2, and the neck) is allowed to evolve freely during a given 
integration step of the Langevin equations, after which a corrective fac
tor 𝐿𝑡𝑜𝑡∕

∑
𝓁𝑖 is applied to each angular momentum to enforce angular 

momentum conservation.
In this introductory paper, with the aim of understanding the gen

eral features of the Langevin approach, simple potentials and ran
dom forces were selected. The nuclear potential is modeled using a 
Yukawa-plus-exponential folding potential with standard parameters 
taken from Ref. [28]. The Coulomb potential energy is calculated un
der the assumption of a uniform charge distribution [1]. Similarly, the 
random force is modeled as a Gaussian (white) noise characterized 
by ⟨𝑊 (𝑡)⟩ = 0, ⟨𝑊 (𝑡)𝑊 (𝑡′)⟩ = 2𝛿(𝑡 − 𝑡′). The Langevin equations are 
discretized and numerically integrated with a time step 𝜏 = 10−25 s, 
and the collective variables 𝑄 are integrated using the Heun method 
𝑄𝑛+1 =𝑄𝑛 + 𝜏

[
−1]

𝑛
(𝑃𝑛 +𝑃𝑛+1)∕2, enhancing the precision quadrati

cally. It is also worth noting that the discretization of the time-dependent 
random forces leads to ∫ 𝑡𝑛+𝜏

𝑡𝑛
𝑊 (𝑡)𝑑𝑡 ≃

√
𝜏𝑊𝑛, where 𝑊𝑛 are vectors of 

random numbers drawn, at each iteration 𝑛, from a normal distribution 
of variance 2.
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Fig. 2. The panels (a)-(d) display selected physical quantities at Δ = Δ𝑖𝑛𝑖𝑡 for the 64Ni + 92Zr system:  +𝑄𝑓𝑢𝑠 [MeV] (a), log(ΔΔ∕(1ℏ2/MeV)) (b), 𝐼𝑡𝑜𝑡∕𝐼𝑠𝑝ℎ

𝑡𝑜𝑡
in 

a pseudo-logarithmic scale (c) and log(Γ𝜆𝜆∕(1ℏ)) (d). The white regions on the left represent forbidden cofiguration space [15], while the dashed line indicates 
the scission line, separating the monopartite regime (above) from the bipartite regime (below). Proximity friction begins at (𝜌≃ 1.32, 𝜆 = 0) preceding contact (red 
arrow on the panel (d)).

Fig. 2 presents a selection of physical quantities pertinent to the 
Langevin formalism for the 64Ni + 92Zr system, with the asymmetry 
variable set to its value for the undeformed separated system Δ =Δ𝑖𝑛𝑖𝑡. 
In all panels, the scission line, which separates the monopartite and the 
bipartite regimes is indicated by a dashed line. In Fig. 2(a), the quantity 
 + 𝑄𝑓𝑢𝑠 is displayed. The spherical compound state (top left corner 
of the graph) is associated to the value zero, while at large distances, 
in the absence of deformation, the potential approaches 𝑄𝑓𝑢𝑠 = −91.7
MeV. In the intermediate stage, the potential barrier emerges as the frag
ments come into contact. Fig. 2(b) provides an example of mass tensor 
element, specifically the logarithm of the diagonal element in the asym
metry variable ΔΔ in ℏ2∕MeV units. The plot clearly delineates the 
separation between the monopartite and the separate regimes. In the 
separate regime, ΔΔ reaches extremely high values, illustrating the 
absence of matter exchange between the fragments. The total moment 
of inertia about the center of mass is shown in Fig. 2(c) in the form of 
𝐼𝑡𝑜𝑡∕𝐼

𝑠𝑝ℎ

𝑡𝑜𝑡
in a pseudo-logarithmic scale. This graph illustrates the transi

tion from high values when the fragments are separated to the spherical 
compound nucleus value 𝐼𝑠𝑝ℎ

𝑡𝑜𝑡
= 60.2 ℏ2/MeV as the distance decreases. 

Finally, Fig. 2(d) depicts the logarithm of the friction matrix element 
Γ𝜆𝜆 in ℏ units. Although the smoothing procedure applied by the plot
ting software may diminish the apparent strength of the proximity effect, 
one can notice the increase of friction prior to contact, at the elongation 
𝜌𝑝𝑟𝑜𝑥 ≃ 1.32 (red arrow).

To speed up the calculations, the potential, mass, and friction ten
sor elements are precomputed on a 100 × 100 × 100 grid spanning 
𝜌 ∈ [0,3], 𝜆 ∈ [0,1],Δ ∈ [0,1]. Their values and derivatives are extrap
olated along each trajectory using cubic B-splines, with five control 
points per dimension. Careful attention is given to selecting appropri
ate extrapolation regions, which should remain within the geometrical 

cofiguration space and the relevant regime (monopartite or bipartite, 
with or without proximity) to ensure proper extrapolation.

4. Fusion mechanism

In the case of heavy colliding nuclei, surpassing the Coulomb barrier 
alone does not guarantee fusion into a compound nucleus, as the re
pulsive Coulomb forces counteract the nuclear forces upon contact. The 
Langevin equations reveal that the fusion mechanism unfolds in three 
distinct phases summarized in Fig. 3.

4.1. Initial deceleration phase

During the initial stage (Fig. 3, label 1), the system undergoes rapid 
deceleration, losing a significant portion of its kinetic energy. This phase 
is characterized by near-zero deformation, as rflected in the Langevin 
equation for the neck velocity1:

𝜆̇ =−1
12 𝑝𝜌 +−1

22 𝑝𝜆 . (6)

The inverse mass tensor cross element −1
12 , which is positive, indicates 

that a decrease in elongation naturally reduces deformation geometri
cally. At the 𝜆 = 0 boundary, as the fragments approach, the negative 
elongation momentum 𝑝𝜌 causes the first term −1

12 𝑝𝜌 to tend towards 
−∞, effectively suppressing any deformation. The system remains close 
to the border, where the second term −1

22 𝑝𝜆 tends to + ∞ to act as a 

1 Without loss of generality, the asymmetry terms are omitted for the purposes 
of the discussion.
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Fig. 3. Schematic representation of the fusion stages. The dashed line marks the 
scission line, which divides the monopartite and bipartite regimes.

counterbalance to the first term and prevent the crossing of the bound
ary: the neck velocity 𝜆̇ remains zero and the fragments undeformed. 
This behavior might seem surprising, but is sensible from a physical 
point of view. Any additional deformation of the fragments requires the 
two fragments to interact (or have interacted) via the nuclear force. Such 
an interaction, apart from long-range Coulomb effects, has yet to occur 
during the initial phase. The Langevin equations are integrated directly 
in this first stage, as only conservative forces are involved.

4.2. Contact phase

The deceleration phase concludes when the fragments begin to in
teract, which, in our model, occurs before contact at a distance 𝑑𝑝𝑟𝑜𝑥 =
𝑅1,0+𝑅2,0+𝑠𝑝𝑟𝑜𝑥, where 𝑠𝑝𝑟𝑜𝑥 = 3.2 fm is the previously dfined proxim
ity separation, and 𝑅𝑖,0 the initial radii of the fragments. The emergence 
of friction slightly reduces the elongation momentum, which disrupts 
the balance of ifinities. The −1

22 𝑝𝜆 = +∞ term then dominates the 
neck velocity in Eq. (6), leading to an abrupt increase of the neck ve
locity to +∞. The system is propelled to the scission line, where the 
fragments make contact (Fig. 3, label 2).

This phenomenon, often called the ``sudden approximation'' in 
mea-field formalisms [29], stems from the inherent instability of non
saturated nucleonic densities. Such anomalous densities occur when the 
tails of the nuclear wavefunctions overlap and the summed densities 
reach the saturated value. At this point, contact, in macroscopic terms, 
occurs almost instantaneously. In our model, estimating the push in the 
neck direction is challenging, as it occurs at the 𝜆 = 0 boundary where 
physical quantities diverge. We thus assume an instantaneous transition 
to the scission line. The entrance point is considered the same, regardless 
of the initial radial kinetic energy. This is a reasonable approxima
tion since larger elongation momenta also imply stronger pushes in 
the neck direction. Geometrical considerations of deformation and ap
proximations to the mass tensor near 𝜆 = 0 allow us to estimate this 
contact point at approximately (𝜌0, 𝜆0,Δ0), where 𝜌0 = 𝑑0∕(𝑅1,0 +𝑅2,0), 
𝑑0 =𝑅1,0 +𝑅2,0 + 2.0 fm, 𝜆0 = 1 + 1∕𝜌0 and Δ0 = Δ𝑖𝑛𝑖𝑡. Due to the high 
friction matrix element values Γ𝜆𝜆 at the scission line caused by the 
regime change (see Fig. 2(d)), the system enters the monopartite regime 
with negligible neck and asymmetry velocities. Assuming this transition 
is rapid and has minimal impact on the elongation momentum, the 
Langevin equations Eq. (5) for the neck and asymmetry variables are 
inverted to determine their initial momenta for the third fusion stage.

4.3. Creeping motion phase

Following contact, the system enters a prolonged creeping motion 
phase, where the nuclear and Coulomb forces oppose each other (Fig. 3, 

label 3). The Langevin equations are solved numerically with the initial 
conditions estimated in the previous sections. The process ultimately 
leads to one of two outcomes: fusion or separation of the nuclei, marked 
as 4a and 4b in Fig. 3, respectively.

In our calculations, we verfied that the conditions 𝜆 = 1 (half-sphere 
mixture), 𝜌(1−𝜆) = Δ2 (window angle fully open [15]), or 𝜌 = 0.5 (small 
distance) consistently lead to the fusion of the system. As a result, we 
terminate the calculations when any of these conditions are met. Con
versely, when 𝜆 = 10−2 or 𝜌= 3, we consider that the system is heading 
towards separation and we also end the trajectory.

5. Spin distribution and fusion cross section

Due to the presence of the fluctuation forces, the resolution of the 
Langevin equations generates a distribution of trajectories. The initial 
angular momentum is also assigned randomly with 𝓁𝑖𝑛𝑖𝑡 = 𝓁𝑚𝑎𝑥

√
𝑥, 

where 𝑥 is a random variable distributed uniformly in [0; 1]. This 
method ensures a linear progression of the initial momenta from 0 to 
𝓁𝑚𝑎𝑥. The spin distribution for a specific bin 𝑖 is then computed as a 
Monte-Carlo integral following the equation:

𝜎𝓁𝑖
≡
(d𝜎𝑓𝑢𝑠

d𝓁

)
𝓁𝑖

= 2𝜋
𝑘2

𝓁𝑖
𝑁

𝑓𝑢𝑠

𝑖

𝑁𝑡𝑜𝑡
𝑖

, (7)

where 𝓁𝑖 is the angular momentum of the bin 𝑖, 𝑁𝑓𝑢𝑠

𝑖
and 𝑁𝑡𝑜𝑡

𝑖
are 

respectively the corresponding number of fusing and total number of tra
jectories, and 𝑘 =

√
2𝜇𝐸𝑐𝑚∕ℏ2 with 𝜇 the reduced mass of the system, 

and 𝐸𝑐𝑚 the energy in the center of mass coordinates. The maximum 
angular momentum 𝓁𝑚𝑎𝑥 is chosen empirically at a value where the par
tial cross-sections are assumed to have dropped to zero. The total fusion 
cross section 𝜎𝑓𝑢𝑠 is then obtained by integrating the spin distribution 
across all bins.

6. Results and discussion

The model was applied to the systems 64Ni + 92Zr and 64Ni + 96Zr, 
for which the projectiles are mostly spherical in their ground states. 96Zr, 
being neutron-rich, may exhibit a slight deviation from sphericity. Ex
perimental measurements of total fusion cross-sections were reported in 
Refs. [30,31] at the energies 𝐸𝑐𝑚 = 138.8 MeV and 𝐸𝑐𝑚 = 139.5 MeV, 
respectively. These energies correspond to excitation energies of approx
imately 50 MeV, where shell effects are negligible. Spin distributions 
were extracted in Ref. [30], though these model-dependent results are 
subject to uncertainties, in particular at low angular momenta.

A previous study of these reactions using Langevin formalism 
(Ref. [14]) employed the same collective variables as in this work. Com
putational constraints at the time required the asymmetry variable to be 
fixed, which was believed to explain the sharp tails observed in the spin 
distributions. However, the present study highlights the importance of 
properly treating cofiguration boundaries, regime changes, and sepa
rating the fusion process into three distinct stages to achieve physical 
asymptotic spin distributions.

Using the Yukawa-plus-exponential folding + Coulomb potential 
previously described, the calculated fusion Q-values are 𝑄𝑓𝑢𝑠 = −91.7
MeV (experimental: −91.4 MeV) for 64Ni + 92Zr and 𝑄𝑓𝑢𝑠 = −88.9 MeV 
(experimental: −86.5 MeV) for 64Ni + 96Zr. For the latter system, the 
2.4 MeV energy shift discussed in Sec. 3 ensures accurate energetics.

Fig. 4 presents the resulting spin distributions. The top dashed line 
indicates the unitarity/maximal limit of differential cross-sections. The 
black dashed curve shows the raw spin distributions from Ref. [14], 
exhibiting the sharp asymptotic behavior. The orange and cyan curves 
correspond to calculations without the Langevin forces, with fixed and 
free asymmetry, respectively, displaying the typical abrupt cutoffs at 
high angular momentum. In the present cases, the cutoffs happen within 
the same 𝓁-bin, causing the two curves to overlap everywhere except 
within that particular bin. A more gradual asymptotic behavior is only 
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Fig. 4. Fusion differential cross sections for 64Ni +92Zr at 𝐸𝑐𝑚 = 138.8 MeV 
(top) and 64Ni +96Zr at 𝐸𝑐𝑚 = 139.5 MeV (bottom). The top dashed line repre
sents the unitarity limit. The orange dashed curve (no Langevin force) and the 
red curve (with Langevin forces) correspond to calculations with a frozen asym
metry parameter. The cyan and solid blue curves are the corresponding results 
in the full cofiguration space. For the second system, dashed thin curves repre
sent results without the potential energy correction. Experimental data, shown 
as black dots, are taken from Refs. [30,31]. The solid black curve represents the 
raw calculations from Ref. [14].

seen with the incorporation of the Langevin forces which introduce en
ergy fluctuations. The red curves show the results with the asymmetry 
fixed (for comparison to the calculations of Ref. [14]), while the blue 
curves are our final results in the full six-dimensional space. Distribu
tions without the 2.4 MeV energy shift are shown as dashed thin lines 
for the 64Ni + 96Zr system.

In the 92Zr case, the spin distributions closely match experimental 
data, as well as the total fusion cross-section 𝜎𝑓𝑢𝑠 = 107 mb (experi

mental: 100 mb). In the case of 96Zr, there is a slight discrepancy with 
experimental data, potentially due to 96Zr deformation, as evidenced by 
the double-peak structure in the experimental distributions. However, 
the energy shift aligns the calculated total cross-section 𝜎𝑓𝑢𝑠 = 175 mb 
with the experimental value (166 mb) compared to 𝜎𝑓𝑢𝑠 = 145 mb with
out the shift.

7. Conclusions and perspectives

In this study, we have developed a six-dimensional Langevin-based 
formalism to investigate the fusion mechanism of heavy ions, incor
porating elongation, neck and asymmetry variables with unrestricted 
motion. The dynamics naturally lead to overdamping and rapid neck 
stabilization. Using a simple Yukawa-plus-exponential folding potential 
and Gaussian random forces, the resulting spin distributions and fusion 
cross-sections exhibit excellent agreement with experimental data for 
the systems 64Ni + 92,96Zr at excitation energies of approximately 50 
MeV, offering a robust validation of the model. The study paves the way 
for exploring diverse phenomena such as reaction times, mass-angle dis
tributions (MADs), quasfission, and angular momentum dissipation by 
providing a direct access to key variables and their interplay.

Future efforts will focus on various enhancements. To achieve a fully 
microscopic-macroscopic representation, we plan to incorporate shell 
effects, allowing studies of fusion at lower excitation energies. Addi
tionally, we aim to explore various forms of stochastic colored noise 
to investigate memory effects and their implications in the fusion pro
cess. These advancements will further broaden the applicability of the 
model, enabling deeper insights into fusion dynamics, the synthesis of 
superheavy elements and addressing the challenging hindrance mecha
nism in heavy-ion fusion.
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