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This study explores the phenomenon of shape coexistence in nuclei around 172Hg, with a focus on the isotopes
170Pt, 172Hg, and 174Pb, as well as the 170Pt to 180Pt isotopic chain. Utilizing a macro-microscopic approach
that incorporates the Lublin-Strasbourg Drop model combined with a Yukawa-Folded potential and pairing
corrections, we analyze the potential energy surfaces (PESs) to understand the impact of pairing interaction.

For170Pt, the PES exhibited a prolate ground-state, with additional triaxial and oblate-shaped isomers. In
172Hg, the ground-state deformation transitions from triaxial to oblate with increasing pairing interaction,
demonstrating its nearly γ-unstable nature. Three shape isomers (prolate, triaxial, and oblate) were observed,
with increased pairing strength leading to the disappearance of the triaxial isomer. 174Pb exhibited a pro-
late ground-state that became increasingly spherical with stronger pairing. While shape isomers were present at
lower pairing strengths, robust shape coexistence was not observed. For realistic pairing interaction, the ground-
state shapes transitioned from prolate in 170Pt to a coexistence of γ-unstable and oblate shapes in 172Hg, ulti-
mately approaching spherical symmetry in 174Pb. A comparison between Exact and Bardeen-Cooper-Schrieffer
(BCS) pairing demonstrated that BCS pairing tends to smooth out shape coexistence and reduce the depth of
the shape isomer, leading to less pronounced deformation features.

The PESs for even-even 170−180Pt isotopes revealed significant shape evolution. 170Pt showed a prolate
ground-state, whereas 172Pt exhibited both triaxial and prolate shape coexistence. In 174Pt, the ground-state
was triaxial, coexisted with a prolate minimum. For 176Pt, a γ-unstable ground-state coexists with a prolate
minimum. By 178Pt and 180Pt, a dominant prolate minimum emerged. These results highlight the role of shape
coexistence and γ-instability in the evolution of nuclear structure, especially in the mid-shell region.

These findings highlight the importance of pairing interactions in nuclear deformation and shape coexistence,
providing insights into the structural evolution of mid-shell nuclei.
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I. INTRODUCTION1

Shape coexistence in atomic nuclei has garnered signifi-2

cant attention in the field of nuclear physics and has become a3

prominent topic in contemporary research. This phenomenon4

refers to the presence of multiple distinct shapes within a sin-5

gle nucleus, where states with similar energies exhibit differ-6

ent deformations [1]. Understanding nuclear shapes is crucial7

for revealing the internal structure and properties of nuclei,8

providing tools for predicting and explaining nuclear behav-9

iors, and advancing nuclear physics [2–6].10

The study of nuclear shapes has a long history, with sev-11

eral foundational studies laying the groundwork for our cur-12

rent understanding. Early theoretical developments included13

Rainwater’s 1950 paper [7], which first proposed the idea14

of nuclear deformation, and Bohr and Mottelson’s collective15

model [8, 9], which provided a framework for describing ro-16

tational spectra in deformed nuclei. Arima and Horie’s 195417

study [10] explored the role of configuration mixing in nu-18

clear structure, while Nilsson’s work [11] introduced a shell-19

model approach incorporating deformation effects. Around20

the same time, Morinaga’s 1956 paper [12] specifically ad-21

dressed the structure of 16O and explained the properties of its22

first excited state and ground state. He introduced the concept23
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of multi-nucleon cross-shell excitation to describe the defor-24

mation characteristics, offering a new perspective on how nu-25

clear shapes evolve. Further developments include Elliott’s26

work in 1958 [13], which further developed the concept of27

SU(3) symmetry in nuclear deformation and highlighted the28

interplay between single-particle and collective motion. Over29

the past five decades, shape coexistence has evolved from30

a rare phenomenon to a common feature observed in many31

nuclei, highlighting its significance in nuclear structure re-32

search [14]. Recent experimental studies have revealed sig-33

nificant evidence of shape coexistence phenomena in neutron-34

deficient isotopes of lead and mercury. For instance, one35

study [15] specifically focuses on the 188Hg isotope, where36

theoretical predictions suggest the presence of shape coexis-37

tence.38

These findings have led to increased theoretical investi-39

gations into nuclear shape coexistence, utilizing advanced40

experimental techniques such as tagging techniques at the41

University of Jyväskylä, Coulomb-excitation experiments at42

CERN, and relativistic energy-fragmentation experiments at43

GSI [16]. These experiments underscore the importance of44

understanding the mechanisms governing the evolution of nu-45

clear shape. Building upon these experimental insights, theo-46

retical investigations have played a pivotal role in elucidating47

the complexities of shape coexistence [17–19]. Previous stud-48

ies have employed various theoretical frameworks, including49

macro-microscopic approaches and self-consistent models, to50

perform comprehensive calculations of nuclear ground-state51

masses and deformations across a wide range of nuclei [14].52
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Ref. [20] highlighted the presence of two distinct coexist-53

ing configurations, in platinum isotopes 176−186Pt, oblate and54

prolate, revealing the intricate shape evolution in this mass re-55

gion. Therefore, shape coexistence in even-even 172−200Hg56

isotopes was comprehensively studied using the interacting57

boson model with configuration mixing [21]. Recently, us-58

ing the Lublin-Strasbourg Drop (LSD) with Yukawa-Folded59

single-particle potential and the BCS pairing correction in a60

macro-microscopic model, Pomorski et al. provided the de-61

formation PESs of nuclei near Z = 82. Their study inves-62

tigated the shape coexistence phenomenon in even-even iso-63

topes of Pt, Hg, and Pb [22]. These studies revealed that nu-64

clei in the vicinity of Hg exhibit a rich variety of shape coex-65

istence phenomena, characterized by the interplay of spheri-66

cal, oblate, and prolate configurations. Although significant67

progress has been made in understanding these features of68

heavier isotopes, lighter isotopes of Hg, Pt, and Pb have been69

relatively underexplored owing to the scarcity of experimen-70

tal data [23]. To address this gap, further theoretical investiga-71

tions are crucial, as they can illuminate the evolution of shape72

coexistence in these lighter isotopes. Such efforts would not73

only enhance our theoretical understanding but also provide74

valuable guidance for future experimental measurements, en-75

abling better interpretation of the limited or ambiguous data76

that are currently available.77

Despite its success, the BCS method [24], as well as the78

more re?ned Hartree-Fock-Bogolyubov (HFB) approach face79

limitations due to the small number of valence nucleons under80

the pairing correlation’s influence [25–31]. These methods81

often fail to conserve particle numbers, leading to inaccura-82

cies in describing higher-lying excited states [32]. Alterna-83

tives such as the shell model provide successful descriptions84

but are limited by the combinatorial growth of model space85

sizes, necessitating truncation schemes for heavy nuclei and86

often being constrained by computational resources [33]. Re-87

cent advancements in shell-model truncation techniques, such88

as the Monte Carlo shell model [34] and angular momentum-89

projected number-conserved BCS approach [35], have made90

significant progress in describing deformed nuclei in heavy91

mass regions, offering improved computational feasibility92

while maintaining accuracy.93

The Exact solution to the standard pairing problem,94

first obtained by Richardson and now referred to as the95

Richardson-Gaudin method, offers a promising approach for96

the microscopic treatment of clustering in heavy nuclei [36–97

43]. This method is particularly suitable for handling the98

large model spaces and the pairing and shell effects necessary99

for accurately describing heavy nuclei [44–48]. In our previ-100

ous work, the deformed mean-field plus pairing model within101

the Richardson-Gaudin method was used to explore the quan-102

tum phase transition around neutron number N ≈ 90 in103

theA ≈ 150 mass region [49]. The analysis demonstrated the104

critical behavior of the shape phase transition driven by com-105

petition between deformation and pairing interactions. More106

recently, a new iterative algorithm was developed to find the107

Exact solution to the standard pairing problem within the108

Richardson-Gaudin method [50], which has shown excellent109

agreement with experimental data when applied to actinide110

fission nuclei isotopes [51–53].111

The aim of the current study is to extend this line of in-112

quiry by presenting a systematic study of PESs for even-even113

Pt, Hg, and Pb isotopes near Z = 82. Our investigation114

leverages recent advancements in shape parametrization and115

adopted a macro-microscopic approach, integrating the LSD116

model with a Yukawa-Folded single-particle potential. The117

analysis focuses on the impact of pairing interactions on the118

shape coexistence of 170Pt, 172Hg, 174Pb nuclei, as well as119

170−180Pt even-even isotopes.120

II. THEORETICAL FRAMEWORK AND NUMERICAL121

DETAILS122

A. Deformed mean-field plus standard pairing model123

The Hamiltonian of the deformed mean-field plus standard124

pairing model for either the proton or the neutron sector is125

given by126

Ĥ =

n∑
i=1

εin̂i −G
∑
ii′

S+
i S
−
i′ , (1)127

where the sums run over all given i-double degeneracy levels128

of total number n, G > 0 is the overall pairing interaction129

strength, {εi} are the single-particle energies obtained from130

mean-field, such as Hartree-Fock, Woods-Saxon potential,131

Yukawa-Folded single-particle potential, or Nilsson model.132

ni = a†i↑ai↑ + a†i↓ai↓ is the fermion number operator for133

the i-th double degeneracy level, and S+
i = a†i↑a

†
i↓ [S−i =134

(S+
i )† = ai↓ai↑] is the pair creation (annihilation) operator,135

The up and down arrows in these expressions refer to time-136

reversed states.137

According to the Richardson-Gaudin method [36–43], the138

exact k-pair eigenstates of (1) with νi′ = 0 for even systems139

or νi′ = 1 for odd systems, in which i′ is the label of the dou-140

ble degeneracy level that is occupied by an unpaired single141

particle can be written as142

|k; ξ; νi′〉 = S+(x
(ξ)
1 )S+(x

(ξ)
2 ) · · ·S+(x

(ξ)
k )|νi′〉, (2)143

where |νi′〉 is the pairing vacuum state with the seniority νi′144

that satisfies S−i |νi′〉 = 0, and n̂i|νi′〉 = δii′νi|νi′〉 for all i.145

Here, ξ is an additional quantum number for distinguishing146

different eigenvectors with the same quantum number k and147

S+(x(ξ)µ ) =

n∑
i=1

1

x
(ξ)
µ − 2εi

S+
i , (3)148

in which the spectral parameters x(ξ)µ (µ = 1, 2, . . . , k) satisfy149

the following set of Bethe ansatz equations (BAEs):150

1 +G
∑
i

Ωi

x
(ξ)
µ − 2εi

− 2G

k∑
µ′=1(6=µ)

1

x
(ξ)
µ − x(ξ)µ′

= 0, (4)151
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where the first sum runs over all i levels and Ωi = 1− δii′νi′ .152

For each solution, the corresponding eigenenergy is given by153

E
(ξ)
k =

k∑
µ=1

x(ξ)µ + νi′εi′ . (5)154

In general, according to the polynomial approach in155

Refs. [45–48], one can find solutions of Eq. (4) by solving156

the second-order Fuchsian equation [44] as157

A(x)P ′′(x) +B(x)P ′(x)− V (x)P (x) = 0, (6)158

where A(x) =
∏n
i=1(x

(ξ)
µ − 2εi) is an n-degree polynomial,159

B(x)/A(x) = −
n∑
i=1

Ωi

x
(ξ)
µ − 2εi

− 1

G
, (7)160

V (x) are called Van Vleck polynomials [44] of degree n− 1,161

which are determined according to Eq. (6). They are defined162

as163

V (x) =
n−1∑
i=0

bix
i. (8)164

The polynomials P (x) with zeros corresponding to the so-165

lutions of Eq. (4) is defined as166

P (x) =

k∏
i=1

(x− x(ξ)i ) =

k∑
i=0

aix
i, (9)167

where k is the number of pairs. bi and ai are the expansion168

coefficients to be determined instead of the Richardson vari-169

ables xi. Furthermore, if we set ak = 1 in P (x), the coef-170

ficient ak−1 then equals the negative sum of the P (x) zeros,171

ak−1 = −
∑k
i=1 x

(ξ)
i = −E(ξ)

k .172

If the value of x approaches twice the single-particle en-173

ergy of a given level δ, i.e., x = 2εδ , one can rewrite Eq. (6)174

in doubly degenerate systems with Ωi = 1 as [45, 46, 48]175

(
P ′(2εδ)

P (2εδ)

)2

− 1

G

(
P ′(2εδ)

P (2εδ)

)
=
∑
i6=δ

[(
P ′(2εδ)
P (2εδ)

)
−
(
P ′(2εi)
P (2εi)

)]
2εδ − 2εi

.(10)176

In Ref. [50], a new iterative algorithm is established for the177

exact solution of the standard pairing problem within the178

Richardson-Gaudin method using the polynomial approach179

in Eq. (10). It provides efficient and robust solutions for both180

spherical and deformed systems at a large scale. The key to181

its success is determining the initial guesses for the large-182

set nonlinear equations involved in a controllable and phys-183

ically motivated manner. Moreover, one reduces the large-184

dimensional problem to a one-dimensional Monte Carlo sam-185

pling procedure, which improves the algorithm’s efficiency186

and avoids the nonsolutions and numerical instabilities that187

persist in most existing approaches. Based on the new iter-188

ative algorithm, we applied the model to study the actinide189

nuclei isotopes, where an excellent agreement with experi-190

mental data was obtained [50–53].191

B. The Fourier shape parametrization192

Recent studies demonstrated that the developed Fourier193

parametrization of deformed nuclear shapes was highly effec-194

tive in capturing the essential features of nuclear shapes, par-195

ticularly up to the scission configuration [22, 54]. Current re-196

search indicated that combining this innovative Fourier shape197

parametrization with the LSD + Yukawa-Folded macro-198

microscopic potential-energy framework was exceptionally199

efficient [52, 53, 55, 56]. This work primarily adopted the200

macro-microscopic framework outlined in Refs. [52, 53],201

where the single-particle energies {εi} in the model Hamilto-202

nian (1) were derived from the Yukawa-Folded potential.203

The nuclear surface is expanded in terms of a Fourier series204

of dimensionless coordinates as follows:205

ρ2s(z)

R2
0

=

∞∑
n=1

[
a2n cos

( (2n− 1)π

2

z − zsh
z0

)
206

+a2n+1 sin
(2nπ

2

z − zsh
z0

)]
, (11)207

where ρs(z) is the distance from a surface point to the sym-208

metry z-axis, and R0 = 1.2A1/3 fm is the radius of a corre-209

sponding spherical shape with the same volume. The shape’s210

extension along the symmetry axis is 2z0, with the left and211

right ends located at zmin = zsh − z0 and zmax = zsh + z0,212

respectively. The parameter z0 represents half the shape’s ex-213

tension along the symmetry axis and is determined by volume214

conservation, while zsh is set such that the center of mass of215

the nuclear shape is at the origin of the coordinate system.216

Based on the convergence properties discussed in Ref. [22],217

the first five terms a2, . . . , a6 are retained as a starting point,218

and the parameters an are transformed into deformation pa-219

rameters qn as follows:220

q2= a
(0)
2 /a2 − a2/a(0)2 ,221

q3= a3,222

q4= a4 +

√
(q2/9)2 + (a

(0)
4 )2,223

q5= a5 − (q2 − 2)a3/10,224

q6= a6 −
√

(q2/100)2 + (a
(0)
6 )2,225

(12)226

where a(0)n are the Fourier coefficients for the spherical227

shape. Higher-order coordinates q5 and q6 are generally set to228

zero within the accuracy of the current approach. The set of qi229

parameters has explicit physical significance in describing the230

shape of the fissioning nucleus: q2 denotes the elongation, q4231

represents the neck parameter, and q3 indicates the left-right232

asymmetry.233

Additionally, the non-axial deformation of nuclear shapes234

is described as follows, assuming that the surface cross-235

section at a given z-coordinate is elliptical with semi-axes236

a(z) and b(z):237

%2s(z, ϕ) = ρ2s(z)
1− η2

1 + η2 + 2η cos(2ϕ)
, (13)238
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where η = b−a
b+a characterizes the non-axial deformation.239

Volume conservation requires that ρ2s(z) = a(z) + b(z), with240

the condition ab = ρ2s(z) ensuring volume conservation for241

non-axial deformations. The semi-axes are then given by:242

a(z) = ρs(z)

√
1− η
1 + η

, b(z) = ρs(z)

√
1 + η

1− η
. (14)243

This description of non-axial shapes using the parame-244

ters q2 and η is more general than the commonly used Bohr245

parametrization (β, γ). For spheroidal shapes, both descrip-246

tions are equivalent. However, as shown in Fig. 1, where247

the two parametrizations are compared, the periodicity of248

nuclear shapes by a 60◦ rotation angle is similar in both249

(q2, η) and (β, γ) planes. It is important to note that this250

regularity is disrupted when higher multipolarity deforma-251

tions qn (n > 2) are considered, making the (η, q2, q3, q4, q6)252

shape parametrization substantially more general than the 3-253

dimensional (ε2, ε4(γ), γ) parametrization used in Ref. [59,254

60]. The two parametrizations coincide only in the special255

case of spheroidal shapes.256

It is essential to stress that different points in the (β, γ),257

and (q2, η) planes can correspond to identical shapes when258

higher qn (n > 2) degrees of freedom are neglected, dif-259

fering only in the interchange of coordinate system axes.260

For example, the point (β = 0.4, γ = 0) corresponds to261

(q2 = 0.42, η = 0) in the new parametrization, representing262

the same shape as (β = 0.4, γ = 120◦), which corresponds263

to (q2 = −0.21, η = 0.16) in the new parametrization.264

When analyzing potential energy landscapes that include265

triaxial degrees of freedom, it is crucial to avoid treating as266

distinct configurations points in the (q2, η) deformation plane267

that are merely rotational images of each other at γ = 60◦.268

In this study, the dynamic process of nuclear fission will269

be described in the three-dimensional deformation space270

(η, q2, q4) using the Fourier shape parametrization.271

272

273

Fig. 1. Relationsheep between the elongation parameter q2 and the274

nonaxiality parameter η [22, 54], and the traditional Bohr deforma-275

tion parameters β and γ is taken from [57, 58].276

C. The potential energy277

This study calculated the PESs for the isotopes 170Pt,278

172Hg, and 174Pb in a three-dimensional deformation279

space (η, q2, q4) and analyzed the impact of pairing interac-280

tions on the shape coexistence of these isotopes. The results281

were obtained over the following grid points in the deforma-282

tion parameter space:283

η ∈ [0.00, 0.20] ∆η = 0.02

q2 ∈ [−0.60, 0.85] ∆q2 = 0.05

q4 ∈ [−0.30, 0.30] ∆q4 = 0.03.

(15)284

As indicated in the literature [22], the q3 degree of free-285

dom has no significant impact on the description of shape286

coexistence for the isotopes discussed in this paper. There-287

fore, in this study, q3 was set to 0, and for each point on288

the PES, q4 was minimized to find the energy extremum.289

The potential energy of the system was calculated within the290

macro-microscopic approach in this work. The total energy291

Etotal(N,Z, qn) of a nucleus with a given deformation is cal-292

culated as293

Etotal(N,Z, qn) = ELD(N,Z, qn) + EB(N,Z, qn),(16)294

where ELD(N,Z, qn) was the macroscopic term obtained by295

the LSD model with proton number Z and neutron number296

N [61]. In the current calculation for the potential-energy297

surface, we just considered the energy EB(N,Z, qn) related298

to the shape parameter {q2, q4}.299

EB(N,Z, qn) = Eshell(N,Z, qn) + Epair(N,Z, qn).(17)300

The microscopic term consisted of the shell cor-301

rection energy E
ν(π)
shell(N,Z, {εi}, q2, q4) proposed by302

Strutinsky [62, 63], and the pairing interaction energy303

E
ν(π)
pair (N,Z, {εi}, q2, q4) calculated from Eq. (1). Here, ν304

(π) was the label of the neutron (proton) sector. In the current305

study, we considered 18 deformed harmonic-oscillator shells306

in Yukawa-Folded single-particle potential to obtain single-307

particle levels for the microscopic calculations. For the308

pairing interaction energy, we performed 29 single-particle309

levels around the neutron Fermi level and 22 single-particle310

levels around the proton Fermi level.311

To validate our results and further explored the efficacy312

of the exactly solvable pairing model, we also calculated the313

PESs for the isotopes considered under the BCS approxima-314

tion. The pairing interaction was determined as the difference315

between the BCS energy [24] and the single-particle energy316

sum and the average pairing energy [64].317

Epair = EBCS −
k∑
i=1

εi − Ẽpair. (18)318

In the BCS approximation the ground-state energy of a sys-319

tem with an even number of particles and a monopole pairing320
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force was given by321

EBCS =

k∑
i=1

2εiv
2
k −G

(
k∑
i=1

uivi

)2

−G
k∑
i=1

v4i , (19)322

where the sums run over the pairs of single-particle states323

contained in the pairing window defined below. The coeffi-324

cients vi and ui =
√

1− v2i were the BCS occupation ampli-325

tudes.326

The average projected pairing energy, for a pairing window327

of width 2Ω, which is symmetric in energy with respect to the328

Fermi energy, is equal to329

Ẽpair =− 1

2
g̃∆̃2 +

1

2
g̃G∆̃ arctan

(
Ω

∆̃

)
− log

(
Ω

∆̃

)
∆̃

+
3

4
G

Ω/∆̃

1 +
(

Ω/∆̃
)2 / arctan

(
Ω

∆̃

)
− 1

4
G,

(20)330

Here g̃ was the average single-particle level density and ∆̃331

the average paring gap corresponding to a pairing strength G332

∆̃ = 2Ω exp

(
− 1

Gg̃

)
. (21)333

D. Influence of pairing interactions on the shape coexistence334

of 170Pt, 172Hg and 174Pb isotopes335

Figure 2 shows the PESs of 170Pt projected onto336

the (q2, η) plane for different pairing interaction337

strengths Gν (MeV), while the proton pairing interac-338

tion strength is fixed at Gπ = 0.100 MeV. Gν and Gπ339

represent the neutron and proton pairing interaction strengths340

(MeV), respectively. The energy is minimized in the q4341

direction and q3 is set to 0 and normalized to zero energy342

at the ground-state value. The choice of Gν varying from343

0.03 to 0.145 MeV, and Gπ = 0.100 MeV, were based344

on the fact that our calculations in the next section, when345

employing Gν = 0.145 MeV, and Gπ = 0.100 MeV,346

closely matched the experimental odd-even mass differences347

for the 171Pt to 180Pt isotopes. Therefore, this range was348

selected to study the effects of pairing strength variations349

on the shape coexistence. The red lines represent the corre-350

sponding (β, γ) coordinates, with γ coordinates distributed351

within 0 ≤ γ ≤ 180◦. The β coordinate values are taken352

as 0.1, 0.2, 0.3 . . ., etc.353

In Figures 2 (a)-(d), the PESs of 170Pt are shown for dif-354

ferent values of the neutron pairing interaction strength Gν ,355

while the proton pairing interaction strength is fixed at Gπ =356

0.100 MeV. The values of Gν are: 0.030, 0.070, 0.105, and357

0.145 MeV. It can be seen that the ground-state of the 170Pt358

isotope is located at (q2 ≈ 0.150, η = 0), indicating a prolate359

shape for different pairing strengths. The other minimum at360

(q2 ≈ −0.150, η = 0.04, γ = 120◦) illustrated in Figure 2 is361

simply a reflection of the ground-state minimum.362

It is noteworthy to highlight the existence of two distinct363

shape isomers in 170Pt with different pairing strengths. The364

first is an oblate shape isomer located at (q2 = −0.400, η =365

0), with an energy approximately 3.900 MeV above the366

ground-state. The second is a triaxial shape isomer at (q2 ≈367

0.600, η ≈ 0.060 (γ ≈ 10◦)), positioned around 4.0 MeV368

above the ground-state. These isomers represent the local369

minima on the potential energy surface that are separated370

from the ground-state by energy barriers, highlighting the371

complex deformation characteristics of the nucleus. With an372

increase in pairing strength, both shape isomers become shal-373

lower. When the pairing strength Gν reaches 0.145 MeV, the374

oblate isomer disappears (see Fig. 2 (d) ).375

As shown in Figures 3 (a)-(d), the PESs for different pair-376

ing interaction strengths demonstrates the evolution of the tri-377

axial minimum at (q2 = 0.150, η = 0.020) to the oblate378

minimum at (q2 = 0.100, η = 0.040) as the pairing inter-379

action strength increases. The nucleus of 172Hg is nearly γ-380

unstable, with the energy difference between different points381

in the ground-state valley not exceeding approximately 0.4382

MeV. Additionally, three shape isomers are visible in the383

(a)-(d) maps: a prolate isomer at (q2 ≈ 0.600, η = 0),384

E ≈ 5.0 MeV; a triaxial isomer at (q2 ≈ 0.400, η = 0.100),385

E ≈ 4.0 MeV, and oblate one at (q2 ≈ −0.45, η = 0),386

E ≈ 4.0 MeV. These local minima are separated by energy387

barriers of approximately 1 MeV in height. As the pairing388

strength increases, all shape isomers gradually become shal-389

lower. By Gν = 0.145 MeV and Gπ = 0.100 MeV (Fig-390

ure 3 (d)), the triaxial isomer at (q2 ≈ 0.400, η = 0.100)391

disappeared.392

The PESs of 174Pb, as presented in Figures 4 (a)-(d), re-393

veal that a prolate ground-state (q2 ≈ 0.150, η = 0) (in394

Fig. 4 (a)) tend to become spherical (in Fig. 4 (d)) as the395

pairing interaction strength increases. The shape isomers ob-396

served here are particularly interesting: a prolate shape at397

(q2 = 0.600, η = 0, E ≈ 5.0 MeV and a slightly triax-398

ial oblate shape at (q2 = 0.450, η = 0.020, E ≈ 3.9 MeV399

in Fig. 4 (a), and (b), respectively. As the pairing strength400

increased, both shape isomers gradually became shallower.401

When Gν = 0.145, MeV, and Gπ = 0.100 MeV (Fig-402

ure 4 (d)), they almost disappeard. Overall, regardless of403

pairing strength, there was no indication of robust shape co-404

existence in this nucleus.405

Figures 5 illustrate the PESs projections of 170Pt, 172Hg,406

and 174Pb under realistic pairing interaction strengths, with407

Gν = 0.145 MeV, and Gπ = 0.100 MeV under both Exact408

and BCS pairing schemes.409

As shown in Figure 5, the ground-state of 170Pt is pro-410

late, located at (q2 = 0.15, η = 0) under both the Exact411

and BCS pairing schemes. However, BCS pairing exhibited a412

shallower depth for the prolate minimum compared with Ex-413

act pairing, indicating a less pronounced prolate ground-state.414

Furthermore, a triaxial isomer appeared at (q2 ≈ 0.600, η ≈415

0.060 (γ ≈ 10◦)) under Exact pairing, whereas it was less416

distinguishable in the BCS case.417

The ground-state of 172Hg (Fig. 5) is found at (q2 =418

0.10, η ≈ 0.04) as an oblate minimum, with another mini-419

mum at (q2 ≈ −0.100, η ≈ 0.02), which exhibits γ-unstable420
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Fig. 2. Potential energy surface of 170Pt projected onto the (q2, η) plane under different pairing interaction strengths Gν (MeV), while the
proton pairing interaction strength is fixed at Gπ = 0.100 MeV. The energy is minimized in the q4 direction and q3 is set to 0 and normalized
to zero energy at the ground-state value. The ground-state deformation is represented by a red dot.
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Fig. 4. Same as Figs. 2 and 3, but for 174Pb.

deformation. The PES of 172Hg provides an excellent exam-421

ple of an almost γ-unstable nucleus. Under Exact pairing,422

this γ-unstable minimum is more symmetric, with clear re-423

flections around γ = 150◦, γ = 30◦, and γ = 90◦. Under424

BCS pairing, the γ-unstable features are less prominent, and425

the oblate minimum becomes more dominant. Additionally,426

two shape isomers are visible under Exact pairing model: a427

prolate isomer at (q2 ≈ 0.600, η = 0), E ≈ 4.6 MeV, and an428

oblate one at (q2 ≈ −0.45, η = 0), E ≈ 4.6 MeV. However,429

these changes were not distinguishable in the BCS case.430

As shown in Figures 5 (c), the ground-state shape of 174Pb431

tended to be spherical. The PES under Exact pairing revealed432

a nearly spherical configuration with minor prolate and oblate433

shape isomers. In contrast, BCS pairing resulted in a more434

pronounced spherical minimum and diminishes the depth of435

shape isomers.436

In summary, as the number of protons increases, the437

ground-state transitions from prolate for 170Pt to the coex-438

istence of γ-unstable and oblate for 172Hg, eventually ap-439

proached a nearly spherical configuration for 174Pb. The440

comparison between Exact and BCS pairing demonstrates441

that BCS pairing tends to smooth out shape coexistence and442

reduce the depth of shape isomer, leading to less pronounced443

deformation features. The differences in results between Ex-444

act and BCS pairing may be attributed to the mean-field ap-445

proximation in the BCS approach, which likely simplifies446

the treatment of pairing interactions. This approximation is447

thought to smooth out shape coexistence phenomena by sup-448

pressing pairing fluctuations, energy gaps, and shell effects,449

potentially leading to less pronounced deformation features.450

E. Shape coexistence analysis in the Pt isotope chain451

In this paper, we investigate the PESs of the even-even452

170−180Pt isotopes using the exactly solvable deformed mean-453

field plus pairing model. Our analysis provides a comprehen-454

sive examination of the shape coexistence phenomena across455

these isotopes.456

The pairing interaction strength, denoted as G, serves as457

the sole adjustable parameter within our model. It is typi-458

cally determined either through empirical formulas or by fit-459

ting to experimental odd-even mass differences [65, 66]. In460

this study, we determinedGν by fitting the experimental odd-461

even mass differences for the 171−180Pt isotope chain and462

Gπ by fitting the experimental odd-even mass differences for463

the 174Pt to 178Pb isotonic chain. The odd-even mass differ-464

ences are computed using the following expression:465

P (A) =Etotal (N + 1, Z) + Etotal (N − 1, Z)

− 2Etotal (N,Z) .
466

This quantity is highly sensitive to variations in the pair-467

ing interaction strength G [67], due to the pairing interac-468

tion between nucleons. As shown in Fig. 6, by employing469

Gν = 0.145 MeV and Gπ = 0.100 MeV, our calculations470

closely reproduced the experimental odd-even mass differ-471

ences for the 171−180Pt isotopes, yielding a root mean square472

deviation of σ = 0.465 MeV. Additionally, as display in473

Fig. 7 for the 174Pt to 178Pb isotonic chain, the calculations474

closely matched the experimental odd-even mass differences,475
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Fig. 5. Potential energy surfaces of 170Pt, 172Hg and 174Pb projected on the (q2, η) plane under both Exact and BCS pairing schemes,
with the energy minimized in the q4 direction, q3 set to 0 and normalized to zero energy at the ground-state value. The realistic pairing
interaction strengths Gν = 0.145 MeV, and Gπ = 0.100 MeV are adopted. The ground-state deformation is represented by a red dot, while
the coexistence minimum is indicated by a red cross.

with a root mean square deviation of σ = 1.192 MeV.476

σ =

√√√√ N∑
µ=1

(
PTheor.
µ − PExpt.

µ

)2
/N . (22)477

Here, PTheor.
µ and PExpt.

µ represent the theoretical and ex-478

perimental values of the odd-even mass differences, respec-479

tively, and N denotes the total number of data points.480

��� ��� ��� ��� ��	 �	�
��

��

��

��

�

�

�

�

�

P  
(M

ev)

�

 E x p t .
 T h e o r .

Z = 7 8

P t

481

Fig. 6. Odd-even mass differences (in MeV) for Pt isotopes. "Expt."482

represents experimental values, and "Theor." represents theoretical483

values. Experimental data are from [67].484
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Fig. 7. Odd-even mass differences (in MeV) for the 174Pt to 178Pb486

isotonic chain. "Expt." represents experimental values, and "Theor."487

represents theoretical values. Experimental data are from [67].488

Next, we examine the PES of the 170−180Pt even-even489

isotopes under the determined pairing interaction strengths490

Gν = 0.145 MeV and Gπ = 0.100 MeV. Figure 8 shows the491

PES projected onto the (q2, η) plane. For 170Pt, the ground-492

state exhibited a prolate deformation at (q2 = 0.15, η = 0).493

In contrast, for 172Pt, a more deformed minimum emerged,494

leading to the coexistence of a triaxial shape (γ ≈ 30◦)495

and a nearly prolate-deformed minimum at (γ ≈ 120◦), in-496

dicative of γ-instability due to the presence of multiple low-497

energy configurations at different γ values. The triaxial shape498

is even more pronounced in 174Pt, where the ground-state499

is triaxial with deformation parameters (q2 = 0.020, η =500

0.10, β ≈ 0.2, γ ≈ 90◦)) and a coexisting prolate minimum501

at (q2 = 0.15, η = 0). In 176Pt a γ -unstable ground-state and502

a prolate minimum coexisted, but by 178Pt and 180Pt, a well-503

deformed prolate minimum quickly developed, becoming the504

most pronounced prolate ground-state at the mid-shell.505

The findings of this study are broadly consistent with the506

results of Ref. [20], which studied the 172−194Pt isotopic507

chain in the framework of the interacting boson model and508

self-consistent HFB calculation using the Gogny-D1S in-509

teraction. Both studies identified shape coexistence in the510

172−176Pt region, with γ-unstable minima and triaxial shapes511

in 174Pt. Additionally, both studies showed the dominance512

of prolate deformation in 178Pt, and 180Pt, with the prolate513

minimum becoming the most pronounced ground state at the514

mid-shell.515

It is noteworthy that a triaxial shape isomer exists for516

170−174Pt, characterized by (q2 ≈ 0.600, η ≈ 0.060 (γ ≈517

10◦)), and positioned approximately 5.0 MeV above the518

ground-state. However, this triaxial shape isomer vanishes519

for 176−180Pt.520

III. CONCLUSION521

In this study, we systematically investigated the shape co-522

existence phenomenon in isotopes near the magic proton523

number of Z = 82, focusing specifically on the nuclei 170 Pt,524

172 Hg, and 174 Pb, as well as the Pt isotopic chain from 170 Pt525

to 180 Pt. Our analysis, using a macro-microscopic approach526

that combines the LSD model with a Yukawa-Folded poten-527

tial and pairing corrections, revealed significant insights into528

the impact of pairing interactions on nuclear shape evolution.529

The PES of 170Pt revealed a prolate ground-state with ad-530

ditional triaxial and oblate shape isomers. Both shape iso-531

mers become progressively shallower with increasing neu-532

tron pairing strength Gν , and the oblate isomer vanishes at533

Gν = 0.145 MeV, indicating a significant dependence of534

shape isomers on pairing strength. The ground-state deforma-535

tion of 172Hg transitions from triaxial to oblate with increas-536

ing Gν , reflecting its nearly γ-unstable nature. Three shape537

isomers (prolate, triaxial, and oblate) were observed, with538

energy barriers separating these configurations. As Gν in-539

creased, the triaxial isomer disappeared at Gν = 0.145 MeV,540

demonstrating the impact of pairing interactions on shape sta-541

bility. 174Pb exhibited a prolate ground-state that became in-542

creasingly spherical with stronger pairing interactions. While543

shape isomers are present at weaker pairing strengths, their544

prominence diminishes significantly, and robust shape coex-545

istence was not observed in this nucleus.546

For realistic pairing interaction, the ground-state shapes547

transition from prolate in 170Pt to a coexistence of γ-unstable548

and oblate shapes in 172Hg, ultimately approaching spheri-549

cal symmetry in 174Pb. This progression highlights the in-550

terplay between proton number and pairing interactions in551

shaping nuclear deformation. The comparison between Exact552

and BCS pairing for realistic 170Pt, 172Hg, and 174Pb demon-553

strated that BCS pairing tends to smooth out shape coexis-554

tence and reduce the depth of shape isomers, leading to less555

pronounced deformation features.556

These findings emphasize the critical role of pairing inter-557

actions in shaping nuclear deformation landscapes and shape558

coexistence, offering deeper insights into the structural evo-559

lution of nuclei near the mid-shell region. This study con-560

tributes valuable theoretical perspectives to the understand-561

ing of nuclear shape phenomena and the influence of pairing562

interactions on nuclear dynamics.563

Based on the analysis of the PESs for the even-even564

170−180Pt isotopes, the results show significant shape evo-565

lution across the isotopic chain. For 170Pt, the ground-state566

exhibited prolate deformation, with deformation parameters.567

However, for 172Pt, a more deformed minimum appears, lead-568

ing to the coexistence of a triaxial shape and a nearly prolate-569

deformed minimum. The triaxial shape becomes even more570

pronounced in 174Pt, where the ground-state is triaxial with571

deformation parameters, coexisting with a prolate minimum.572

For 176Pt, a γ-unstable ground-state coexists with a prolate573

minimum. By 178Pt, and 180Pt, a well-deformed prolate min-574

imum develops rapidly, becoming the most pronounced pro-575

late ground-state in the mid-shell.576

These results highlight the complex shape evolution in the577

Pt isotopes, with shape coexistence and γ-instability playing578

significant roles in the nuclear structure evolution, particu-579

larly around the mid-shell region where prolate deformation580

dominates.581
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Fig. 8. Potential energy surfaces of the 170−180Pt even-even isotopes chain, projected on the (q2, η) plane using the exact pairing model,
where the energy is minimized in the q4 direction with q3 set to 0, with neutron and proton pairing interaction strengths of Gν = 0.145 MeV,
Gπ = 0.100 MeV. The ground-state deformation is represented by a red dot, while the coexistence minimum is indicated by a red cross.
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