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Abstract
The neutron richness of the light charged particles emitted out of the fission plane in heavy ion reactions has been experi-
mentally investigated via the production of A = 3 mirror nuclei in 86 Kr + nat Pb reactions at 25 MeV/u. The energy spectra 
and angular distributions of triton (t) and 3 He in coincidence with two fission fragments are measured with the Compact 
Spectrometer for Heavy IoN Experiment (CSHINE). The energy spectrum of 3 He is observed harder than that of triton in 
the fission events, in accordance with the phenomena reported as “ 3He-puzzle” in inclusive measurements. With a data-
driven energy spectrum peak cut scenario, it is observed that the yield ratio R(t∕3He) increases with the angle to the fission 
plane, showing an enhancement of neutron-rich particle emission from out-of-fission-plane. A qualitative comparison with 
the transport model calculations suggests that this observation may serve as a new probe for the nuclear symmetry energy.
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1  Introduction

Heavy ion reactions (HIR) provide a femtoscopic labora-
tory for investigating the properties of the nuclear equation 
of state (nEoS), particularly the nuclear symmetry energy 
Esym(�) [1–6]. The stringent constraint of Esym(�)  is cru-
cial for both nuclear- and astrophysics and draws the most 
attention since the detection of the gravitational waves from 
the neutron star merging event GW170817 [7–9]. Although 
great progress has been made via neutron skin thick-
nesses[10–14], nuclear charge radius[15], flow[16–18] and 

the detection of isobaric yield ratios in HIRs, like n/p [19], 
t∕3He [20, 21], �−∕�+ [22–25], K0∕K+ [26] and Ξ−∕Ξ0 [27], 
the Esym(�)  is still suffering a lot uncertainties [28–32], and 
the efforts are ongoing to search novel probes to explore the 
effects of Esym(�)  in HIRs [33–37].

The nuclear (fast)fission process is a large-amplitude 
collective motion mode happening in the HIRs. The low-
density neutron-rich neck region formed in the rupture of 
two fission fragments provides a good condition for study-
ing Esym(�)  and dynamic properties in isospin degree of 
freedom (IDOF)[38–41]. The neck zone has been explored 
to understand the mechanism of intermediate mass frag-
ment (IMF) formation [42–45], isotopic cluster emis-
sion [46–49] and neutron-proton equilibration [50–54]. 
Because of the density gradient and the isospin migra-
tion, the neck zone provides a beneficial environment to 
study the Esym(�)  [52, 54]. For more discussions about 
neck zone, one can refer to the review articles of heavy ion 
reactions from the experimental [38, 39, 55] and theoretic 
points of view [56–60].
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The emissions of light particles in coincidence with 
fission fragments are a natural idea for exploring the sym-
metry energy effect and (fast)fission properties in HIRs 
[40, 41]. Among the probes using the light charged parti-
cles (LCPs), the yield ratio of t∕3He , written as R(t∕3He) , 
has been particularly identified to probe the enriched fea-
ture of isospin dynamics in HIRs. Transport model cal-
culations demonstrate that the R(t∕3He)  at intermediate-
energy HIRs depends on the stiffness of Esym(�)  [21, 61]. 
At high-energy HIRs, R(t∕3He)  depends more sensitively 
on the value of Esym(�)  [62] and the specific form of the 
interaction potential [25, 63], but is less dependent on the 
slope of Esym(�)  [64]. In addition, R(t∕3He)  reflects the 
isospin-dependent nucleon density in the reactions [43, 
65, 66]. Experimentally, the yield ratios of various mirror 
nucleus pairs, including the R(t∕3He) , led to the discovery 
of isospin fractionation [67]. It has been suggested that 
more neutron-rich particles are emitted at mid-rapidity, as 
inferred by the R(t∕3He) , which correlates positively with 
the charge number of projectile-like fragments[43] but 
reversely with the center of mass energy [68]. Similarly, 
in high-energies HIR, the R(t∕3He)  reflects the neutron 
enrichment of the emission source[43, 69, 70] and isospin 
mixing during the collision [71]. Recently, the R(t∕3He)  
has also been used to study the pick-up mechanism of pre-
equilibrium light nucleus production in the pion scattering 
experiment [72]. Hence, the distribution of R(t∕3He)  rela-
tive to the fission plane is a good probe to characterize the 
properties of fission process and explore the properties of 
symmetry energy.

Despite of the enormous progress of the studies on the 
triton (t) and 3 He emission, some questions remain unclear 
and require further studies. For example, when considering 
the spectra of 3He, there is an anomalous phenomenon that 
the yield of high energy 3 He is relatively larger, compared 
to that of triton [73–77] or 4 He [73, 75–78]. This phenom-
enon has been called “ 3He-puzzle” [73, 74, 77]. While the 
energy spectra are suffering “ 3He-puzzle,” the yield ratio 
of triton and 3 He is sensitive to the neutron-to-proton ratio 
(N/Z) of the emitting system [53, 70, 79, 80]. The excita-
tion function of R(t∕3He)  measured by the FOPI collabo-
ration [81] cannot be reproduced with a single model [62]. 
More interestingly, the results of the INDRA experiment 
suggest that the triton and 3 He isobars seem to dominate 
the neutron enrichment of the neck zone [54]. However, 
the existence of “ 3He-puzzle” in the coincidence events 
of LCPs and fission fragments is still an uncertain issue.

Due to the enriched but not-well-understood informa-
tion carried by triton and 3 He coupling to both the isospin 
transport and the neck emission during fission process in 
HIRs, we are motivated to explore the emission of these 
two isobars in coincidence with fission fragments by 

inspecting the energy spectra and the yield ratio R(t∕3He) 
over wide angular range, and to bridge the ratio R(t∕3He)  
and the feature of fission process, as well as to infer the 
slope parameter of Esym(�) . In this article, the energy 
spectra of triton and 3 He in coincidence with fission frag-
ments at different angles are measured in the reactions 
of 86Kr+nat Pb at 25 MeV/u. The distributions of R(t∕3He) 
with respect to the fission plane and as a function of the 
laboratory polar angle are analyzed. The comparison 
of the experimental data to the transport model simula-
tion is discussed. The paper is organized as following. 
Section 2 and 3 present the experimental setup and the 
description of the transport model, respectively. Section 4 
shows the results and the discussions, and Sect. 5 shows 
the summary.

2 � Experimental setup

The experiment was conducted at the Compact Spectrom-
eter for Heavy IoN Experiment (CSHINE) [82, 83], built 
at the final focal plane of the Radioactive Ion Beam Line 
at Lanzhou (RIBLL-I) [84]. The 86 Kr beam of 25 MeV/u 
was extracted from the cyclotron of the Heavy Ion Research 
Facility at Lanzhou (HIRFL) [85], bombarding a natu-
ral lead target installed in the scattering chamber with the 
radius R ≈ 750 mm. The target thickness is about 1 mg∕cm2 . 
Figure 1 presents the experimental setup (a) and the spatial 

Fig. 1   (Color online) a The experimental setup of CSHINE. b The 
spatial coverage of SSDTs and PPACs on � − � plane in laboratory 
reference frame
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coverage of the silicon-strip detector telescopes (SSDTs) and 
the parallel plate avalanche counters (PPACs) (b).

The LCPs from the reactions were measured by 4 SSDTs, 
covering the angular range from 10◦ to 60◦ in laboratory. 
Each SSDT consists of three layers, namely one single-sided 
silicon-strip detector (SSSSD) for ΔE1 and one double-sided 
silicon-strip detector (DSSSD) for ΔE2 , backed by a 3 × 3 
CsI(Tl) crystal hodoscope with the length of 50 mm for the 
energy deposit E. The granularity of the SSDT is 4 mm× 
4 mm, giving about 1◦ angular resolution. The energy reso-
lution of the SSDT is better than 2% , and the isotopes up to 
Z = 6 can be identified [36]. Multi-hits and signal sharing 
are carefully treated in the track recognition, and the track 
recognition efficiency is about 90% [86]. Figure 2 shows 
the particle identification of light particles for this analysis. 
Panel (a) to (d) presents the scattering plot of ΔE2 − ECsI of 
the four SSDTs. The results show that Z ≤ 3 LCPs, including 
triton and 3He, were identified clearly in each SSDT, sup-
porting the reliability of the experimental results.

In order to explore the isospin properties of fission pro-
cess, the fission fragments (FFs) were detected by 3 PPACs, 
each of which had a sensitive area of 240 mm × 280 mm [87, 
88]. The perpendicular distance of the PPACs to the target 
is about 428 mm. The coverage of the PPACs ensures a high 
efficiency to measure the FFs in coincidence with the LCPs. 
And the trigger system is established to select the fission 
events [89]. The working voltage of the PPACs can suppress 
the light charged particles significantly, although the specific 
values of mass and charge for FFs were not accurately deter-
mined. According to the previous source test results [82], the 
detection efficiency is almost 100% for FFs and negligibly 
low for light particles with the detector condition (HV=460 
V) as adopted in the experiment. So, the PPACs can only be 
fired by heavy fragments, rather than LCPs or IMFs.

Referring to the energy loss calculations only, the projec-
tile-like fragments (PLFs) and target-like fragments (TLFs) 
may fire the PPACs as well. However, the geometric cover-
age of the PPACs in the experiment suppresses the PLF and 
TLF. Otherwise because PLFs and TLFs are well separated 
in velocity ( vPLF ≈ 6.8 cm∕ns, vTLF ≈ 1.2 cm∕ns at small lin-
ear momentum transfer or in peripheral reactions), one shall 
be able to see two components clearly on the velocities of 
the two coincident fragments recorded in the PPACs. Indeed, 
the two-component feature is not visible in the velocity scat-
tering plot (see Fig. 11 in [87]), and it is safe and reasonable 
to speculate that the heavy fragments detected with PPACs 
in the experiment are mainly fission fragments.

3 � Theoretical model

A hybrid model by the improved quantum molecular dynam-
ics model (ImQMD05) coupled with statistical decay after-
burner (GEMINI) was used for theoretical simulation in this 
work. The ImQMD05 [90] was used to simulate the nucleon 
transport process in HIRs. And the GEMINI [91, 92] was 
appended to obtain the final state productions of the reac-
tions. The ImQMD05 model is an improved version from 
the original quantum molecular dynamics code [93, 94] and 
is widely used to understand the dynamics of nuclear reac-
tions induced by heavy ions or light nuclei at both low and 
intermediate energies [40, 41, 95–97]. The mean field part 
of the ImQMD05 model used here includes the symmetry 
potential energy part. And the local nuclear potential energy 
density functional in the ImQMD05 model is written as

where � , �n and �p are the density of nucleon, neutron and 
proton, respectively. � = (�n − �p)∕(�n + �p) is the isospin 
asymmetry degree. The parameters in Eq. (1) except Cs , 
which are listed in Table  1, are obtained directly from 
Skyrme interaction with MSL0 parameter set [98]. Cs is 
determined by the symmetry potential energy at saturation 
density. Together with different values of � , one can get 
the MSL0-like Skyrme interaction with various density-
dependent symmetry potential energy. After scanning the 
impact parameter up to 16.0 fm, the most probable weight 
of the fission events filtered by experimental conditions is 
located at 7.0 fm. Hence, the reaction was simulated with 
impact parameter in the range of 1.0 ≤ b ≤ 7.0 fm by a step 
of Δb = 1.5 fm. At the end of the dynamical evolution in 
ImQMD05, setting at 500 fm/c, the minimum spanning tree 
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Fig. 2   (Color online) ΔE2 − ECsI plots of the four SSDTs
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(MST) algorithm [94, 99] was used to recognize the free 
nucleons and fragments formed in the evolution. Next, the 
statistical decay of excited fragments was performed with 
GEMINI afterburner. At last, the information of final state 
particles will be obtained.

4 � Results and discussion

4.1 � Characterizing the fission events

We start with the analysis of the orientation of the fis-
sion plane with respect to the beam direction. The fission 
plane is reconstructed by the velocity of two FFs, using 
n⃗FF =

(
v⃗F1 × v⃗F2

)
∕|v⃗F1 ||v⃗F2 | to denote the normal vector of 

the fission plane, as shown in Fig. 3a. Defining �1 as the 
angle between n⃗FF and the beam direction v⃗beam , one can 
characterize how much the fission plane deviates from the 
beam. The distribution of |cos(�1)| is peaked at 0 with a 
rather small width �α1 ≈ 6◦ , as shown in Fig. 3b, inferring 
that the fission plane keeps approximately the memory of 
the initial angular momentum of the rotating system. With 
Z ≥ 10 as the condition to identify FFs for theoretical cal-
culations, the transport model prediction about the distribu-
tion of |cos(�1)| is in rather agreement with the experiment. 
The scattering plots of folding angle vs. |cos(�1)| provide 

the information of fission and detection geometry. With the 
detector filter of PPACs on both �lab and �lab according to 
the setup, the experimental folding angle in Fig. 3c can be 
approximately described by the model simulation in Fig. 3d.

The characteristics of this rotating fissioning system 
was obtained using the experiment data and theoretic sim-
ulations. First, to estimate its charge and mass, the linear 
momentum transfer (LMT) should be estimated experimen-
tally. Assuming a symmetric fission processes, the velocity 
of the fissioning system (FS) can be simply calculated by

where v⃗F1 and v⃗F2 are the velocities of the two FFs, respec-
tively. The LMT is defined as

Here, the subscripts pro and tar denote the projectile and 
the target, respectively. vZ

FS
 is the projection of v⃗FS on the 

beam direction. As shown in Fig. 4, the distribution of the 
LMT derived from the experimental data is peaked in the 
vicinity of 0.4. The small peak below LMT < 0.2 is contrib-
uted by the fission events triggered by PPAC 1 and PPAC 
3. Accordingly, the typical charge and mass of the rotat-
ing fission system are ZFS ≈ Ztar + Zpro ⋅ LMT = 96 and 
AFS ≈ Atar + Apro ⋅ LMT = 242.

Second, to estimate the angular momentum of the rotating 
fission system, one needs the most probable impact param-
eter, which can determined by the event weigh obtained from 
transport model simulations filtered by experimental condi-
tions. Define the fission event weight by

(2)v⃗FS =
1

2
(v⃗F1 + v⃗F2),

(3)LMT =
Atar ⋅ v

Z

FS

Apro ⋅ (vpro − v
Z

FS
)
.

Table 1   Parameter set used in 
the ImQMD05 calculations

� � � gsur gsur,iso g�� Cs �0

(MeV) (MeV) (MeV fm2) (fm2) (MeV) (MeV) (fm−3)

–254 185 5/3 21.0 −0.82 5.51 36.0 0.160

Fig. 3   (Color online) a Geometric diagram of fission plane of FFs 
and LCP emission. b Angular distribution between the normal vec-
tor n⃗FF of the fission plane and the beam direction v⃗beam . The experi-
mental c and simulation d results of the folding angle vs. |cos(�

1
)| are 

shown in the bottom panels

Fig. 4   Experimental distribution of LMT
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where nF is the number of fission events among Ntot events 
simulated at a given impact parameter b.

Figure 5 shows the distribution of WF , where the most prob-
able impact parameter bm is located in the vicinity of 7 fm.

The distance between the transferred part of the projectile 
and the mass center of the fissioning system is defined as

where bm = 7 fm, Atar = 208 , Apro = 86 and LMT = 0.4 , 
respectively.

The angular momentum is written as

where Ppro = 18700 MeV/c and D ≈ 6 fm was derived with 
LMT = 0.4 . Then, the angular momentum of the rotating 
system is approximately J ≈ 200 ℏ.

Third, to estimate the excitation energy of the rotating fis-
sion system, the moment of inertia I of a spherical nucleus 
with the mass MFS is

where rFS = 1.4A
1∕3

FS
 fm is the radius of the fissioning system. 

The rotating energy Erot = J2∕2I ≈ 100 MeV is approxi-
mately obtained. Ignoring the reaction Q value, the excita-
tion energy could be extracted by

where Ei
kin

 and Ef
kin

 are the initial state kinetic energy and 
the final state kinetic energy, respectively. Approximately, 
one has E∗ ≈ 600 MeV. The excitation energy is close to 
the one of the fission system formed in 25 MeV/u Ar+Au at 

(4)WF = b
nF

Ntot(b)
,

(5)D = bm
Atar

Atar + Apro ⋅ LMT
,

(6)J = Ppro ⋅ LMT ⋅ D,

(7)I =
2

5
MFSr

2
FS
,

(8)E∗ = Ei
kin

− Ef
kin

− Erot,

LMT ≈ 80% , where the E∗ was calculated by the pre-scis-
sion � multiplicity [100]. For additional properties of fission 
systems, such as Viola systematics and angular distribution 
of the fission axis, please refer to our previously published 
paper [87].

4.2 � Analysis of the energy spectra of t and 3He

We now present the analysis of the emission of triton and 
3 He in the (fast)fission events. The energy spectra of LCPs in 
coincidence with FFs contain thermal and dynamical infor-
mation of the particles emitted from the fission events. Fig-
ure 6 presents the energy spectra of triton (open circles) and 
3 He (open triangles) emitted from fission events in different 
angular ranges corresponding to SSDTs 2 to 4. To reduce 
the contamination of quasi-projectiles, the data of SSDT1 
covering 10 − 20◦ in the laboratory are not counted here. It is 
shown that the spectrum of 3 He is generally harder than that 
of triton, leading to a larger average kinetic energy of the 
former. The difference between triton and 3 He is more pro-
nounced at forward angles than at large angles. This obser-
vation of “ 3He-puzzle” is in accordance with the previous 
inclusive measurements at high beam energies [73, 75–77, 
81, 101–104].

The “ 3He-puzzle” has been interpreted by two possible sce-
narios: sequential decay [74] and coalescence model [78]. In 
the sequential decay scenario, the difference between 3 He and 
triton is influenced by the Coulomb barrier, for which 3 He is 
emitted at an earlier stage with high temperature to overcome 
the Coulomb barrier higher than that of triton [74]. In coales-
cence scenario, which was applied to interpret the difference 
between 3 He and � particles [78], the former is dominantly 
produced by the coalescence of pre-equilibrium nucleons, 
delivering larger mean kinetic energy. These two explanations 
are qualitatively in agreement, supporting that 3 He is predomi-
nantly emitted at earlier stage. Our experimental results show 
that the “ 3He-puzzle” exists in the events tagged by fission. 

Fig. 5   The weight of the fission events as a function of impact param-
eter b in ImQMD05 simulations

Fig. 6   (Color online) The experimental energy spectra of triton (cir-
cle) and 3 He (triangle) in 20◦ ≤ �lab ≤ 60◦ covered by SSDT2 to 
SSDT4 in coincidence with two FFs. The arrows represent the peak 
position of each experimental energy spectrum
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It suggests that the puzzle exists in both inclusive and fission 
events.

4.3 � Out‑of‑plane emission and the effect of Esym(�)

Benefiting from the wide angular coverage of the SSDTs and 
PPACs in laboratory reference frame, the angular behavior of 
the particle emission can be analyzed. To compare the yields 
of particles with different energy spectrum behaviors and avoid 
the influence of the possible experimental distortion caused by 
the energy threshold in each SSDTs, a data adaptive energy 
spectrum peak cut scenario is applying. We focus on the 
descending part on the high-energy side of the energy peak. 
The energy peak positions ( Ep ) are listed in Table 2. Mean-
while, using the energy condition E ≥ Ep as the low limit cut, 
one can suppress the interference of the evaporation process 
and emphasize the feature of the dynamic emission.

The angular distribution of R(t∕3He) as a function of the 
polar angle in laboratory �lab is generated with events of one 
LCP in coincidence with two FFs, as shown in Fig. 7. The 
same energy threshold, geometry, and folding angle cuts 
are applied to both experimental and simulation results. It is 
shown that for the wide angular range, the distribution exhib-
its a rising trend. This feature is consistent with the moving 
source picture, where the neutron richness of particle emission 
increases from the projectile-like source to the medium-veloc-
ity source corresponding to the neck, as predicted by various 
transport model simulations [40, 41, 46, 48, 49, 51, 105–109], 
and experimentally observed in a specific angular window [42, 
45, 50, 54, 79, 110–112] or a parallel velocity window [45, 79, 
80, 113–118].

In order to see the symmetry energy effect, a soft ( � = 
0.5) and a stiff ( � = 1.0) symmetry energy are adopted in the 
ImQMD05 simulations. These two � values correspond to 
slope parameter of Esym(�)  with L = 51 and 77 MeV at �0 , 
respectively. Although the predicted value of R(t∕3He) is far 
off to the experiment, the rising trend of R(t∕3He) as a func-
tion of �lab was reproduced by model simulations in both � 
cases. In order to quantify the increasing rate, the function of 
f (x) = e(p0+p1x) is applied to fit the data and the model predic-
tions, respectively. The parameter p1 describes the increasing 
rate of R(t∕3He) to �lab . As shown in Fig. 7, the rising trend 
depends on � . Visibly, a softer Esym(�)  causes a relative larger 
increasing rate. When comparing the fitting results between 
experiment and model in Table 3, the value of experimental p1 
is marginally located between � = 0.5 and 1.0. Nevertheless, 

the large uncertainty here reduces the sensitivity and hinder to 
make a convincing constraint of Esym(�).

It is then motivated to go a further step to find a novel probe, 
of which the fission event topology is better controlled and the 
sensitivity on Esym(�)  can be enhanced. Figure 8 presents the 
angular distribution of R(t∕3He) with respect to the fission 
plane. The �2 on the abscissa is the relative angle between n⃗FF 
and the velocity of the coincident triton or 3 He v⃗LCP as shown 
in Fig. 3a, with | cos(�2)| = 0 (1) corresponding to in-plane 
(out-of-plane) emission. Again, the same cuts are applied 
for both experimental and theoretical results. The increasing 
trend of R(t∕3He) with | cos(�2)| indicates that the neutron-rich 
particles emitted from out-of-fission-plane is enhanced. This 
phenomenon is the consequence of the competition between 
the isospin migration and the centrifugal motion of the parti-
cles in the rotating fission system. When the reaction system 
is viewed as a rotating emission source, particles emitted near 
the fission plane are subjected to stronger centrifugal potential 
during the emission process, weakening the difference between 
neutrons and protons under the isovector potential. From the 
in-plane to out-of-plane, more neutron-rich particles are emit-
ted due to the effect of isospin fractionation [67], indicating 
that the effect of the isovector potential becomes more signifi-
cant compared to centrifugal potential. This observation gives 

Table 2   Energy peak position Ep of triton and 3 He for SSDT 2 to 4

SSDT2 SSDT3 SSDT4

E
p
 of triton (MeV) 45 40 19

E
p
 of 3 He (MeV) 62 58 38

Fig. 7   (Color online) The ratio R(t∕3He) as a function of �lab . The 
black solid squares and black line represent the experiment data and 
fitting result with E ≥ Ep cuts in coincidence with fission events. The 
red and blue cross markers represent the ImQMD05 calculations data 
of � = 0.5 and 1.0 in the inset. The red dot and blue dash lines are the 
fitting results of � = 0.5 and 1.0 which is normalized with experimen-
tal fitting result of p0

Table 3   Fitting results of the ratio R(t∕3He) as a function of �lab using 
f (x) = e(p0+p1x)

p0 p1

Experiment 1.25±0.06 0.018±0.002
�=0.5 0.75±0.08 0.021±0.002
�=1.0 0.54±0.09 0.018±0.002
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us the chance to explore the properties of isospin transport and 
the density dependence of Esym(�)  in (fast)fission reactions.

Similarly, to describe the increasing trend of the angular 
distribution of | cos(�2)| , the function of f (x) = p0 + p1x

4 is 
used to fit data and the simulations. Again, p0 is far off to the 
experiment due to the clustering difficulty of transport model, 
but the parameter p1 can be used to describe the increasing 
rate of the ratio with out-of-plane angle. In Fig. 8, the fitting 
curves exhibit a different increasing behavior between � = 0.5 
and 1.0, indicating that the enhancement of neutron-rich par-
ticle emission out-of-fission-plane is sensitive to the form of 
Esym(�) . Inspecting the increasing curves and the values of p1 
as listed in Table 4, one finds that the experimental increas-
ing rate situates between the theoretical prediction with � = 
0.5 and 1.0, in accordance with the conclusion of our previ-
ous work [36], where a totally different probe was used. The 
comparison seems to exclude very soft ( 𝛾 <0.5) and very stiff 
( 𝛾 >1.0) candidates of symmetry energy. The results indicate 
that the ratio R(t∕3He) as a function of | cos(�2)| seems to be a 
sensitive probe for density-dependent symmetry energy, espe-
cially in the larger | cos(�2)| range, which is very close to the 
boundary of the current detector coverage. Hence, more events 
in the larger | cos(�2)| range are preferentially requested in the 
further experiments. Data analysis of a new measurement of 
86Kr+124 Sn at 25 MeV/u is ongoing [119].

Figure  9 shows in addition the relationship between 
| cos(�2)| and �lab with the experiment events of triton in 
coincidence with two fission fragments. Visibly, there is a 
weak positive correlation between | cos(�2)| and �lab . The 
origin of the correlation is partly due to the fact that the 
azimuth coverage of the PPAC is quite limited. With such 
weak correlation, one infers that the two distributions shown 
in Figs. 7 and 8 have their own implications. Namely, the 
distribution of R(t∕3He) as a function of �lab indicates that 
the low-density and neutron-rich medium-velocity emis-
sion source (neck) is formed, while the distribution of 
R(t∕3He) as a function of | cos(�2)| characterizes the fine 
out-of-plane properties of the isospin transport in a fission-
ing process. Upon comparing the results presented in Table 3 
and Table 4, it becomes evident that the enhancement of 
R(t∕3He) vs. | cos(�2)| , particularly at larger out-of-plane 
angles, appears to be a more sensitive probe for studying 
nuclear symmetry energy than the polar angular distribution 
of R(t∕3He) . In another word, in the properly characterized 
fission events, the effect of Esym(�)  can be magnified, sup-
porting the previous predictions by transport model simula-
tions [40].

Currently, we do not attempt to make a fine tuning and 
constraint of � parameter in the simulations, since the 
absolute value of R(t∕3He) is not yet well reproduced, as 
indicated in Figs. 7 and 8. Further studies are required in 
transport model in order to elucidate the origin and the for-
mation mechanism of light clusters including triton and 3
He. Recently, the yield of light clusters is better reproduced 
by introducing Mott effect in transport model [120]. Mean-
while, the cooling process of the rotating fissioning system 
with similar E∗ and J is of high interest. We are going to 
make further calculations on particle emission from a rotat-
ing system with inclusion of deuteron, triton and 3 He apart 
of neutron, proton and � particles, as done in [121]. The 

Fig. 8   (Color online) The ratio R(t∕3He) as a function of | cos(�2)| . 
The black solid squares and black line represent the experiment data 
and fitting result. The red and blue cross markers represent the theo-
retical calculations data of � = 0.5 and 1.0 in the inset. The red dot 
and blue dash lines are the fitting results of � = 0.5 and 1.0 which is 
normalized with experimental fitting result of p0

Table 4   Fitting results of 
R(t∕3He) as a function of 
| cos(�2)| using f (x) = p0 + p1x

4

p0 p1

Experiment 5.8±0.2 5.5±1.6
�=0.5 4.5±0.1 2.3±1.1
�=1.0 3.0±0.1 6.8±1.8

Fig. 9   (Color online) The scattering plot between | cos(�2)| and labo-
ratory angle with the experiment events of triton in coincidence with 
two fission fragments
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emission of other particles than A=3 isobars may bring sig-
nificant effect to the featured distribution of the latter in the 
cooling process of the fissioning system.

5 � Summary

The energy spectra and angular distributions of triton and 
3 He ranging from 20◦ to 60◦ in the laboratory in coincidence 
with fission fragments are analyzed in 25 MeV/u 86 Kr + nat Pb 
reactions. It is shown that the energy spectra of 3 He are 
generally harder than triton even in the fission events, and 
the effect is more pronounced at small angles. Applying a 
data-driven energy spectrum peak cut scenario, the rising 
trend of angular distribution of R(t∕3He) is observed in the 
coincident events of one LCP and two FFs, which is con-
sistent with previous inclusive observations. The yield ratio 
R(t∕3He) exhibits an enhancement as a function of | cos(�2)| , 
evidencing more neutron-rich particles emitted from out-of-
fission-plane. With a qualitative comparison with ImQMD05 
simulations, the enhancement of neutron-rich particle emis-
sion from out-of-fission-plane seems to be a novel probe for 
nuclear symmetry energy. More measurements at large out-
of-fission-plane angles and further theoretic investigations 
are required for a stringent constraint of Esym(�).
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