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1 Introduction

Mass is the most fundamental property of atomic nuclei
for its relevance in understanding not only the nuclear
structure and the complex interaction in nuclei, but also
the path of the synthesis of heavy nuclei in astrophysics
[1]. In the super heavy region, the mass data also essen-
tial in the exploration of synthesizing super-heavy nu-
clide in terrestrial laboratory. Experimentally, the cool-
ing store ring and the ion trap both provide precise mea-
surement of nuclear mass in modern age [2, 3, 4, 5, 6].
So far, approximately 3000-4000 nuclides are measured
while more than 9000 nuclides are believed to exist ac-
cording to theoretic model calculations [7] . Descriptions
and predictions of nuclear mass are of high theoretic
interests and of significance in the calculation of reac-
tion network in stellar environment including r-process
[8]. Many models have been developed for this pur-
pose. Roughly speaking, the models are classified in
three groups. i) The macro-micro models, including finite
range droplet model (FRDM) [9] and Weizscker-Skyrme
(WS) models [10, 11, 12], ii) The pure micro models
including Hartree-Fock-Bogoliubov (HFB) models [13],
the covariant density-functional theory (CDFT) [14], rel-
ativistic Hartree-Bogoliubov theory [15, 16] etc. and iii)
The local mass models which predict the atomic nucleus
mass through the relationship of the masses of neighbor-
ing nuclides by taking into account different physical con-
straints [17, 18], such as Garvey-Kelson (GK) relations
[19, 20] and the isobaric multiplet mass equation (IMME)
[21] etc. Meanwhile, many efforts have been taken to
evaluate and compare the predictive power of the models
[22]. With the applications of the modern machine learn-
ing or neural network techniques, the predictive power of
the models are further improved [23, 24, 25, 26, 27, 28].
Up to now, the residues of the nucleus mass reach the
level of about 200 keV or better.

Among the macro-micro models, the liquid-drop (LD)
model is one of the oldest nuclear theories. Von
Weizsaecker first proposed it [29] in 1935, and it was gen-
eralized in 1936 by Bethe and Bacher [30]. This spheri-
cal LD model has reproduced with a reasonable accuracy
all measured at that time atomic masses. Four years
later, Meitner and Frisch [31] have added deformation
degrees of freedom to the LD model to explain the fis-
sion phenomenon discovered by Hahn and Strassmann
when bombarding the metallic uranium with neutrons
[32]. Also in 1939, Bohr and Wheeler proposed this new
phenomenon’s first theory by expanding the deformed
nuclear liquid drop surface in a series of Legendre poly-
nomials [33].

A modern version of the LD model was proposed in
1966 by Myers and Świa̧tecki [34]. They have shown that
the LD energy enriched by the shell and pairing effects

can describe well the binding energies and quadrupole
moments of known nuclei and gives a reasonable descrip-
tion of the fission-barrier height of heavy nuclei (see also
[35]). Unfortunately, neither the Myers and Świa̧tecki
LD formula nor its refined version called the droplet
model could adequately reproduce the barrier heights of
medium-heavy and lighter nuclei [36]. In addition, it was
shown by von Groote and Hilf [37] that a further cor-
rection to the LD model, namely the curvature term, did
not change much in this respect. Due to these results fur-
ther development of the nuclear LD model was stopped
in practice for more than three decades. Other much
more complicated models like the droplet, Yukawa-folded
(YF), Yukawa-plus-Exponential (YpE), or Finite-Range
Droplet Models (FRDM) have been used to obtain within
the so-called macro-micro approximation [34] of the bind-
ing energies and the fission barrier heights (for overview
look, e.g., Ref. [38]). A more detailed historical review of
the LD models can be found, e.g., in Ref. [39].

Twenty years ago, it was shown in Ref. [40] that the
original model of Myers and Świa̧tecki with an addi-
tional term containing the curvature energy can simulta-
neously describe the experimental binding energies of all
known at that time isotopes as well as the fission barrier
heights. One has to stress that this Lublin-Strasbourg-
Drop (LSD) model has reproduced the data with better
or comparable accuracy than any other more advanced
theories containing a larger number of adjustable param-
eters (e.g., Refs.[9, 41]). In the following years, some
other parametrizations of the nuclear liquid-drop formula
were studied (see, e.g., [42, 43, 44, 45, 46]). Unfortu-
nately, the fission-barrier heights estimated using these
models are far from the experimental or estimated ones
[54].

In the present paper, we follow the idea of Å. Bohr
and B. Mottelsson [47] and Refs. [44, 45, 46] to use the
quadratic in isospin (T = |N − Z|/2) dependence of the
nuclear part of the binding energy in the LD formula. We
allow here, like in Ref. [45], for a different isospin-square
dependence of the volume and surface terms. In addi-
tion, the Coulomb exchange energy [48, 29] is taken into
account in the present mass formula. Such an extension
concerning version (i) of the Moretto et al. LD model [46]
allows to reproduce much better the experimental masses
from the last mass-table [55]. Similar to what was done
in Refs. [41, 40, 46], we have added to the LD energy the
microscopic energy correction evaluated by Möller et al.
[56] when fitting the LD parameters to the experimen-
tal masses. One has to stress that the isospin-square LD
model of Duflo and Zuker [44, 45] was later successfully
used in several applications (see, e.g., Refs. [57, 58, 59].
That is why we have decided to develop a modern version
of the iso-scalar LD model with the parameters adjusted
to the atomic masses known at present [55].
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2 Theoretical model

A typical nuclear LD formula consists of volume, surface,
and Coulomb energy terms:

ELD = Evol + EsurBsur(def) + ECoulBCoul(def) . (1)

Only the first term is deformation-independent since one
assumes that the volume of the nucleus is conserved,
while the other terms change with deformation. One has
to evaluate their variance assuming some parametriza-
tion of the shape of the deformed nuclei. The geometri-
cal, deformation-dependent factors Bsur and BCoul have
to be evaluated for a given shape parametrization of the
deformed nucleus (see, e.g., [49]).

We assume the following iso-scalar liquid-drop (ISLD)
formula for the energy of a spherical nucleus (see also
Ref. [46]):

EISLD(Z,A; sph) = −avolA
(

1− 4κvol
T (T + 1)

A2

)
+asurA

2/3

(
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)
+
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e2
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(2)
were, Z and A are a nucleus’s charge and mass numbers,
and e2 = 1.43996518 MeV·fm is the elementary charge
square. Here, the volume and the surface part of the
binding energies are dependent on the expectation value
of the isospin square operator T (T +1), which is equal to
T = |Tz| = |N − Z|/2, where N = A− Z is the neutron
number. It is easy to show that

4T (T + 1) = |N − Z|(|N − Z|+ 2)

while in a typical LD model, the term |N−Z|2 is present.
The odd-even energy Eodd is assumed in the following
form:

Eodd(Z,A) =


D/Z1/3 for Z odd ,
D/N1/3 for N odd ,
D/Z1/3 +D/N1/3 for Z and N odd ,
0 for Z and N even .

(3)
The last term in Eq. (2) describes the Coulomb exchange
energy [29, 48].

Note that the linear in isospin term in the ISLD
model (2) corresponds to the Wigner (or congruence)
energy present in typical LD-like models (refer to, e.g.,
[34, 41]). In addition, in the ISLD model, the deforma-
tion dependence of this linear in |N − Z| is well defined,

whereas, in Ref. [41], one has to add an additional phe-
nomenological deformation dependence in order to ob-
tain a doubling of the congruence at the scission point,
when two fission fragment nuclei are born. The only
free, i.e., adjustable, parameters of the ISLD model are:
avol, κvol, asur, κsur, r0, and D.

The following equation gives the mass of an atomic
nucleus in the ground state (g.s.):

Mth(Z,A; g.s.) = ZMH +N Mn + EISLD(sph)
+Emic(g.s.)− 0.00001433Z2.39 ,

(4)
where MH=7.289034 MeV and Mn=8.071431 MeV are
the hydrogen and neutron masses measured with respect
to the mass unit. The last term approximates the shell
energy of electrons.
The microscopic energy correction Emic originates from
the shell, pairing, and deformation effects:

Emic(g.s.) = Eshell(g.s.) + Epair(g.s.) + Emac(g.s.) (5)

and it is equal to the difference between the ground-state
energy of the nucleus and the spherical macroscopic en-
ergy. The ground state microscopic energy corrections,
take from the tables [56], were evaluated using the FRDM
macroscopic deformation energy, the Yukawa-folded sin-
gle particle potential, and the monopole pairing force.

Using the above microscopic energy correction from
the tables [56], we make an approximation. Namely, we
assume that the stiffness of the macroscopic deforma-
tion energy evaluated within the FRDM is close the that
obtained using the ISLD model. A detailed calculation
shows that the above approximation may lead to around
50 keV inaccuracy of our mass estimates, which is about
ten times smaller than the r.m.s. deviation of the fitted
masses shown in Tab. 2. In adition, a similar way of
evaluating the nuclear binding energies was also used in
Refs. [41, 40, 46].

The Fourier-over-Spheroid (FoS) shape parametriza-
tion [50, 51] was used to describe the shape of fissioning
nuclei

ρ2s(z) =
R2

0

c
f

(
z − zsh
z0

)
. (6)

where the function f(u) with u ∈ [−1, 1] is defined as
follows:

f(u) = 1−u2−
n∑

k=1

{
a2k cos(

2k − 1

2
πu) + a2k+1 sin(kπu)

}
(7)

Here ρs(z) is the distance of a surface point to the z-
axis and z0 = cR0, with R0 being the sphere’s radius,
is the half-length of the deformed nucleus. The first two
terms in f(u) describe a spheroid, while the others give
the deviation of the nucleus surface from the spheroidal
form. The shift parameter zsh = −3/(4π) z0(a3 − a5/2 +
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. . .) ensures that the origin of the coordinate system is
located at the center of mass of the nucleus. The volume
conservation condition implies a2 = a4/3−a6/5+. . .. The
expansion coefficients ai are treated as the deformation
parameters. The parameter c determines the elongation
of the nucleus, keeping its volume fixed, while a3 and a4
are, respectively, the deformation parameters essentially
responsible for the reflection asymmetry and the neck
formation of the deformed shape.

The FoS parametrization reproduces nuclear shapes
very close to the optimal shapes obtained by the Strutin-
sky variational procedure [52] and allows to evaluate pre-
cisely the liquid drop energy at the saddle point. Know-
ing this energy, one can estimate the fission barrier height
(Vsadd) with the help of the Myers and Świa̧tecki topo-
graphical theorem [41]

Vsadd = Mmac(sadd)−Mexp(g.s.) , (8)

where Mmac(sadd) is the macroscopic mass at the sad-
dle point and Mexp(g.s.) is the ground-state experimental

mass. The argument of Świa̧tecki in favor of Eq. (8) was
that the shell, or better to say microscopic energy cor-
rections at the saddle-point, are small as the fissioning
system, tries to avoid hills and dales on its way to fis-
sion. Of course, such argumentation is only valid when
one discusses the energy of the highest saddle point, not
the deformation of the nucleus at the saddle point. It
was shown in Ref. [53] that the above rough approxima-
tion reproduces fairly well the experimental fission bar-
rier heights.

3 Nuclear masses in different
macro-micro models

In the last issue of the atomics mass table [55], there
are 2259 measured and 906 estimated masses of isotopes
with Z,N ≥ 20 having an experimental error smaller
than 1.5 MeV. All these masses are taken to find the
best set of six adjustable parameters in the marcroscopic
part of our ISLD model (2). The mean square deviation
of theoretical estimates and the experimental masses is
minimized to obtain the best set of parameters. The mi-
croscopic energy Emicr from the Möller et al. mass-table
[56] were used when evaluating the masses of isotopes us-
ing Eq. (4). Two parameter sets are found: one (a) cor-
responding to 2259 measured masses and the second one
(b) obtained using 3165 measured and estimated masses
denoted by the hash sign in the mass-table [55]. The
r.m.s. deviation, which is a measure of the fit quality, is
taken in the following form:

σ =
1

n

n∑
i=1

(Mth −Mexp)2 , (9)

where i runs over all isotopes taken into account. We
have also evaluated σ for three traditional models:
Thomas-Fermi (TF) of Myers and Świa̧tecki [41], LSD
of Pomorski and Dudek [40], FRDM of Möller et al. [56].
The results are presented in Table I.

It is seen that the ISLD model with only six adjustable
parameters fitted to the experimental data for 2259 iso-
topes (a) reproduces the isotope masses with even better
quality than the FRDM from which the microscopic en-
ergy corrections are taken. Of course, the r.m.s. devia-
tion of the theoretical and measured masses grows when
one makes the fit to all 3165 experimental and estimated
masses. So, an additional fit (b) of the ISLD parameters
was performed when all 3165 isotope masses were consid-
ered. Both sets (a) and (b) of the ISLD parameters are
listed in Table II. Surprisingly, the 28-year-old Thomas-
Fermi model predicts these 906 additional masses better
than the FRDM. Also, the LSD model developed in 2003
describes both experimental data and all experimental
and estimated data very well, proving its good predictive
power. The last row in Table I shows the number of ad-
justable parameters of each model. The Thomas-Fermi
model [41] has 8 free parameters plus four additional pa-
rameters for the congruence (Wigner) and odd-even en-
ergy taken Ref. [9]. Also, the Lublin-Strasbourg Drop
model is based on the congruence and odd-even energy
(4 parameters) developed in Ref. [9] and has eight ad-
justable constants. The FRDM has nine plus four fitted
parameters corresponding the the macroscopic part of
energy, while the present ISML model is based on six
adjustable parameters only.

The deviations between the estimated and the exper-
imental (squares) and the estimates (circles) masses are
shown in Fig. 1 for the ISLD parameter set (a) (top)
and (b) (bottom). It is seen that significant discrep-
ancies appear for neutron-rich or proton-rich nuclei and
superheavy nuclei, where the majority of masses are es-
timated (circles). In addition, some discrepancies origi-
nating probably from poorly reproduced shell effects are
visible. The largest ones are in the vicinity of Z=20 and
28 magic numbers and around 94Zr.

A question appears, which set of the ISLD parame-
ters should be used: the one fitted to the experimental
masses only (a) or adjusted to all experimental and esti-
mated masses (b)? One has to note that more than half
of the isotopic masses of heavy nuclei with mass-number
A ≥ 220 listed in the mass table [55] corresponds to the
estimated, not the measured data. In addition, the pure
experimental masses are only less than 10% of the super-
heavy nuclei (SHN) data with Z ≥ 104. So, the set (b)
of the ISLD parameters is recommended when describ-
ing the properties of the heaviest nuclei. In the following
section, we shall use and refer to the set (b), and we will
call it simply the ISLD set of parameters.
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Table 1: Root mean square deviations (in MeV) of the experimental masses [55] and the theoretical ones evaluated in
different models.

Number of nuclei TF LSD FRDM ISLD(a) ISLD(b)

Exp. 2259 0.669 0.523 0.536 0.517 0.620

Exp.+est. 3165 0.874 0.817 0.956 0.917 0.745

No. adj. param. 8 + 4 8 + 4 9 + 4 6 6

Table 2: The parameter set of the ISLD model (Eq. 2)
fitted to the experimental (a) and experimental plus es-
timated (b) atomic masses.

Parameter Units ISLD (a) ISLD (b)

avol MeV -15.381912 -15.499610

κvol - 1.87161 1.88029

asur MeV 17.27931 17.64004

κsur - 2.3022 2.2727

r0 fm 1.229286 1.214608

D MeV 4.305 4.234

One has to mention here that we have also performed
mass fits by using a similar as the LD formula (2) but
with the curvature term proportional to A1/3 and with
the Coulomb redistribution energy (∼ Z2/A). However,
adding such two terms to the ISLD formula did not
change significantly the r.m.s. deviation from the data,
so, finally, they are not considered in our model.

It is well known that the nuclear masses predictions for
nuclei close to the β-stability line obtained within differ-
ent macroscopic models are close to each other. Signif-
icant differences between the models may appear when
one goes toward the proton or neutron drip lines. This
effect is illustrated in Fig. 2, where the differences be-
tween the ISLD(b) and LSD mass estimates are shown
as a function of neutron (N) and proton (Z) numbers.
It is seen that the differences do not exceed the range (-
0.5,+0.5) MeV for isotopes with A ≤ 220 laying between
the two-proton drip and β-stability lines. Also, both es-
timates are close to each other for neutron reach isotopes
close to the β-stability line. In the region of superheavy
nuclei and for isotopes close to the two-neutron drip line,
the ISLD masses are even 1.5 MeV larger than the LSD
ones. Such differences in the mass estimates may be sig-
nificant for predicting the astrophysical r-process or the
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Fig. 1: Deviation of the atomic mass estimates obtained using
the ISLD(a) (top) and ISLD(b) (bottom) from experimental
data (squares). Circles mark the deviations from the esti-
mated data.
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Fig. 2: Difference of the atomic mass estimates obtained using
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stability and decays of the SHN.
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Fig. 3: Macroscopic energy surfaces of 250Cf on the (c, a4) plane (top) and around the scission configuration (bottom) are
evaluated using the LSD (l.h.s) c and ISLD(b) (r.h.s.) formulae. Here c is the elongation of the nucleus, a4 is related to the
neck size, and Ah is the heavy fission fragment mass number [51].

4 Potential energy surfaces and
fission barrier heights

The LSD and ISLD macroscopic energy surfaces of 250Cf
are compared in Fig. 3. We have used here the FoS
shape parametrization [51]. It was also assumed that the
macroscopic energy of a spherical nucleus (c = 1, a4 = 0)
is zero. It is seen that the surfaces obtained in both mod-
els are close to each other, and only tiny differences can
be noticed. Namely, the ISLD fission valley (top row) is
slightly deeper and corresponds to more elongated shapes
than the LSD one. The exit of the LSD valley around
the scission configuration (bottom raw) is located at the
elongation c = 2.62. It is lying around 4 MeV above the
ISLD exit, which appears at c = 2.70. Such differences in
energy and elongation of the nucleus in the macroscopic
scission point may have some influence on the total ki-
netic energy (TKE) of the fission fragments. On the other
hand, the stiffnesses of LSD and ISLD potentials with re-
spect to the fission fragment mass asymmetry (Ah) (see
the maps in the bottom raw) are very close to each other.
The saddle points in both (c, a4) maps correspond to al-
most the same energy (Esadd ≈ 1.3 MeV and are located
around the deformation c ≈ 1.35 and a4 ≈ 0.06.

Such macroscopic saddle-point energies will be used in

the following to estimate the fission barrier heights of the
actinide nuclei by the topographical theorem of Myers
and Świa̧tecki (8).

The fission barrier heights estimated using Eq. (8) and
the ISLD (a) (crosses) and (b) (circles) and the LSD
(open circles) formulas are compared in Fig. 4 with the
experimental data taken from Refs. [60] (triangles) and
[61] (stars). In addition, the theoretical estimates of the
highest fission barrier done in Ref. [62] are marked by
squares. The experimental, or better to say empirical,
fission barrier heights come mainly from analysis of the
fission cross-section energy dependence and fissionabil-
ity of nuclei. They are supplemented by data obtained
from analysis of the excitation functions of spontaneously
fissioning isomers and the group of strong resonances in
the sub-barrier fission cross-section [60, 61]. The theoret-
ical barrier heights tabulated in Ref. [62] were evaluated
within the 7D macro-micro model with the YpE macro-
scopic energy part and the microscopic energy evaluated
using the Woods-Saxon (WS) single-particle potential.

As one can see, the fission barrier heights obtained us-
ing the Myers and Świa̧tecki topographical theorem and
the LSD and ISLD models underestimate, in most cases,
the experimental barrier heights while those of Ref. [62]
are, as a rule, larger than the experimental values. The
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are compared with the empirical/experimental data taken
from Ref. [60] (triangles) and [61] (stars) and with the theoret-
ical values (squares) obtained within the macro-micro model
in Ref. [62].

ISLD barriers obtained with the set (b) parameters are
very close to the LSD ones, while those computed with
the set (a) are, on average, by 1 MeV smaller. One can
expect that the fission barriers evaluated in a similar as
in Ref. [62] way, but with the ISLD macroscopic part of
the energy will be closer to the data as the topographical
theorem estimates the barrier heights from below [41].

5 Conclusions

We have shown that the new liquid drop mass formula
with the charge asymmetry term proportional to the
isospin square (ISLD) describes the presently known ex-
perimental and estimated from systematic atomic masses
well. One mast stress that the ISLD formula for the
macroscopic energy contains only six adjustable param-
eters. The other models contain more free parameters,
e.g., the twenty-one years old LSD mass formula [40],
which reproduces the binding energies even better than
the FRDM theory [56], possesses eight directly fitted pa-
rameters and four others (in the congruence/Wigner and
odd-even terms) taken from the adjustments made in
Ref. [9]. In this place, it is good to remember that micro-
scopic models, typically having up to 14 interaction pa-
rameters, can reproduce 2149 experimental masses with
the r.m.s. deviation equal to 0.798 MeV [63].

It was found that all experimentally estimated masses
of superheavy nuclei with a neutron number larger than
160 have up to 3 MeV larger masses than the predicted
ones. What is the origin of these discrepancies: inaccura-
cies in evaluating the microscopic energy, wrong asymp-
totic behavior of our macroscopic models, or inaccurate
evaluation of the atomic masses from the systematics?
More detailed calculations to answer this question are
necessary.

It was also shown that both ISLD (b) and LSD mod-
els describe well the fission barrier heights of the heavy
nuclei. The ISLD model predicts slightly larger atomic
masses than the LSD one in the superheavy region of
nuclei and for neutron-rich isotopes close to the neutron
drip line. This difference in the mass estimates could
be significant for SHN physics, and it can influence the
nuclear r-process probabilities, which is very important
in astrophysical theories. Also, the ISLD model predicts
a more elongated shape of fissioning nuclei at scission
configuration than the LSD formula. This effect can in-
fluence estimates of the fission fragment TKE and their
charge equilibration (refer to Ref. [64]).

We plan to perform extended dynamical calculations
like those made in Refs. [51, 64, 65, 66, 67] but the
use of the new ISLD formula when evaluating the
potential energy surfaces of fissioning nuclei. The
well-defined deformation dependence of the macroscopic
energy term linear in |N − Z| may also influence the
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isotopic yields of the fission fragments (refer to Ref. [64]).
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[9] P. Möller, J. R. Nix, W. D. Myers, W. J. Świa̧tecki,
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