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This study explores the phenomenon of shape coexistence in nuclei around 172Hg, with a focus on the iso-
topes 170Pt, 172Hg, and 174Pb, as well as the 170Pt to 180Pt isotopic chain. Utilizing a macroscopic-microscopic
approach that incorporates the Lublin-Strasbourg Drop model combined with a Yukawa-Folded potential and
pairing corrections, we analyze the potential energy surfaces (PES) to understand the impact of pairing interac-
tion.

For170Pt, the PES shows a prolate ground-state, with additional triaxial and oblate shape isomers. In 172Hg,
the ground-state deformation transitions from triaxial to oblate with increasing pairing interaction, demonstrat-
ing its nearly γ-unstable nature. Three shape isomers (prolate, triaxial, and oblate) are observed, with increasing
pairing strength leading to the disappearance of the triaxial isomer. 174Pb exhibits a prolate ground-state that
becomes increasingly spherical with stronger pairing, and while shape isomers are present at lower pairing
strengths, robust shape coexistence is not observed. For realistic pairing interaction, the ground-state shapes
transition from prolate in 170Pt to a coexistence of γ-unstable and oblate shapes in 172Hg, ultimately approach-
ing spherical symmetry in 174Pb. The comparison between Exact and BCS pairing demonstrates that BCS
pairing tends to smooth out shape coexistence and reduce the depth of shape isomer, leading to less pronounced
deformation features.

The potential energy surfaces (PES) for even-even 170−180Pt isotopes reveal significant shape evolution. 170Pt
shows a prolate ground-state, while 172Pt exhibits triaxial and prolate shape coexistence. In 174Pt, the ground-
state is triaxial, coexisting with a prolate minimum. For 176Pt, a γ-unstable ground-state coexists with a prolate
minimum. By 178Pt and 180Pt, a dominant prolate minimum emerges. These results highlight the role of shape
coexistence and γ-instability in the evolution of nuclear structure, especially in the mid-shell region.

These findings highlight the importance of pairing interactions in nuclear deformation and shape coexistence,
providing insights into the structural evolution of mid-shell nuclei.
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I. INTRODUCTION1

The phenomenon of shape coexistence in atomic nuclei has2

garnered significant attention in the field of nuclear physics3

and has become a prominent topic in contemporary research.4

This phenomenon refers to the presence of multiple distinct5

shapes within a single nucleus, where states with similar en-6

ergies exhibit different deformations [1]. Understanding nu-7

clear shapes is crucial for revealing the internal structure and8

properties of nuclei, providing tools for predicting and ex-9

plaining nuclear behaviors, and advancing nuclear physics.10

The study of nuclear shapes can be traced back to Haruhiko11

Morinaga’s 1956 paper [2], which explained the properties12

of the first excited state and ground state of 16O, introduc-13

ing the concept of multi-nucleon cross-shell excitation to de-14

scribe deformation characteristics. Over the past five decades,15

shape coexistence has evolved from a rare phenomenon to16

a common feature observed in many nuclei, highlighting its17

significance in nuclear structure research [3]. Recent exper-18

imental studies have revealed significant evidence of shape19

coexistence phenomena in neutron-deficient isotopes of lead20

and mercury. For instance, the study [4] specifically focuses21

on the 188Hg isotope, where theoretical predictions suggest22

the presence of shape coexistence.23

∗ Supported by the National Natural Science Foundation of China
(No.12275115,12175097).
† Corresponding author, Xin Guan, guanxin@lnnu.edu.cn.

These findings have led to increased theoretical investi-24

gations into nuclear shape coexistence, utilizing advanced25

experimental techniques such as tagging techniques at the26

University of Jyväskylä, Coulomb-excitation experiments at27

CERN, and relativistic energy-fragmentation experiments at28

GSI [5]. These experiments underscore the importance of un-29

derstanding the mechanisms that govern nuclear shape evo-30

lution. Building upon these experimental insights, theoret-31

ical investigations have played a pivotal role in elucidating32

the complexities of shape coexistence [6–8]. Previous stud-33

ies have employed various theoretical frameworks, includ-34

ing macroscopic-microscopic approaches and self-consistent35

models, to perform comprehensive calculations of nuclear36

ground-state masses and deformations across a wide range37

of nuclei [3].38

Despite its success, the Bardeen-Cooper-Schrieffer (BCS)39

method [9] and the more refined Hartree-Fock-Bogolyubov40

(HFB) approach face limitations due to the small number41

of valence nucleons under the pairing correlation’s influ-42

ence [10–12]. These methods often fail to conserve particle43

numbers, leading to inaccuracies in describing higher-lying44

excited states [13]. Alternatives such as the shell model pro-45

vide successful descriptions but are limited by the combi-46

natorial growth of model space sizes, necessitating trunca-47

tion schemes for heavy nuclei and often being constrained by48

computational resources [14].49

The exact solution to the standard pairing problem, first ob-50

tained by Richardson and now referred to as the Richardson-51

Gaudin method, offers a promising approach for a micro-52
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scopic treatment of clustering in heavy nuclei [15–18]. This53

method is particularly suitable for handling the large model54

spaces and the pairing and shell effects necessary for ac-55

curately describing heavy nuclei [19–22]. In our previous56

work, the deformed mean-field plus pairing model within the57

Richardson-Gaudin method was used to explore the quan-58

tum phase transition around neutron number N ∼ 90 in59

the A ∼ 150 mass region [23]. The analysis demonstrated60

the critical behavior of the shape phase transition driven by61

the competition between deformation and pairing interac-62

tions. More recently, a new iterative algorithm has been de-63

veloped to find the exact solution to the standard pairing prob-64

lem within the Richardson-Gaudin method [24], which has65

shown excellent agreement with experimental data when ap-66

plied to actinide fission nuclei isotopes [25–27]. Recently,67

K. Pomorski et al., using the Lublin-Strasbourg Drop (LSD)68

with a Yukawa-Folded single-particle potential, plus the BCS69

pairing correction in a macroscopic-microscopic model, pro-70

vided the deformation potential energy surfaces of nuclei near71

Z = 82. This study investigated the shape coexistence phe-72

nomenon in even-even isotopes of Pt, Hg, and Pb [28].73

The aim of the current paper is to extend this line of in-74

quiry by presenting a systematic study of potential energy75

surfaces for even-even Pt, Hg, and Pb isotopes near Z = 82.76

Our investigation leverages recent advancements in shape77

parametrization and adopts a macroscopic-microscopic ap-78

proach, integrating the Lublin-Strasbourg Drop (LSD) model79

with a Yukawa-Folded single-particle potential. The analy-80

sis focuses on the impact of pairing interactions on the shape81

coexistence of the 170Pt, 172Hg, 174Pb nuclei, as well as the82

170−180Pt even-even isotopes.83

II. THEORETICAL FRAMEWORK AND NUMERICAL84

DETAILS85

A. Deformed mean-field plus standard pairing model86

The Hamiltonian of the deformed mean-field plus standard87

pairing model for either the proton or the neutron sector is88

given by89

Ĥ =

n∑
i=1

εin̂i −G
∑
ii′

S+
i S
−
i′ , (1)90

where the sums run over all given i-double degeneracy lev-91

els of total number n, G > 0 is the overall pairing interac-92

tion strength, {εi} are the single-particle energies obtained93

from mean-field, such as Hartree-Fock (HF), Woods-Saxon94

potential (WS), Yukawa-Folded (YF)single-particle potential,95

or Nilsson model. ni = a†i↑ai↑ + a†i↓ai↓ is the fermion96

number operator for the i-th double degeneracy level, and97

S+
i = a†i↑a

†
i↓ [S−i = (S+

i )† = ai↓ai↑] is the pair creation98

(annihilation) operator, The up and down arrows in these ex-99

pressions refer to time-reversed states.100

According to the Richardson-Gaudin method [15–18], the101

exact k-pair eigenstates of (1) with νi′ = 0 for even systems102

or νi′ = 1 for odd systems, in which i′ is the label of the dou-103

ble degeneracy level that is occupied by an unpaired single104

particle can be written as105

|k; ξ; νi′〉 = S+(x
(ξ)
1 )S+(x

(ξ)
2 ) · · ·S+(x

(ξ)
k )|νi′〉, (2)106

where |νi′〉 is the pairing vacuum state with the seniority νi′107

that satisfies S−i |νi′〉 = 0 and n̂i|νi′〉 = δii′νi|νi′〉 for all i.108

Here, ξ is an additional quantum number for distinguishing109

different eigenvectors with the same quantum number k and110

S+(x(ξ)µ ) =

n∑
i=1

1

x
(ξ)
µ − 2εi

S+
i , (3)111

in which the spectral parameters x(ξ)µ (µ = 1, 2, . . . , k) satisfy112

the following set of Bethe ansatz equations (BAEs):113

1 +G
∑
i

Ωi

x
(ξ)
µ − 2εi

− 2G

k∑
µ′=1(6=µ)

1

x
(ξ)
µ − x(ξ)µ′

= 0, (4)114

where the first sum runs over all i levels and Ωi = 1− δii′νi′ .115

For each solution, the corresponding eigenenergy is given by116

E
(ξ)
k =

k∑
µ=1

x(ξ)µ + νi′εi′ . (5)117

In general, according to the polynomial approach in118

Refs. [20–22], one can find solutions of Eq. (4) by solving119

the second-order Fuchsian equation [19] as120

A(x)P ′′(x) +B(x)P ′(x)− V (x)P (x) = 0, (6)121

where A(x) =
∏n
i=1(x

(ξ)
µ − 2εi) is an n-degree polynomial,122

B(x)/A(x) = −
n∑
i=1

Ωi

x
(ξ)
µ − 2εi

− 1

G
, (7)123

V (x) are called Van Vleck polynomials [19] of degree n− 1,124

which are determined according to Eq. (6). They are defined125

as126

V (x) =

n−1∑
i=0

bix
i. (8)127

The polynomials P (x) with zeros corresponding to the so-128

lutions of Eq. (4) is defined as129

P (x) =

k∏
i=1

(x− x(ξ)i ) =

k∑
i=0

aix
i, (9)130

where k is the number of pairs. bi and ai are the expansion131

coefficients to be determined instead of the Richardson vari-132

ables xi. Furthermore, if we set ak = 1 in P (x), the coef-133

ficient ak−1 then equals the negative sum of the P (x) zeros,134

ak−1 = −
∑k
i=1 x

(ξ)
i = −E(ξ)

k .135
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If the value of x approaches twice the single-particle en-136

ergy of a given level δ, i.e., x = 2εδ , one can rewrite Eq. (6)137

in doubly degenerate systems with Ωi = 1 as [20, 22]138

(
P ′(2εδ)

P (2εδ)

)2

− 1

G

(
P ′(2εδ)

P (2εδ)

)
=
∑
i6=δ

[(
P ′(2εδ)
P (2εδ)

)
−
(
P ′(2εi)
P (2εi)

)]
2εδ − 2εi

.(10)139

In Ref. [24], a new iterative algorithm is established for the140

exact solution of the standard pairing problem within the141

Richardson-Gaudin method using the polynomial approach142

in Eq. (10). It provides efficient and robust solutions for both143

spherical and deformed systems at a large scale. The key to144

its success is determining the initial guesses for the large-145

set nonlinear equations involved in a controllable and phys-146

ically motivated manner. Moreover, one reduces the large-147

dimensional problem to a one-dimensional Monte Carlo sam-148

pling procedure, which improves the algorithm’s efficiency149

and avoids the nonsolutions and numerical instabilities that150

persist in most existing approaches. Based on the new iter-151

ative algorithm, we applied the model to study the actinide152

nuclei isotopes, where an excellent agreement with experi-153

mental data was obtained [24–27].154

B. The Fourier shape parametrization155

Recent studies have demonstrated that the developed156

Fourier parametrization of deformed nuclear shapes is highly157

effective in capturing the essential features of nuclear shapes,158

particularly up to the scission configuration [28, 29]. Cur-159

rent research indicates that combining this innovative Fourier160

shape parametrization with the LSD + Yukawa-Folded161

macroscopic-microscopic potential-energy framework is ex-162

ceptionally efficient [26, 27, 30, 31]. This work primarily163

adopts the macroscopic-microscopic framework outlined in164

Refs. [26, 27], where the single-particle energies {εi} in the165

model Hamiltonian (1) are derived from the Yukawa-Folded166

potential.167

The nuclear surface is expanded in terms of a Fourier series168

of dimensionless coordinates as follows:169

ρ2s(z)

R2
0

=

∞∑
n=1

[
a2n cos

( (2n− 1)π

2

z − zsh
z0

)
170

+a2n+1 sin
(2nπ

2

z − zsh
z0

)]
, (11)171

where ρs(z) is the distance from a surface point to the sym-172

metry z-axis, and R0 = 1.2A1/3 fm is the radius of a corre-173

sponding spherical shape with the same volume. The shape’s174

extension along the symmetry axis is 2z0, with the left and175

right ends located at zmin = zsh − z0 and zmax = zsh + z0,176

respectively. The parameter z0 represents half the shape’s ex-177

tension along the symmetry axis and is determined by volume178

conservation, while zsh is set such that the center of mass of179

the nuclear shape is at the origin of the coordinate system.180

Based on the convergence properties discussed in Ref. [28],181

the first five terms a2, . . . , a6 are retained as a starting point,182

and the parameters an are transformed into deformation pa-183

rameters qn as follows:184

q2= a
(0)
2 /a2 − a2/a(0)2 ,185

q3= a3,186

q4= a4 +

√
(q2/9)2 + (a

(0)
4 )2,187

q5= a5 − (q2 − 2)a3/10,188

q6= a6 −
√

(q2/100)2 + (a
(0)
6 )2,189

(12)190

where a(0)n are the Fourier coefficients for the spherical191

shape. Higher-order coordinates q5 and q6 are generally set to192

zero within the accuracy of the current approach. The set of qi193

parameters has explicit physical significance in describing the194

shape of the fissioning nucleus: q2 denotes the elongation, q4195

represents the neck parameter, and q3 indicates the left-right196

asymmetry.197

Additionally, the non-axial deformation of nuclear shapes198

is described as follows, assuming that the surface cross-199

section at a given z-coordinate is elliptical with semi-axes200

a(z) and b(z):201

%2s(z, ϕ) = ρ2s(z)
1− η2

1 + η2 + 2η cos(2ϕ)
, (13)202

where η = b−a
b+a characterizes the non-axial deformation.203

Volume conservation requires that ρ2s(z) = a(z) + b(z), with204

the condition ab = ρ2s(z) ensuring volume conservation for205

non-axial deformations. The semi-axes are then given by:206

a(z) = ρs(z)

√
1− η
1 + η

, b(z) = ρs(z)

√
1 + η

1− η
, (14)207

This description of non-axial shapes using the parame-208

ters q2 and η is more general than the commonly used Bohr209

parametrization (β, γ). For spheroidal shapes, both descrip-210

tions are equivalent. However, as shown in Fig. 1, where211

the two parametrizations are compared, the periodicity of212

nuclear shapes by a 60◦ rotation angle is similar in both213

(q2, η) and (β, γ) planes. It is important to note that this214

regularity is disrupted when higher multipolarity deforma-215

tions qn (n > 2) are considered, making the (η, q2, q3, q4, q6)216

shape parametrization substantially more general than the 3-217

dimensional (ε2, ε4(γ), γ) parametrization used in Ref. [34,218

35]. The two parametrizations coincide only in the special219

case of spheroidal shapes.220

It is essential to stress that different points in the (β, γ)221

and (q2, η) planes can correspond to identical shapes when222

higher qn (n > 2) degrees of freedom are neglected, dif-223

fering only in the interchange of coordinate system axes.224

For example, the point (β = 0.4, γ = 0) corresponds to225

(q2 = 0.42, η = 0) in the new parametrization, representing226

the same shape as (β = 0.4, γ = 120◦), which corresponds227

to (q2 = −0.21, η = 0.16) in the new parametrization.228
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When analyzing potential energy landscapes that include229

triaxial degrees of freedom, it is crucial to avoid treating as230

distinct configurations points in the (q2, η) deformation plane231

that are merely rotational images of each other at γ = 60◦.232

In this study, the dynamic process of nuclear fission will233

be described in the three-dimensional deformation space234

(η, q2, q4) using the Fourier shape parametrization.235

236

237

Fig. 1. Relationsheep between the elongation parameter q2 and the238

nonaxiality parameter η [28, 29], and the traditional Bohr deforma-239

tion parameters β and γ is taken from [32, 33]240

C. The potential energy241

This study calculates the potential energy surfaces (PES)242

for the isotopes 170Pt, 172Hg, and 174Pb in a three-243

dimensional deformation space (η, q2, q4) and analyzes the244

impact of pairing interactions on the shape coexistence of245

these isotopes. The results were obtained over the following246

grid points in the deformation parameter space:247

η ∈ [0.00, 0.20] ∆η = 0.02

q2 ∈ [−0.60, 0.85] ∆q2 = 0.05

q4 ∈ [−0.30, 0.30] ∆q4 = 0.03,

(15)248

As indicated in the literature [28], the q3 degree of free-249

dom has no significant impact on the description of shape250

coexistence for the isotopes discussed in this paper. There-251

fore, in this study, q3 is set to 0, and for each point on252

the PES, q4 is minimized to find the energy extremum.253

The potential energy of the system is calculated within the254

macroscopic-microscopic approach in this work. The total255

energy Etotal(N,Z, qn) of a nucleus with a given deforma-256

tion is calculated as257

Etotal(N,Z, qn) = ELD(N,Z, qn) + EB(N,Z, qn),(16)258

where ELD(N,Z, qn) is the macroscopic term approximated259

by the standard liquid drop model with proton number Z260

and neutron number N [36]. In the current calculation for261

the potential-energy surface, we just consider the energy262

EB(N,Z, qn) related to the shape parameter {q2, q4}.263

EB(N,Z, qn) = Eshell(N,Z, qn) + Epair(N,Z, qn),(17)264

The microscopic term consists of the shell correc-265

tion energy E
ν(π)
shell(N,Z, {εi}, q2, q4) proposed by266

Strutinsky [37, 38] and the pairing interaction energy267

E
ν(π)
pair (N,Z, {εi}, q2, q4) calculated from Eq. (19). Here, ν268

(π) is the label of the neutron (proton) sector. In the current269

study, we consider 18 deformed harmonic-oscillator shells in270

YF single-particle potential to obtain single-particle levels271

for the microscopic calculations. For the pairing correction272

energy, we perform 29 single-particle levels around the273

neutron Fermi level and 22 single-particle levels around the274

proton Fermi level.275

To validate our results and further explore the efficacy of276

the exactly solvable pairing model, we also calculated the277

PES for the isotopes considered under the BCS approxima-278

tion. The pairing correction is determined as the difference279

between the BCS energy [9] and the single-particle energy280

sum and the average pairing energy [39].281

Epair = EBCS −
k∑
i=1

εi − Ẽpair, (18)282

In the BCS approximation the ground-state energy of a sys-283

tem with an even number of particles and a monopole pairing284

force is given by285

EBCS =

k∑
i=1

2εiv
2
k −G

(
k∑
i=1

uivi

)2

−G
k∑
i=1

v4i , (19)286

where the sums run over the pairs of single-particle states287

contained in the pairing window defined below. The coeffi-288

cients vi and ui =
√

1− v2i are the BCS occupation ampli-289

tudes.290

The average projected pairing energy, for a pairing window291

of width 2Ω, which is symmetric in energy with respect to the292

Fermi energy, is equal to293

Ẽpair =− 1

2
g̃∆̃2 +

1

2
g̃G∆̃ arctan

(
Ω

∆̃

)
− log

(
Ω

∆̃

)
∆̃

+
3

4
G

Ω/∆̃

1 +
(

Ω/∆̃
)2 / arctan

(
Ω

∆̃

)
− 1

4
G,

(20)294

Here g̃ is the average single-particle level density and ∆̃295

the average paring gap corresponding to a pairing strength G296

∆̃ = 2Ω exp

(
− 1

Gg̃

)
, (21)297
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Fig. 2. Potential energy surface of 170Pt projected onto the (q2, η) plane under different pairing interaction strengths Gν (MeV), while the
proton pairing interaction strength is fixed at Gπ = 0.100 MeV. The energy is minimized in the q4 direction and q3 is set to 0 and normalized
to zero energy at the ground-state value. The ground-state deformation is represented by a red dot.

D. Influence of Pairing Interactions on the Shape Coexistence298

of 170Pt, 172Hg and 174Pb Isotopes299

Figure 2 shows the PES of 170Pt projected onto the300

(q2, η) plane for different pairing interaction strengths301

Gν (MeV), while the proton pairing interaction strength is302

fixed at Gπ = 0.100 MeV. Gν and Gπ represent the neu-303

tron and proton pairing interaction strengths (MeV), respec-304

tively. The energy is minimized in the q4 direction and q3305

is set to 0 and normalized to zero energy at the ground-state306

value. The choice of Gν varying from 0.03 MeV to 0.145307

MeV, and Gπ = 0.100 MeV, is based on the fact that our308

calculations in next section, when employing Gν = 0.145309

MeV and Gπ = 0.100 MeV, closely matched the experimen-310

tal odd-even mass differences for the 171Pt to 180Pt isotopes.311

Therefore, this range was selected to study the effects of pair-312

ing strength variation on shape coexistence. The red lines313

represent the corresponding (β, γ) coordinates, with γ co-314

ordinates distributed within 0 ≤ γ ≤ 180◦. The β coordinate315

values are taken as 0.1, 0.2, . . ., etc.316

In Figures 2 (a)-(d), the potential energy surface (PES)317

of 170Pt is shown for different values of the neutron pair-318

ing interaction strength Gν , while the proton pairing inter-319

action strength is fixed at Gπ = 0.100 MeV. The values320

of Gν are as follows: 0.030 MeV, 0.070 MeV, 0.105 MeV,321

and 0.145 MeV. As shown, the ground-state of the 170Pt iso-322

tope is located at (q2 ≈ 0.150, η = 0), indicating a prolate323

shape for different pairing strengths. The other minimum at324

(q2 ≈ −0.150, η = 0.04, γ = 120◦) described in Figures 2 is325

simply the reflection of the ground state minimum.326

It is noteworthy to highlight the existence of two dis-327

tinct shape isomers in 170Pt for different pairing strengths.328

The first one is an oblate shape isomer located at (q2 =329

−0.400, η = 0), with an energy approximately 3.900 MeV330

above the ground-state. The second one is a triaxial shape331

isomer at (q2 ≈ 0.600, η ≈ 0.060 (γ ≈ 10◦)), positioned332

around 4.0 MeV above the ground-state. These isomers rep-333

resent local minima on the potential energy surface, separated334

from the ground-state by energy barriers, highlighting the335

complex deformation characteristics of the nucleus. with the336

increase pairing strength, both shape isomers become shal-337

lower. When the pairing strengthGν reaches 0.145, the oblate338

isomer disappears (see Fig. 2 (d) ).339

Depicted in Figures 3 (a)-(d), the PES for different pairing340

interaction strengths demonstrates the evolution of the triaxial341

minimum at (q2 = 0.150, η = 0.020) to the oblate minimum342

at (q2 = 0.100, η = 0.040) as the pairing interaction strength343

increases. The nucleus 172Hg is nearly γ-unstable, with the344

energy difference between different points in the ground-state345

valley not exceeding approximately 0.4 MeV. Additionally,346

three shape isomers are visible in the (a)-(d) maps: a prolate347

isomer at (q2 ≈ 0.600, η = 0), E ≈ 5.0 MeV; a triaxial iso-348

mer at (q2 ≈ 0.400, η = 0.100),E ≈ 4.0 MeV, and an oblate349

one at (q2 ≈ −0.45, η = 0), E ≈ 4.0 MeV. These local min-350

ima are separated by energy barriers of approximately 1 MeV351

in height. As the pairing strength increases, all the shape iso-352
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mers gradually become shallower, and by Gν = 0.145,MeV353

and Gπ = 0.100,MeV (Figure 3 (d)), the triaxial isomer at354

(q2 ≈ 0.400, η = 0.100) disappear.355

The PES of 174Pb, as presented in Figures 4 (a)-(d), reveals356

a prolate ground-state (q2 ≈ 0.150, η = 0) (in Fig. 4 (a)) tend357

to become spherical (in Fig. 4 (d))as the pairing interaction358

strength increases. Particularly interesting are the shape iso-359

mers observed here: a prolate shape at (q2 = 0.600, η =360

0, E ≈ 5.0,MeV) and a slightly triaxial oblate shape at361

(q2 = 0.450, η = 0.020, E ≈ 3.9,MeV) in Fig. 4 (a) and362

(b). As the pairing strength increases, both shape isomers363

gradually become shallower, and by Gν = 0.145,MeV and364

Gπ = 0.100,MeV (Figure 4 (d)), they almost disappear.365

Overall, regardless of the pairing strength, there is no indi-366

cation of robust shape coexistence in this nucleus.367

Figures 5 illustrate the PES projections of 170Pt, 172Hg,368

and 174Pb under realistic pairing interaction strengths, Gν =369

0.145 MeV andGπ = 0.100 MeV under both Exact and BCS370

pairing schemes.371

As shown in Figure 5, the ground state of 170Pt is prolate,372

located at (q2 = 0.15, η = 0) under both Exact and BCS373

pairing schemes. However, BCS pairing exhibits a shallower374

depth for the prolate minimum compared to Exact pairing,375

indicating a less pronounced prolate ground state. Further-376

more, a triaxial isomer appears located at (q2 ≈ 0.600, η ≈377

0.060 (γ ≈ 10◦)) under Exact pairing, whereas it is less dis-378

tinguishable in the BCS case.379

The ground state of 172Hg (see Fig. 5) is found at (q2 =380

0.10, η ≈ 0.04) as an oblate minimum, with another mini-381

mum at (q2 ≈ −0.100, η ≈ 0.02), which exhibits γ-unstable382

deformation. The PES of 172Hg provides an excellent ex-383

ample of a nearly γ-unstable nucleus. Under Exact pairing,384

this γ-unstable minimum is more symmetric, with clear re-385

flections around γ = 150◦, γ = 30◦, and γ = 90◦. Under386

BCS pairing, the γ-unstable features are less prominent, and387

the oblate minimum becomes more dominant. Additionally,388

two shape isomers are visible Under Exact pairing modle: a389

prolate isomer at (q2 ≈ 0.600, η = 0), E ≈ 4.6 MeV, and an390

oblate one at (q2 ≈ −0.45, η = 0), E ≈ 4.6 MeV. However,391

they are not distinguishable in the BCS case.392

As shown in Figures 5 (c), the ground state shape of 174Pb393

tends to be spherical. The PES under Exact pairing reveals a394

nearly spherical configuration with minor prolate and oblate395

shape isomers. In contrast, BCS pairing results in a more396

pronounced spherical minimum and diminishes the depth of397

shape isomers.398

In summary, as the number of protons increases, the ground399

state transitions from prolate for 170Pt to the coexistence of400

γ-unstable and oblate for 172Hg, eventually approaching a401

nearly spherical configuration for 174Pb. The comparison be-402

tween Exact and BCS pairing demonstrates that BCS pairing403

tends to smooth out shape coexistence and reduce the depth404

of shape isomer, leading to less pronounced deformation fea-405

tures.406

E. Shape coexistence analysis in the Pt isotope chain407

In this paper, we investigate the potential energy surfaces408

(PES) of the even-even 170−180Pt isotopes using the exactly409

solvable deformed mean-field plus pairing model. Our analy-410

sis provides a comprehensive examination of the shape coex-411

istence phenomena across these isotopes.412

The pairing interaction strength, denoted as G, serves as413

the sole adjustable parameter within our model. It is typi-414

cally determined either through empirical formulas or by fit-415

ting to experimental odd-even mass differences [40, 41]. In416

this study, we precisely determined Gν by fitting the exper-417

imental odd-even mass differences for the 171−180Pt isotope418

chain and Gπ by fitting the experimental odd-even mass dif-419

ferences for the 174Pt to 178Pb isotonic chain. The odd-even420

mass differences were computed using the following expres-421

sion:422

P (A) = Etotal (N + 1, Z)+Etotal (N − 1, Z)−2Etotal (N,Z) ,
(3.2)423

This quantity is highly sensitive to variations in the pair-424

ing interaction strength G [42], due to the pairing interac-425

tion between nucleons. As shown in Fig. 6, by employing426

Gν = 0.145 MeV and Gπ = 0.100 MeV, our calculations427

closely reproduced the experimental odd-even mass differ-428

ences for the 171−180Pt isotopes, yielding a root mean square429

deviation of σ = 0.465 MeV. Additionally, as display in430

Fig. 7 for the 174Pt to 178Pb isotonic chain, the calculations431

closely matched the experimental odd-even mass differences,432

with a root mean square deviation of σ = 1.192 MeV.433

σ =

√√√√ N∑
µ=1

(
PTheor.
µ − PExpt.

µ

)2
/N , (3.3)434

Here, PTheor.
µ and PExpt.

µ represent the theoretical and exper-435

imental values of the odd-even mass differences, respectively,436

and N denotes the total number of data points.437

��� ��� ��� ��� ��	 �	�
��

��

��

��

�

�

�

�

�

�

�

 E x p t .
 T h e o r .

Z = 7 8

P t

438

Fig. 6. Odd-even mass differences (in MeV) for Pt isotopes. "Expt."439

represents experimental values, and "Theor." represents theoretical440

values. Experimental data are from [42].441
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Fig. 3. Potential energy surface of 172Hg projected on the (q2, η) plane with variation of neutron pairing interaction strengths Gν (MeV),
while the proton pairing interaction strength is fixed at Gπ = 0.100 MeV. The energy is minimized in the q4 direction and q3 is set to 0
and normalized to zero energy at the ground-state value. The ground-state deformation is represented by a red dot, while the coexistence
minimum is indicated by a red cross.
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Fig. 4. Potential energy surface of 174Pb projected onto the (q2, η) plane under different pairing interaction strengths Gν (MeV), while the
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Fig. 5. Potential energy surfaces of 170Pt, 172Hg and 174Pb projected on the (q2, η) plane under both Exact and BCS pairing schemes, with
the energy minimized in the q4 direction, q3 set to 0 and normalized to zero energy at the ground-state value. The realistic pairing interaction
strengths Gν = 0.145,MeV and Gπ = 0.100 MeV are adopted.
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Fig. 7. Odd-even mass differences (in MeV) for the 174Pt to 178Pb443

isotonic chain. "Expt." represents experimental values, and "Theor."444

represents theoretical values. Experimental data are from [42].445

Next, we examine the PES of the 170−180Pt even-even446

isotopes under the determined pairing interaction strengths447

Gν = 0.145 MeV and Gπ = 0.100 MeV. Figure 8 shows448

the PES projected onto the (q2, η) plane. For the 170Pt,449

the ground-state exhibits a prolate deformation at (q2 =450

0.15, η = 0). In contrast, for 172Pt, a more deformed451

minimum emerges, leading to the coexistence of a triaxial452

shape (γ ≈ 30◦) and a nearly prolate-deformed minimum453

at (γ ≈ 120◦), indicative of γ-unstability due to the pres-454

ence of multiple low-energy configurations at different γ val-455

ues. The triaxial shape is even more pronounced in 174Pt,456

where the ground-state is triaxial with deformation param-457

eters (q2 = 0.020, η = 0.10, β ≈ 0.2, γ ≈ 90◦)) and458

coexisting a prolate minimum at (q2 = 0.15, η = 0). In459

176Pt a γ -unstable ground-state and a prolate minimum co-460

exist, but by 178Pt and 180Pt, a well-deformed prolate mini-461

mum quickly develops, becoming the most pronounced pro-462

late ground-state at the mid-shell.463

The findings from this work are broadly consistent with the464

results in Ref. [43], which studied 172−194Pt isotopic chain465

in the framework of the interacting boson model and self-466

consistent Hartree-Fock-Bogoliubov calculation using the467

Gogny-D1S interaction. Both studies identify the shape co-468

existence in the 172−176Pt region, with the γ-unstable minima469

and triaxial shapes in 174Pt. Additionally, both works show470

the dominance of prolate deformation in 178Pt and 180Pt, with471
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the prolate minimum becoming the most pronounced ground472

state at mid-shell.473

It is noteworthy that a triaxial shape isomer exists for474

170−174Pt, characterized by (q2 ≈ 0.600, η ≈ 0.060 (γ ≈475

10◦)), and positioned approximately 5.0MeV above the476

ground-state. However, this triaxial shape isomer vanishes477

for 176−180Pt.478

III. CONCLUSION479

In this study, we have systematically investigated the shape480

coexistence phenomenon in isotopes near the magic proton481

number Z = 82, focusing specifically on the nuclei 170Pt,482

172Hg, and 174Pb, as well as the Pt isotopic chain from 170Pt483

to 180Pt. Our analysis, using a macroscopic-microscopic ap-484

proach that combines the Lublin-Strasbourg Drop model with485

a Yukawa-Folded potential and pairing corrections, reveals486

significant insights into the impact of pairing interactions on487

nuclear shape evolution.488

The PES of 170Pt reveals a prolate ground state with ad-489

ditional triaxial and oblate shape isomers. Both shape iso-490

mers become progressively shallower with increasing neu-491

tron pairing strength (Gν), and the oblate isomer vanishes at492

Gν = 0.145 MeV, indicating a significant dependence of493

shape isomers on pairing strength. The ground-state defor-494

mation of 172Hg transitions from triaxial to oblate with in-495

creasing Gν , reflecting its nearly γ-unstable nature. Three496

shape isomers (prolate, triaxial, and oblate) are observed,497

with energy barriers separating these configurations. As Gν498

increases, the triaxial isomer disappears atGν = 0.145 MeV,499

demonstrating the impact of pairing interactions on shape sta-500

bility. 174Pb exhibits a prolate ground state that becomes in-501

creasingly spherical with stronger pairing interactions. While502

shape isomers are present at weaker pairing strengths, their503

prominence diminishes significantly, and robust shape coex-504

istence is not observed in this nucleus.505

For realistic pairing interaction, the ground-state shapes506

transition from prolate in 170Pt to a coexistence of γ-unstable507

and oblate shapes in 172Hg, ultimately approaching spheri-508

cal symmetry in 174Pb. This progression highlights the in-509

terplay between proton number and pairing interactions in510

shaping nuclear deformation. The comparison between Exact511

and BCS pairing for realistic 170Pt, 172Hg, and 174Pb demon-512

strates that BCS pairing tends to smooth out shape coexis-513

tence and reduce the depth of shape isomers, leading to less514

pronounced deformation features.515

These findings emphasize the critical role of pairing inter-516

actions in shaping nuclear deformation landscapes and shape517

coexistence, offering deeper insights into the structural evo-518

lution of nuclei near the mid-shell region. This study con-519

tributes valuable theoretical perspectives to the understand-520

ing of nuclear shape phenomena and the influence of pairing521

interactions on nuclear dynamics.522

Based on the analysis of the potential energy surfaces523

(PES) for the even-even 170−180Pt isotopes, the results show524

significant shape evolution across the isotopic chain. In the525

case of 170Pt, the ground-state exhibits a prolate deformation,526

with deformation parameters. However, for 172Pt, a more527

deformed minimum emerges, leading to the coexistence of528

a triaxial shape and a nearly prolate-deformed minimum at.529

The triaxial shape becomes even more pronounced in 174Pt,530

where the ground-state is triaxial with deformation param-531

eters, coexisting with a prolate minimum. For 176Pt, a γ-532

unstable ground-state coexists with a prolate minimum. By533

178Pt and 180Pt, a well-deformed prolate minimum develops534

rapidly, becoming the most pronounced prolate ground-state535

at mid-shell.536

These results highlight the complex shape evolution in the537

Pt isotopes, with shape coexistence and γ-unstability playing538

significant roles in the nuclear structure evolution, particu-539

larly around the mid-shell region where prolate deformation540

dominates.541
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Fig. 8. A potential energy surfaces of the 170−180Pt even-even isotopes chain, projected on the (q2, η) plane using the exact pairing model,
where the energy is minimized in the q4 direction with q3 set to 0, with neutron and proton pairing interaction strengths of Gν = 0.145 MeV,
Gπ = 0.100 MeV. The ground-state deformation is represented by a red dot, while the coexistence minimum is indicated by a red cross.
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