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An innovative parametrization of nuclear shapes, based on a Fourier expansion of the square distance
from the surface of the nucleus to the symmetry axis is introduced. Surface, curvature and Coulomb
energy coefficients of a charged liquid drop, that determine the semiclassical nuclear energy, are
evaluated within this shape parametrization, together with the wall-friction and the irrotational-flow
mass tensors. These transport coefficients are important ingredients of many nuclear models describing
nuclear structure and dynamics. A numerical code allowing for the determination of all these quantities
for a huge variety of nuclear shapes is made available to the interested user.
Program summary
Program title: inerfric
Program Files doi: http://dx.doi.org/10.17632/gtvbc8b7sw.1
Licensing provisions: GPLv3
Programming language: Fortran
Nature of problem: The inertia tensor evaluated in the hydrodynamical model using the Werner-
Wheeler approximation generalized to nonaxial shapes is evaluated, together with the friction tensor
using the wall formula, and the shape functions that define the liquid-drop energy in terms of surface,
curvature, Coulomb and congruence energy. For the description of the fission process, the mass ratio
of the nascent fission fragments and their centre-of-mass distance is also evaluated together with the
quadrupole moment and the moments of inertia for rotation of the deformed shape.
Solution method: All these quantities are evaluated in our new rapidly converging Fourier shape
parametrization, able to describe a huge variety of nuclear shapes, simply by reading in the (up to
7) shape parameters determining in an unambiguous way the nuclear deformation and corresponding
for the (4) principal parameters to the nuclear elongation, left-right asymmetry, non axiality and neck
degree of freedom, the remaining 3 allowing, if necessary, to optimize the evaluation of the asymmetry
and neck degrees of freedom.
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1. Introduction

to the symmetry axis (chosen here as the z-axis) is very rapidly
converging and easy to handle. In addition, it is able to overcome

An accurate description of nuclear shapes which involves as
few collective variables as ever possible is a very demanding task,
especially in connection with the fission process, which involves
an impressive variety of nuclear shapes. Several powerful shape
parametrizations have been developed in the past [1]. We will
use here a recently developed parametrization which allows to
cover a rich variety of shapes with four collective deformation
parameters only [2]. This parametrization based on a Fourier ex-
pansion of the square distance of any point on the nuclear surface

¥ This paper and its associated computer program are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655).
* Corresponding author.
E-mail address: Johann.Bartel@iphc.cnrs.fr (J. Bartel).

https://doi.org/10.1016/j.cpc.2019.03.010
0010-4655/© 2019 Elsevier B.V. All rights reserved.

some of the limitations encountered with previous prescriptions.
A detailed analysis of the deformation-energy landscapes, limited
to only 4 deformation parameters is thus presented in this work.

The investigations carried out in Refs. [2,3] demonstrate the
high performance of the here proposed approach and enables us
to study large amplitude collective phenomena in a rather accu-
rate way, often better as compared to those carried out with more
advanced models involving a much larger number of deforma-
tion parameters, which, to our understanding, seems to indicate
that our approach contains the essential physical ingredients. Our
approach can be implemented very easily into any extended dy-
namical calculations of nuclear potential-energy surfaces as well
as into the dynamical calculation related to the nuclear fission or
fusion process. In particular, one could have in mind the Langevin
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approach of dissipative dynamics, coupled with the evaporation
of light particles (see e.g. [4-6] and references therein).

Section 2 presents a brief summary of the Langevin approach
of dissipative dynamics and of all transport functions (frequently
called coefficients) entering the Langevin equation. In Section 3
we give detailed expressions for the liquid-drop shape-dependent
coefficients and some global macroscopic quantities character-
izing the nuclear mater distribution, like the density multipole
moments and the moments of inertia. Section 4 gives the ex-
pressions of the nuclear friction tensor and the irrotational-flow
mass tensor in our Fourier shape parametrization. At the end we
present in Section 5 the description of the computer code that
allows to evaluate the above transport coefficients and we give
a few typical examples with their results. A detailed derivation
of the velocity field of an irrotational flow is described in the
Appendix.

2. Langevin dissipative dynamics

Nuclear reactions like the fusion or the fission process are
very complex phenomena which are related to a large transfer of
nuclear mass as well as a substantial transfer of nuclear energy
from the collective to the single-particle degrees of freedom,
which can be considered, in such an approach, as a heat reservoir.
The derivative of the collective potential V(q) with respect to the
collective coordinate (here the deformation parameter) g; plays
the role of the driving force F(q). The collective kinetic energy
is a quadratic form built from the inertia tensor M; and the
collective velocities (g;) which are the time derivatives of the col-
lective coordinates describing the nuclear shape. The dissipation
of collective energy into intrinsic (single-particle) excitation is
described by the friction tensor y;;, and the fluctuations of the
collective coordinates which appear in such a statistical approach
by the diffusion tensor D,

In many applications, it is assumed that the distribution prob-
ability w(q, p, t) of finding a nucleus at a given point in the
collective phase-space built from the deformation parameters g;
and conjugate momenta p; is described by the Fokker-Planck
equation [7]:

vV Jw

ij

aq; ap; q,

d _
+ 'ZJ: 3_1), |:Zk: Yik Mkj1 P w] Z ij apl 8PJ

It has been shown (see e.g. [7]) that such a transport equation,
derived on the basis of statistical (stochastic) mechanics, is equiv-
alent to a Langevin equation with a normally distributed random
force. One can then determine the transport coefficients that
enter the Langevin equation governing the time evolution of the
nuclear system

da:
%Z ZMUPJ’

dp; dV 1 dM;
Do YK (2)
dt dg; 2 ik dg;
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Here 7" is the Langevin random force defined as

FUG.0 =) g@) ), (3)
J

where

D &8 =Dj (4)
k

and Ij(t) are Gaussian-distributed random numbers with vanish-
ing mean value (I(t)) and delta-correlated variance

(MO I(L) = 28;8(t —t'). ()

In the following section we are going to collect the expressions
that allow to evaluate, in a macroscopic approximation, all the
transport functions entering the Fokker-Planck (1) or Langevin
(2) equations.

3. The transport function in the Fourier shape parametriza-
tion

The deformation dependent transport functions, like the
nuclear collective potential-energy surface, collective inertia, fric-
tion and diffusion tensors, which enter the Langevin or Fokker-
Planck equations should be evaluated using a given shape
parametrization. In our present study we use the Fourier
parametrization of deformed shapes written in cylindrical coordi-
nates (p, ¢, z), a parametrization that is not only rapidly converg-
ing as was shown in Ref. [2], but it is also simple, analytical and
not closed, which means that its convergence can be tested (con-
trary e.g. to the famous Funny-Hills shape parametrization [8]).
To our opinion this is one of the best parametrizations which
can be used both in nuclear-structure and nuclear-dynamics
calculations.

The surface of an axially symmetric nucleus, or more precisely
the square distance of a surface point to the symmetry z-axis, can
be expanded in a Fourier series in the following way [2]:

pAu) [ ((Zn— 103 ) ) (Zmr )]
. yp COS | ————u ) + azppqSin | —u (6)
R ; 2 + 2

where Ry is the radius of a spherical nucleus having the same
volume as the deformed one and u = (z — z,)/29, where 2z, is
the length of the nucleus and zg, is a parameter that guarantees
that the nuclear centre of mass is located at the origin of the
coordinate system.

More general nonaxial shapes can be obtained by assuming
that any cross-section of the nucleus perpendicular to the z-axis
has the form of an ellipsoid as shown in Fig. 1:

~2 - T’Z

p2(2)f(9) T 7T 2n o)
Here the non-axiality parameter 7 is a function of the coordinate
z and defined by the ellipse half-axis a(z) and b(z):

)= 29D ke a2)-bz) = p22). (@)

b(z) + a(z2)
For the sake of simplicity, we will assume in the following that n
is a constant.
The nucleus being considered as an essentially incompressible
fluid, the volume-conservation condition requires that

(7)

Pz, 9) p2u(z)]

20+Zsh 2 p(2) A
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what leads to the relation:
o0
Yy TR (10)
p— 2n—1 329

The above equation allows to evaluate the length of the deformed
nucleus. The condition that the centre of mass should be located
at the origin of the coordinate system leads to the following
expression for zgy,:

hzZnRoZ

a
2n+1 ) (11)
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Fig. 1. (Colour online) Schematic visualization, in cylindrical coordinates, of the
parameters entering the definition of the profile function defined by Eq. (7).

Using Eq. (7) and the above relations one can evaluate all trans-

port functions entering the Langevin or Fokker-Planck equations.
One usually assumes that the Einstein relation

'D,‘j = )/g T ’ (12)

between the diffusion and the friction tensor holds, where T is the
nuclear temperature. At larger temperatures the friction tensor is
well approximated by the wall-formula [9]

S ”“‘f dz/ﬂdqp\/

dps dpsz

dg; g

(13)
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frequently used in dlSSlpatlve-dynamlcs calculations related to
the fission of hot nuclei. The irrotational flow inertia-tensor in
the Werner-Wheeler approximation [10] can be written as

Mij = pof[(A”A”+A“’A“’) Pz, ) + AL Af ] dr (14)

where the A’ are the expansion coefficients of the velocity field
in v direction (v = z, p, ¢) which are derived in the Appendix.

The potential energy of a deformed (deformation parameters
G), hot (temperature T) and rotating (angular momentum L) nu-
cleus is defined by the difference of the Helmholtz free energies
F between deformed and spherical nucleus:

where the free energy is given by
F(G, T,L) = E(q, L) —a(q@)T (16)

with a(q) the deformation dependent level-density parameter
(see e.g. [11]).

In the approximation where the nucleus can be considered as
a charged liquid drop, the nuclear energy is given as the sum of
volume, surface, curvature, Coulomb, and rotational energies:

E(ﬁ, L) = Evo + Esurf(a ) + Ecur(a ) + ECoul(a ) + Erot(a ) L) ) (17)

The first term, the volume term, in Eq. (17) is deformation inde-
pendent (the nucleus is considered to be incompressible), while
the variation with deformation of all the other energy contribu-
tions can be described by the following dimensionless functions:

Baui(G) = Esuri(q )/Esur(sph) ,
Beur(G) = Ecur(G)/Ecur(sph) , (18)
Beou(§) = Ecou(q)/Ecou(sph) .

Taking derivatives of the profile function (7), one is able to de-
termine the shape functions corresponding to the surface energy

2w 2 aps 2
Bsurf = 47{R2 /;zodzf dy Ps Hz,9)+ ) + (Ps E) ,
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to the curvature energy
) ap 17
Ps Ps
B _
ar 87!R0 z,,.,,, / I:p5+ps(3z)+(3<p)i|

aps 9ps 32/05 _ 3
s

and to the Coulomb energy
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where py is to be understood as a function of z’ and ¢'.

One finally needs to take the rotational degree of freedom into
account. In our semiclassical approach, the rotational energy is
given by

LZ
Eot(d)= -—=~ , (22)
rot\q 27@)
where L is the angular momentum and 7 the moment of inertia
with respect to the rotation axis. The relative change of the
rotational energy with deformation is then simply

E(q) _ J(sph)
E(sph) — J(q)

where 7(sph) is the moment of inertia of the spherical nucleus.
For a rotation around the x-axis, the parameter B, is given, in
the rigid-body approximation, by the following expression:

Brot = ’ (23)

327K
15

rot =

Zmax 2 —1
[f dz | do[22°5] +p] sin’(w]] :
Zmin 0
(24)

All above functions entering the Langevin equation (2) and the
macroscopic part of the collective potential (15) can be evalu-
ated using the numerical program described in the next section
which extensively uses the Fourier parametrization (7) of nuclear
shapes.

4. Description of the numerical program

The computer code inerfric.f attached to the present paper is
written according to the FORTRAN 90 and FORTRAN 95 standards.
The module “constants” contains all physical and mathematical
parameters used in the computer code. The parameters ‘ngl’,
‘ng2’, ‘ng3’ denote the order of the Gauss-Legendre integration
quadratures (with ng1 s ng3 to avoid divergencies in the calcu-
lation of the Coulomb energy), while ‘no’ gives the number of
mesh points used in the rectangular (Romberg) integrations. All
these parameters can, of course, be freely adjusted by the user.
The values proposed in the code have, however, been tested and
turned out to be sufficient to obtain the numerical results with
the chosen accuracy (we have e.g. required the LDM energies to
be determined with an accuracy better than 0.1 MeV). If desired
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by the user, he can easily chose to improve that accuracy. The di-
mensionality ‘ndim’ of the {g;} deformation space is originally set
to ‘ndim =6, but can be extended by the user up to ‘ndim=9'.
Single-precision words are used in the program, but it is strongly
recommended to compile it with the autodouble option in order
to obtain the necessary precision of the transport coefficients
needed in nuclear-physics calculations. Within the Linux system
that would be:

gfortran -fdefault-real-8 -o inerfric inerfric.f
The command

Jinerfric < inerfric.inp > inerfric.out&
would then execute the program taking the input data from the
inerfric.inp file and storing the results into the inerfric.out file.

The code allows to evaluate the deformations dependent
liquid-drop surface (BS), (first order) curvature (BK), Coulomb
(BC) and rotational energy coefficients (Bx,Bz) for rotation around
the x- and z-axes, respectively. In addition it gives the defor-
mation dependence of the Wigner (congruence) energy (BW)
according to Ref. [12], fission fragment mass ratio (BF) as well
as the relative distance (R12) between the fragments, the length
of nucleus (c) and the neck radius (Rn) in units of the spherical
radius (Ro) and the quadrupole moment of the nucleus in R? units
times the total mass or total charge of the nucleus. All above
deformation dependent functions are evaluated in the subroutine
“fes™.

The inertia tensor in the irrotational flow approximation and
the wall friction tensor are evaluated as well in the subroutine
“tcoef . These tensors Tj being symmetric, only the upper part
(j = i) needs to be evaluated in the four dimensional deformation-
parameter space composed of non-axiality (g1 = 7), elongation
(q2), left-right asymmetry (q3) and neck (q4) degrees of freedom.
One defines new collective coordinates

0 =d/a, — ay/a}) G =a,

U = a5+ /(@/9P +@'R) , s = as — (g — 2)as/10 ,
a6 = a5 — y/((q2/100) + (a")?) ,

(25)

where the

32
a? = (-1 and

©
TT T a® =0  (26)

are the Fourier components of the spherical shape.

The new parameters ¢; are chosen in such a way that the
situations where all g; vanish correspond to the spherical shape
of the nucleus. Oblate shapes are obtained for g, < 0 and prolate
ones for g; > 0. The trajectory S(q,) for which g, = q3 = q4 =

- = 0 corresponds, to a good approximation, to the liquid-
drop path to fission as demonstrated in Fig. 2. The deformation
parameter ¢s is chosen in such a way that for a given elongation
(triggered by q) the stiffness of the liquid-drop potential-energy
surface with respect the left-right asymmetry parameter q3 is as
small as possible. The transformation between the g; deformation
parameters and the Fourier decomposition coefficients a; is made
in the subroutine “qtoa”.

To obtain the friction and the inertia tensor in the space of the
g; parameters, we first calculate these quantities in the Fourier-
parameter space to obtain the yg, . and M, o tensors and then
transform these to the {g;} space accordmg to’

_ ZM da; da;
B “ aqi dq; ’

dai da;
Yot = Z)’u.a, 3q oq1

Mo
(27)

gs = as +/((q2/3001 + (&) ,

a calculation that is carried out at the end of the subroutine
“tcoef .

The components of the inertia and friction tensors obtained in
this way are shown Fig. 3 along the LD path to fission as function
of the relative distance Ry, between the fragments. One notices
that for large values of Rqz the inertia approaches (as it should)
to the reduced mass u. We also show on the same figure the
approximation for the inertia made in Ref. [13].

5. Summary

The main purpose of the present work, and of the com-
puter code that comes along with it, is the calculation of the
transport functions necessary to perform studies of the nuclear
fission process within the dissipative dynamics model. In addition
the program evaluates the deformation dependent liquid-drop
coefficients which are important ingredients of all macroscopic-
microscopic models. The rapidly converging Fourier type
parametrization of nuclear shapes used in the program offers a
very effective four dimensional (4D) description of the potential-
energy surfaces of fissioning nuclei and their fission dynamics.
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Appendix. Expansion coefficients of the velocity field

The kinetic energy of an ideal incompressible fluid of constant
matter density o,, = 3M/(47R3) and velocity field ¥(r) can be
written as

1
rz—pmffrVG), (A1)
2],

with the integration extending over the volume V of the mat-
ter distribution. We will show that this kinetic energy can be
expressed as a quadratic form in the collective velocities §; as-
sociated with the collective coordinates s; which could be iden-
tified in our case as the Fourier shape parameters a; entering Eq.
(6), the non-axiality parameter », Eq. (8), or the new collective
coordinates defined by (25)

1 ..
= E ZM'U-S,'SJ' ’ (A-Z)
ij

where M;; are the components of the collective mass tensor.

In order for Eq. (A.1) to imply Eq. (A.2) it is necessary that the
position vector 7 of a fluid element will not depend on the time
explicitly, but only on the shape of the system, thus implying that
its velocity can be written as

5 ar
?)=r=Z—‘si, (A3)

which directly leads to Eq. (A.2) with
ar ar
M; = — . —d’r. A4
y pm v BS,- BSJ ( )
In the general case where no axial symmetry is imposed, the
velocity field in cylindrical coordinates {p, ¢, z} is written as
V= pE, +p9E, +18,, (AS5)

where €, €, and €, denote the unit vectors in p, ¢ and z direc-
tions, respectively.
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Fig. 2. (Colour online) LD potential energy surface in the (g2, q4) (top left), (g2, q3) (top right), (g2, q¢) (bottom left) and (g2, gs) (bottom right) deformation planes
of a nucleus with fissility x=0.8. In each (g;, g;) plot, the collective coordinates g; with k # i, j are set to zero.
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Fig. 3. Relative distance component of the irrotational flow inertia (Lh.s) and the wall-friction (r.h.s.) tensors as functions of the relative distance between the mass
centres of the nascent fragments. The approximation for the inertia presented in Ref. [13] is shown as the dotted line.

In the axially symmetric case, the Werner-Wheeler approxi-
mation consists in supposing that z is independent of p and that
p depends linearly on p, i.e.

P=Az,55)=) Az3)5 (A6)
and
b=pBz55)= —L— 3 B@3)s5. (A7)

Pz, ¢)

A natural generalization of this approximation to the case of
non-axial shapes, as given e.g. by Eq. (7), is the following

v =(a+B)x=(a+p)p cosg
vy = (e —B)y=(a—pB)p sing

where the parameters « and B will generally depend on z and the
collective coordinates s;. In cylindrical coordinates (x = p cos¢
and y=p sing) the x and y components of the velocity field are
given by

(A8)

V=X=pCOSp —p@ sing

vy=y=psing+ppcosey . (A9)

Using the above relations (A.8) and (A.9) we get the following
expressions:

p = p(a+ pcos2yp)
@ =—pPBsin2p. (A.10)
The velocity field of an ideal fluid should be both source-less and
irrotational, i.e.

V-9=0 and Vxd=0. (A.11)
The parameters « and S can now be evaluated from the divergence-
free character of the velocity field, Eq. (A.11), and the condition
that the velocities of the wall and of the liquid should be equal
at the surface of the body defined by ps(z, ¢). For the velocity
components on the x (¢ = 0) and on the y axis (¢ = 7/2) one
obtains more specifically

vx(ps, ¢ = 0,2) = ps(z, ¢ = 0) = ps(z, ¢ = 0) [(2) + B(2)]
v(ps, ¢ = 3.2) = ps(z, 9 = 7) = pslz, ¢ = 7) [(2) — B(2)]

(A.12)
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where, in the last step, Eq. (A.10) has been used and which
directly leads to the following identities for «(z) and B(z)

(2,9 =0) plz,0=3)
o(z) = ~ [” —— — ]
2 /.)s(Z,w =0) F')s(zv Y= )21) (A.13)
by | [ps(z,(p =0 plze= 3)]
2[ps(z,o=0) plz,9=7%)]"

Let us mention here that, in the general case, the velocity com-
ponents vy and v, along the x and y axis as given by Eq. (A.12)
are, of course, not the only non-vanishing velocnty components,
but that, except at the z-coordinates where dp2(z, ¢)/3z=0, the
z component v, of the velocity field is also present. But that is
of no concern to us, since the coefficients «(z) and B(z) do only
enter the definition of the x and y components of the velocity
field through Eq. (A.8) and are unambiguously defined through
Eq. (A.12).

Using the product ansatz of p2(z, ¢) as given in Eq. (7) one has

bs(zv ‘P) _ 1

4 _ 1| Ae i
w(z.9) ~ Vet aV PO = [ (Z)+f(¢)]

(A.14)

and with the particular definition for f(¢) of Eq. (7) one obtains

flo) _ 20 2n+(1+17)cos(2¢) (A15)
flo) 1—n% 1+n%+ 2ncos(2¢)
which then, together with (A.13), yields
154z)  psl2)
D=3 50 " A (A16)
and
BE) = 51— . (A.17)
ne -1

an expression that is only related to the non-axiality parameter n
and its variation with time, but independent of z, something that
we shall assume to be generally true in what follows, while the
expression for «(z) will be determined below through Eq. (A.11).

Inserting « and B as found above into Eq. (A.10) one obtains
the following expression for the velocities in a plane of constant
z

0 cos(2¢p) 7 sin(2¢)
(A.18)

From the condition divy = 0, Eq. (A.11), one obtains together
with (A.8)
v, duy  dvy

S A . P

(A.19)
0z ax ay

which corresponds, in the case of axial symmetry, to Eq. (A7)
of [10]. Proceeding as in Ref. [ 10], we suppose that, for an incom-
pressible fluid, the convective time derivative of any fluid element
of volume

1 z 2 v 4
V*(z;§)=—/ j pf(z’,w)dz'=n/ P2 d7
zzm; 0 Zmin

must vanish:

d - .0 -
pr V¥z;5) =12 —V*(z;s) + Zi:si 8—SiV*(z;s) =0

which can be used to evaluate the z-component of the fluid
velocity

310s (Z) 1 *dpi(2)
,(2) = — =— dz
(@)= 3(:) Z / P2@) )y dt
(A.20)
which means that v, is linear in the collective velocities §;
v=2=) Az, (A21)
i
where
- 1 z pi(Z )
A(z;5)=— s (A.22)

pH2) S 0Si

Using Eq. (A.19) we can evaluate the function «(z)

_ 1A ap? Bps
__izi:ﬁ' 2pzz{ '}S"
(A23)

The two other velocity components that appear in Eq. (A.5) are
also linear in the collective velocities
v, = b= p A9
v =p g =pY Al(F;5)5
where our collective coordinates s; are the Fourier deformation

parameters a,, and 7. The expansion coefficients of the velocity
field are then given by

1 aUz
“«)=-3%

(A24)

1 [(ap? dp? cos(2
a = L (P ) e 2¢)
v 2p2 \da, 09z ¥ " 1—n?
sin(2
A =0, ap= 020 o5
Zz/ 1—17
1 [ 9p
- A&y o

Z)SZ(Z) Zmin da,
The kinetic energy of the liquid can then be written in the form:

T— %pofvazd% _ % iZJ:B.-,-é.-é,- ,
Inserting Eqs. (A.21) and (A.24) for the velocity components one
obtains the following expression for the inertia tensor B:
By = po [, dz [¢™ do [** {p? [AL(2)A(2)

+A{ (2)A](2)] + A{(2)A (2) } p dp.

Using the relations:

(A.26)

(A27)

2 -2 o, g 147
P52, )y =2mpg(2) /(; ps(2, @)y = 21 (2) 1 2
2 2 2
j; p2(z, ¢)cos(2¢)dg = —27n, j; pl(z, ¢)cos(2p)dg = —ZHﬁf(Z)l _n 3

(A.28)

one obtains the final expressions for the components of the
inertia tensor:

T 1+ 2 Zmax
Bug, = 3P0 T f (ALAL + 252K A 1dz,  (A29)
Zmin
n Zmax -4
de'] T po 1 _ nz psAgv dz ’ (A'30)
Zmin
T 1 Zmax
By = Sp07 —an P dz . (A31)
Zmin
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