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Abstract. Extended macroscopic-microscopic calculations of the poten-
tial-energy surfaces (PES) in a 4D Fourier deformation-parameter space
have been performed for 170−204Pt, 172−218Hg, and 174−220Pb isotopes.
Several local minima in the PES corresponding to the ground-state and
shape isomers were found. Axial and non-axial electric quadrupole mo-
ments as well as moments of inertia were evaluated in these minima.
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1 Introduction

To use a reliable approach to describe the many facets of nuclear structure re-
quires above all two things: a model that allows to determine the energy of the
nuclear system and that is rooted in one way or another in the underlying nu-
clear force that holds this many-body system together, and on the other hand,
an efficient way to describe the huge variety of shapes which that nuclear sys-
tem can adopt. Without even speaking about extreme deformations like those
encountered in the fission process, the multitude of different shapes a nucleus
can adopt and which are largely determined by the nuclear quantum shell struc-
ture and pairing correlations, but also by such more macroscopic phenomena,
like the surface tension or the Coulomb repulsion between protons, have been
an ever lasting challenge to the nuclear-physics community. There exist nowa-
days very performant microscopic approaches like the selfconsistent Hartree-
Fock-Bogolubov approximation, the relativistic mean-field theory or ab inito
Brueckner calculations which describe the properties of nuclei very well. We
believe, however, that nuclear-structure calculations rooted in a macroscopic-
microscopic approach and relying on a highly performant macroscopic model
together with an efficient way of taking quantum effects into account, has still
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its entitlement, not because of arguments regarding computer time, but because
of its capacity to reveal more clearly physical effects that sometimes are hidden
in extensive numerical treatments. In the present investigation we have adopted
such an approach, relying on the Lublin-Strasbourg Drop (LSD) [1] which has
proven to be among the very best liquid-drop type models, having, for ground-
state masses (2766 nuclei considered), an r.m.s. deviation of less than 0.7 MeV,
but also able to account for fission-barrier heights (considering all measured bar-
riers for nuclei with A ≥ 75) with a good accuracy [1, 2]. Quantum effects are
taken into account through the Strutinsky shell-correction method [3,4] and pair-
ing correlations in the BCS approach with an approximative projection on the
desired particle number [4, 5]. To be able to account in a most flexible way for
the variety of shapes that a nucleus can adopt, we are using the Fourier shape
parametrization [6, 7] which is able, with only 4 deformation parameters, to de-
scribe the large variety of nuclear shapes from the oblate side up to the extreme
prolate elongated and/or necked-in deformations that occur in the fission pro-
cess [8]. This parametrization is going to be presented in the following section.

2 Fourier Expansion of Nuclear Shapes

Many parametrizations of nuclear shapes starting from Lord Rayleigh’s expan-
sion of the nuclear radius R(θ, ϕ) in spherical harmonics [9], still frequently
used nowadays, have been proposed in the past. Some of the most successful
are the so-called “Funny Hills” shapes [10] of Brack and coworkers and the
Trentalange-Koonin-Sierk expansion [11], but many of these require sometimes
a prohibitive amount of deformation parameters (degrees of freedom) or repre-
sent closed expressions that do not allow to test their convergence. The Fourier
expansion that we have proposed recently [6,7] has proven to be rapidly converg-
ing and to allow for an accurate description of deformed nuclear shapes [12]. It
is given in the cylindrical coordinates by
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where ρs is the distance from the z-axis to the surface andR0 is the radius of the
corresponding spherical shape having the same volume, while 2z0 is the length
of the deformed nucleus with respect to the z-axis. zsh guarantees that the center
of the nucleus is located at the origin of the coordinate system. The volume
conservation of the deformed nucleus and the mass-center condition yield the
following relations:
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Instead of the ak Fourier coordinates it turns out of great advantage to define
through Eq. (3) qk Fourier coordinates in such a way that, apart from the elonga-
tion parameter q2, which is zero for the spherical shape, vanishing qk parameters
correspond to the LD path to fission and minimize on the average the LD energy

q2 = a
(0)
2 /a2 − a2/a(0)2 ,

q3 = a3 ,

q4 = a4 +

√
(q2/9)2 + (a

(0)
4 )2 ,

q5 = a5 − (q2 − 2)a3/10 ,

q6 = a6 −
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(q2/100)2 + (a
(0)
6 )2 ,

(3)

where, a(0)2n = (−1)n−1
32

π3 (2n− 1)3
are the expansion coefficients of a sphere.

Nonaxial shapes are obtained by assuming that all cross-sections perpendicular
to the z-axis have an elliptic form with half-axis a and b, thus defining a non-
axiality parameter

η =
b− a
a+ b

, (4)

where one assumes, in addition, that ρ2s(z) = a(z)b(z) in order to guarantee
volume conservation.

One has to mention here that the above description of nonaxial deformations is
extremely simple. One could, of course, also expand the shape of the cross-
section perpendicular to the z-axis into a Fourier series similar to Eq. (1), but
such an attempt would complicate unduly our shape definition.

3 Results

From the long list of stationary points found in our 4-dimensional deformation
space, corresponding either to the ground state or to shape isomeric states in the
isotopes of platinum, mercury and lead nuclei and which are given in the table
below, let us just take the nucleus 182Hg as one illustrative example to make the
reader better understand how to look at the deformation-energy landscapes ob-
tained in our Fourier shape parametrization in order to locate and identify shape
isomers. To this purpose we show in Figure 1 the energy of that nucleus (rela-
tive to the LSD energy of the spherical drop) as projected onto the (q2, η), the
(q2, q3) and the (q2, q4) planes thus testing respectively, as function of the elon-
gation (quadrupole) q2 coordinate, the non-axiality η, the left-right asymmetry
q3 (octupole) and the neck q4 (hexadecapole) degrees of freedom. All three of
these figures have been obtained by a minimisation with respect to the two other
degrees of freedom. An energy landscape in the (q2, η) plane, as on top of Fig-
ure 1, thus shows the energy of the here studied nuclear system as function of q2
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Figure 1. Projections of the 4D deformation-energy surface of 182Hg onto the (q2, η)
(top), (q2, q3) (middle), and (q2, q4) (bottom) planes.

and η, where in every (q2, η) deformation point the energy has been minimized
with respect to the left-right asymmetry parameter q3 and the neck degree of
freedom q4.

In the top part of Figure 1 one identifies two axially symmetric (η = 0) local
minima and two local minima that do not correspond to an axially symmetric
shape (η 6= 0), but are, in fact, nothing but the mirror images (corresponding
simply to a reordering of the coordinate axis) of the axially symmetric oblate and
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prolate minima. It has, indeed, to be observed that deformations in the (q2, η)
space obey similar symmetry rules as the ones in the traditional (β, γ) plane
(see Ref. [7] for a detailed discussion of this point). This indicates that there
are simply no local minima in this nucleus that break axial symmetry. In the
(q2, q3) plane (middle part of Figure 1) one observes three local minima that are
all reflection symmetric (q3 = 0) at q2= -0.17, 0.18, and 0.32. Since all of them
have similar energies, one could speak here about shape-coexistence. Another
two minima corresponding to well deformed shapes are observed in the (q2, q4)
plane (bottom part of Figure 1). An oblate minimum appears at q2 =−0.43 at
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Figure 2. Electric charge quadrupole moments in the ground-state (g.s.) and the two
lowest-energy shape isomers (I and II) for Pt (top), Hg (middle), and Pb (bottom) iso-
topes. The experimental data taken from Ref. [14] are marked by stars.
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an energy ∆E= 1.58 MeV above the ground state, while a prolate minimum is
found at q2 =0.48 at an energy of 1.25 MeV above the ground state. Both these
minima could correspond to shape isomers. The oblate shape-isomeric state is
separated from the ground-state by a barrier higher than 0.5 MeV, so, it has a
larger chance to be discovered than the prolate ones for which the barrier height
is 0.25 MeV only.

It would be rather difficult to bring in the present report maps for all the isotopes
investigated here: 170−204Pt, 172−218Hg, and 174−220Pb. We have therefore de-
cided to record in Table 1 some data corresponding to the found local minima
that are lowest in energy. We are thus giving in an Appendix at the end of this
paper the energies ∆E of these minima relative to the ground-state, the corre-
sponding axialQ20 and non-axialQ22 charge quadrupole moments, the octupole
moments Q30, as well as the three cranking [13] moments of inertia Jx, Jy, and
Jz .

The theoretical electric quadrupole moments are compared in Figure 2 with the
existing experimental data. The observed agreement of our estimates with the
data in the ground state of the considered nuclei gives some hope that our pre-
dictions of the electric moments of shape isomers are indeed reliable.

4 Conclusions

The following conclusions can be drawn from our investigation:

• The macroscopic-microscopic model with the LSD liquid-drop type en-
ergy and quantum corrections obtained in a Yukawa-folded mean-field
potential reproduces well the equilibrium deformations of all investigated
nuclei.
• A 4-dimensional Fourier deformation-parameter space (η, q2, q3, q4) is used

to describe the deformation-energy landscapes of these nuclei.
• The role of higher multipolarity deformations q5 and q6 is shown to be in

practice negligible.
• A substantial number of shape isomers are predicted in Pt, Hg, and Pb

nuclei and await experimental confirmation.

Further calculations for isotopes lighter than Pt are planned in the near future.
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Appendix

Table 1: Energies ∆E (relative to the ground-state), axial (Q20) and non-axial
(Q22) quadrupole, and octupole (Q30) electric moments, and cranking moments
of inertia Jx, Jy, and Jz in the ground state and the lowest-energy local minima
in the PES of 170−204Pt, 172−218Hg, and 174−220Pb isotopes.

Nucleus ∆E Q20 Q22 Q30 Jx Jy Jz

(MeV) (fm2) (fm2) (fm3) (
~2

MeV
) (

~2

MeV
) (

~2

MeV
)

170Pt 0.00 -299 -174 0 9 2 3
0.04 345 -115 0 6 11 1
2.83 -802 0 0 29 29 0
3.96 1707 -170 0 54 62 5

172Pt 0.00 -305 -211 0 11 2 5
2.46 -803 0 0 30 30 0

174Pt 0.00 440 -120 0 10 16 1
2.07 -863 -448 0 42 19 14

176Pt 0.00 493 -113 0 12 19 1
0.05 -350 -259 0 16 3 7
2.03 -831 0 0 31 31 0

178Pt 0.00 605 0 0 21 21 0
0.10 -364 -315 0 18 2 10
0.82 -438 0 0 12 12 0

180Pt 0.00 616 0 0 21 21 0
0.32 -338 -348 0 18 1 12
0.83 -469 0 0 14 14 0

182Pt 0.00 602 -55 0 20 23 0
0.61 -336 -321 0 18 2 12
0.79 -498 0 0 16 16 0

184Pt 0.00 623 0 0 26 26 0
0.76 -492 0 0 17 17 0

186Pt 0.00 593 -70 0 38 40 1
0.29 -467 0 0 15 15 0
3.94 1685 0 -46 70 70 0

188Pt 0.00 -435 0 0 12 12 0
0.18 480 -105 0 15 20 1
4.10 1763 0 0 74 74 0

190Pt 0.00 -409 0 0 10 10 0
0.11 380 -141 0 8 15 2
4.71 1776 0 0 79 79 0

Continued on next page
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Table 1 – Continued from previous page

Nucleus ∆E Q20 Q22 Q30 Jx Jy Jz

(MeV) (fm2) (fm2) (fm3) (
~2

MeV
) (

~2

MeV
) (

~2

MeV
)

192Pt 0.00 -388 0 0 9 9 0
5.46 1807 0 0 82 82 0

194Pt 0.00 -370 0 0 9 9 0
6.80 1741 0 0 81 81 0

196Pt 0.00 -370 0 0 10 10 0
8.28 1796 0 0 82 82 0

198Pt 0.00 -334 0 0 12 12 0
8.98 1782 -68 0 81 84 1

200Pt 0.00 -247 0 0 5 5 0
11.57 1781 -62 0 76 80 1

202Pt 0.00 -19 0 0 0 0 0
12.99 1857 -107 0 79 86 3

204Pt 0.00 -15 0 0 0 0 0
14.54 1773 0 0 77 77 0

172Hg 0.00 192 0 -63 3 3 0
3.76 -898 0 0 32 32 0
4.46 1949 -52 0 63 65 1

174Hg 0.00 229 0 -60 4 4 0
3.01 -925 -106 0 44 37 1
3.70 1784 -123 0 57 62 3

176Hg 0.00 278 0 0 6 6 0
0.71 797 -71 0 30 34 0
2.02 -936 0 0 36 36 0
3.16 1692 -105 0 58 62 2

178Hg 0.00 -322 -63 0 9 6 1
0.02 287 0 0 6 6 0
0.08 126 -236 0 0 5 6
0.49 865 -56 0 42 46 0
1.59 -932 -0 0 36 36 0
2.94 1853 -67 0 65 67 1

180Hg 0.00 913 0 0 34 34 0
0.40 320 0 0 7 7 0
1.93 -908 0 0 35 35 0

182Hg 0.00 860 0 0 32 32 0
0.09 -358 0 0 9 9 0
0.18 173 -242 0 0 8 6
1.25 1446 0 0 51 51 0
1.58 -918 0 0 34 34 0

Continued on next page

276



On Shape Coexistence and Shape Isomerism

Table 1 – Continued from previous page

Nucleus ∆E Q20 Q22 Q30 Jx Jy Jz

(MeV) (fm2) (fm2) (fm3) (
~2

MeV
) (

~2

MeV
) (

~2

MeV
)

184Hg 0.00 -356 0 0 10 10 0
0.08 811 0 0 31 31 0
0.31 440 0 0 15 15 0
1.72 -918 0 0 34 34 0

186Hg 0.00 -356 0 0 10 10 0
0.44 333 0 0 9 9 0
0.44 804 0 0 32 32 0
2.37 1517 0 0 57 57 0

188Hg 0.00 -359 0 0 10 10 0
0.50 326 0 0 9 9 0
3.81 1798 0 0 78 78 0

190Hg 0.00 -343 0 0 9 9 0
0.46 252 0 0 6 6 0
4.12 1932 0 0 80 80 0

192Hg 0.00 -335 0 0 8 8 0
0.57 -121 -127 0 4 0 2
4.93 1955 0 0 93 93 0

194Hg 0.00 -328 0 0 8 8 0
5.56 1967 0 0 84 84 0

196Hg 0.00 -320 0 0 8 8 0
0.62 212 0 0 5 5 0
7.02 1968 0 0 83 83 0

198Hg 0.00 -327 0 0 10 10 0
0.71 174 0 0 4 4 0
8.45 1917 0 0 85 85 0

200Hg 0.00 48 0 0 0 0 0
0.20 48 0 0 0 0 0
9.79 1915 0 0 91 91 0

202Hg 0.00 -221 0 0 5 5 0
11.77 1919 -24 0 85 87 0

204Hg 0.00 11 0 0 0 0 0
13.81 1959 -62 0 82 86 1

206Hg 0.00 4 0 0 0 0 0
15.69 1838 0 0 84 84 0

208Hg 0.00 5 0 0 0 0 0
12.96 1827 0 0 84 84 0

210Hg 0.00 12 0 0 0 0 0
8.70 -919 0 0 38 38 0
10.07 1865 0 0 84 84 0

Continued on next page
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Table 1 – Continued from previous page

Nucleus ∆E Q20 Q22 Q30 Jx Jy Jz

(MeV) (fm2) (fm2) (fm3) (
~2

MeV
) (

~2

MeV
) (

~2

MeV
)

212Hg 0.00 10 0 0 0 0 0
7.20 -933 0 0 39 39 0

214Hg 0.00 53 0 0 0 0 0
5.73 2003 0 0 94 94 0
5.77 -955 0 0 41 41 0

216Hg 0.00 122 -139 0 0 4 3
4.13 1890 0 0 92 92 0
4.52 -983 0 0 44 44 0

218Hg 0.00 -252 0 22 6 6 0
0.25 202 0 282 9 9 0
3.37 -1042 -405 0 66 36 15
3.40 1820 0 0 83 83 0

174Pb 0.00 -2 0 0 0 0 0
4.43 1935 0 0 61 61 0
4.84 -1001 0 0 39 39 0

176Pb 0.00 -2 0 0 0 0 0
3.43 1834 53 0 60 58 1
3.42 -887 -509 0 43 16 15

178Pb 0.00 -3 0 0 0 0 0
1.46 816 -121 0 28 35 1
2.26 -945 -522 0 47 19 17
2.71 1885 0 0 63 63 0
2.71 -1035 0 0 72 72 0

180Pb 0.00 -10 0 0 0 0 0
1.60 902 -96 0 42 49 1
2.13 -940 -524 0 52 21 20
2.53 -1032 0 0 42 42 0
2.69 1831 0 0 62 62 0

182Pb 0.00 -16 0 0 0 0 0
0.39 1050 0 0 38 38 0
0.45 -472 -630 35 31 1 26
2.30 -1030 0 0 42 42 0
4.21 2748 0 0 94 94 0

184Pb 0.00 -4 0 0 0 0 0
0.76 993 0 0 37 37 0
2.14 -1029 -35 0 41 40 0
4.60 2751 0 0 103 103 0

186Pb 0.00 -7 0 0 0 0 0
1.01 928 0 0 34 34 0
1.07 228 -300 0 0 11 8
1.17 -516 0 0 17 17 0
2.33 -1019 0 0 40 40 0

Continued on next page
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Table 1 – Continued from previous page

Nucleus ∆E Q20 Q22 Q30 Jx Jy Jz

(MeV) (fm2) (fm2) (fm3) (
~2

MeV
) (

~2

MeV
) (

~2

MeV
)

188Pb 0.00 -7 0 0 0 0 0
1.33 945 0 0 33 33 0
2.37 1696 0 0 63 63 0

190Pb 0.00 -6 0 0 0 0 0
3.19 1843 0 0 73 73 0
5.77 -1195 -816 0 65 24 29

192Pb 0.00 0 0 0 0 0 0
3.82 1912 0 0 76 76 0

194Pb 0.00 -10 0 0 0 0 0
4.79 1943 0 0 82 82 0

196Pb 0.00 38 0 0 0 0 0
5.26 1961 0 0 83 83 0

198Pb 0.00 -14 0 0 0 0 0
6.61 1898 0 0 83 83 0
4.84 -1001 0 0 39 39 0

200Pb 0.00 -5 0 0 0 0 0
7.96 1950 0 0 85 85 0

202Pb 0.00 -14 0 0 0 0 0
10.13 1930 0 0 85 85 0

204Pb 0.00 -4 0 43 0 0 0
11.90 1947 0 0 82 82 0

206Pb 0.00 0 0 0 0 0 0
13.93 1962 -11 0 80 81 0

208Pb 0.00 -2 0 0 0 0 0
15.44 1950 0 0 80 80 0

210Pb 0.00 0 0 0 0 0 0
12.60 1950 0 0 81 81 0

212Pb 0.00 6 0 46 0 0 0
9.67 1964 0 0 80 80 0

214Pb 0.00 -6 0 0 0 0 0
0.62 107 0 381 7 7 0
7.09 1962 0 0 82 82 0

216Pb 0.00 85 0 312 6 6 0
5.18 2061 0 0 90 90 0

218Pb 0.00 88 0 291 6 6 0
0.71 -52 0 85 1 1 0
3.71 2009 0 0 93 93 0

220Pb 0.00 -39 -28 182 2 2 0
0.46 347 0 0 19 19 0
2.17 2035 0 0 93 93 0
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