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Potential energy surfaces of nine even-even isotopes of Pt, Hg, and Pb around 186Pt are evaluated
within a macroscopic-microscopic model based on the Lublin-Strasbourg-Drop macroscopic energy
and the microscopic energy obtained using the Yukawa-folded mean-field potential to establish the
Strutinski shell corrections and the pairing correlation energy through the BCS approach with a
monopole pairing force. The rapidly converging Fourier-over-Spheroid shape parametrization is
used to describe nuclear deformations. The stability of the shape isomeric states and the possi-
bility of a shape coexistence with respect to non-axial and higher-order deformations is investigated.
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I. INTRODUCTION

Our understanding of shape isomerism and shape co-
existence in nuclei has substantially changed over the last
decades. Even though shape isomers were discovered in
the 1960s in connection with investigations of fissioning
systems [1], their existence was long understood as an
exotic phenomenon limited to different islands in the nu-
clear chart. The present understanding, however, is the
one of the occurrence of such states in nuclei all along the
nuclear chart, with the only exception of very light nuclei
[2–7]. The existence in 66Ni, to give just one prominent
example, of (prolate as well as oblate) isomeric states
has been identified both through the experiment (see,
e.g., Ref. [8, 9] and references therein) and a large va-
riety of very different theoretical models [10, 11] rang-
ing from mean-field calculations of the Hartree-Fock +
BCS or Hartree-Fock-Bogoliubov type to macroscopic-
microscopic approaches [12, 13], to Monte-Carlo Shell-
Model calculations of the Takaharu Otsuka group [14] or
Shell Model calculations with LNPS interaction of the
Madrid-Strasbourg group [15].

The region just below the Z = 82 shell closure (Plat-
inum, Mercury, and Lead) has already been identified
some time ago in different studies [16–21] as one of the
most favorable for the occurrence of shape coexistence.
This discovery has strongly motivated theoretical stud-
ies to explore this region of nuclei in more detail. Im-
portant advances in the study of neutron-deficient nu-
clei around Z ≈ 82 have been realized using shape
isomers and β-decays of nuclei populated by relativis-
tic energy-fragmentation experiments [22] performed at
GSI within the RISING campaign or through tagging
techniques at the Accelerator Laboratory of the Univer-
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sity of Jyväskylä (Finland) [23], and through Coulomb-
excitation experiments undertaken at the REX-ISOLDE
facility in CERN [24].
Interesting theoretical studies on this subject, based

either on a self-consistent approach (see, e.g., Refs. [19,
25–27]) or on macroscopic-microscopic (e.g., [12, 13, 28])
models, have been published in the past.
The aim of the current paper is to study the influence

on the potential energy surfaces (PES) of even-even Pt,
Hg, and Pb isotopes around 186Hg of higher-order de-
formations that go beyond a simple quadrupole shape
using our recently developed and very efficient Fourier-
over-Spheroid (FoS) shape parametrization [29, 30], to-
gether with the macroscopic-microscopic (mac-mic) ap-
proach with the Lublin-Strasbourg Drop (LSD) [31], able
to reproduce accurately both nuclear masses and fission
barriers, and a Yukawa-folded single-particle potential
[32, 33] to account for shell and pairing-energy correc-
tions. The results will be compared with outcome of
the self-consistent calculations performed in the Hatree-
Fock-Bogoliubov (HFB) theory with Gogny D1S force
[44] .
Although the investigations of the nuclear potential-

energy surfaces presented in a previous study [28] had
been carried out for a broader range of nuclei in a
similar approach, some new effects are included in the
present work through the new Fourier over spheroid
shape parametrization which enables us, in particular,
to project the evaluated PES onto the traditional (β, γ)
plane. In addition, higher-order deformation parameters
are taken into account here, still keeping the 60◦ symme-
try of the original (β, γ) parametrization.

II. SHAPES BREAKING AXIAL SYMMETRY

A search of possible shape isomers is carried out in
the Pt, Hg, Pb (Z=78, 80, 82) region by studying the



2

landscapes in the deformation-energy space of different
even-even isotopes of each of these nuclei. The calcu-
lation of the nuclear energy as a function of the chosen
deformation parameters is performed in the framework
of the macroscopic-microscopic approach with the LSD
model [31] for the macroscopic term and the shell and
pairing energy corrections evaluated using the Yukawa-
folded mean-field potential [32] for the microscopic part.
To be able to have at our disposal a most flexible de-
scription of the nuclear deformation, we use the Fourier
shape parametrization [34] in the form of what we call
the “Fourier over Spheroid” definition [29, 30] with a de-
formation space spanned by four parameters {c, η, a3, a4}
which stand respectively for elongation, non-axiality, left-
right asymmetry, and neck (hexadecapole) degree of free-
dom.

Our aim is to show that this deformation space is in a
way equivalent to the widely known and used Bohr {β, γ}
shape parametrization [35], though allowing for substan-
tially more general deformations. An ellipsoid can, in-
deed, be generally described in cartesian coordinates by
three half-axis Ai, Aj and Ak through the equation
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If all the half-axis are different, one speaks about a Jacobi
spheroid (symmetry group D2h). If two of the half-axis
are the same, like A1 = A2, the spheroid has a symme-
try axis. One then speaks about a spheroid of revolution,
which can be prolate or oblate (Maclaurin spheroid). In-
stead of the half-axis Aν , one then introduces deforma-
tion parameters β and γ through
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with R0 being the radius of the spherical shape and where
volume conservation requires that 4π

3 A1A2A3 = 4π
3 R3

0.
The Bohr parametrization allows to describe non-axial

spheroidal shapes with two deformation parameters, β for
its elongation and γ, an angle that takes care of the orien-
tation of the spheroid, as illustrated in Fig. 1. The above
equations show that β = 0 corresponds to the spherical
shape. Along the abscissa (γ=0◦), one has a prolate de-
formation with z (or 3) as the symmetry axis, while for
γ = 60◦ the shape is oblate with y (or 2) as the symme-
try axis. The {β, γ} plane is then symmetric in γ = 60◦

portions so that the shape with γ = 120◦ is identical to
the one with γ = 0◦ except that the profile is now sym-
metric through rotations about the x (or 1) axis which
is the symmetry axis. An identical nuclear deformation
appears 3 times, each time at an interval of 120 degrees
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FIG. 1: Illustration of the symmetry of Bohr’s {β, γ} shape
parametrization.

with a symmetry axis, which is respectively the 1, 2 or
3-axis.

If higher order, such as hexadecapole deformations,
need to be included, this 60◦ symmetry is broken, and
a given {β, γ} deformation is no longer the same (not
even with a different orientation) as the corresponding
{β, γ+120◦}, or {β, γ+240◦} deformation. This is, how-
ever, the difficulty that one encounters when trying to
represent a nuclear shape obtained in the Fourier shape
parametrization [29, 34] in the framework of the Bohr
{β, γ} deformation space and, also in the Rayleigh type
expansions of nuclear surface (confer, e.g., Ref. [36]).

Instead of limiting oneself to the 0≤γ≤60◦ sector and
exploring, for a given deformation point, higher-order de-
formations, one performs calculations of the potential-
energy surface (PES) in all three sectors 0 < γ < 60◦,
60◦ < γ < 120◦, 120◦ < γ < 180◦, which basically means
that one starts from a particular nuclear shape, but ori-
ented differently in space, and investigates which is the
orientation where the addition of higher order deforma-
tions leads to the minimal energy. In this way, one re-
stores the initial symmetry of the three sectors, allowing
us to obtain what we can call the “symmetrized poten-
tial energy surface” (SPES), which we will discuss in the
present study.

In order to illustrate the method, we show in Fig. 2
the direct (upper part) and the symmetrized potential
energy (lower part) surfaces obtained for the 186Hg iso-
tope, when restricting the study to left-right symmet-
ric shapes (with deformation parameter a3 = 0) and
minimized with respect to the hexadecapole parameter
a4 [34]. Energy labels on these and subsequent figures
always indicate the total nuclear energy relative to the
spherical macroscopic energy. One notices in particular
in the lower part of the figure the symmetry of the three
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sectors delimited by the lines γ = 60◦ and γ = 120◦ two
of which then obviously become redundant.

FIG. 2: Potential energy surface (PES) obtained in the tree
(β, γ) sectors (upper map) and symmetrized potential-energy
surface (SPES) (lower map) for the 186Hg nucleus obtained
by the symmetrization procedure as explained in the text.

A. Macroscopic-microscopic model

In the mac-mic method, proposed first by Myers and
Świa̧tecki [37], the total energy of the deformed nucleus
is equal to the sum of a macroscopic (liquid-drop type)
energy and the quantum energy correction for protons
and neutrons generated by shell and pairing effects

Etot = ELSD + Eshell + Epair . (4)

The LSD model [31], which reproduces well all experi-
mental masses and fission barrier heights, is used in this
study to evaluate the macroscopic part of the energy.
The shell corrections are obtained by subtracting the av-

erage energy Ẽ from the sum of the single-particle (s.p.)
energies of occupied orbitals

Eshell =
∑
k

ek − Ẽ . (5)

As the s.p. energies ek, we have taken the eigenvalues
of a mean-field Hamiltonian with the Yukawa-folded s.p.

potential [32]. The average energy Ẽ is evaluated us-
ing the Strutinsky prescription [38, 39] with a 6th order

correction polynomial. The pairing energy correction is
determined as the difference between the BCS energy [40]
and the s.p. energy sum from which the average pairing
energy [39] is subtracted

Epair = EBCS −
∑
k

ek − Ẽpair . (6)

In the BCS approximation, the ground-state energy of a
system with an even number of particles is given by
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∑
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2
k −G(
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2 −G
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where the sums run over the pairs of s.p. levels belonging
to the pairing window defined below. The coefficients vk
and uk =

√
1− v2k are the BCS occupation amplitudes,

and Eφ
0 is the energy correction due to the particle num-

ber projection done in the GCM+GOA approximation
[41]
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Here Ek =
√
(ek − λ)2 +∆2 are the quasi-particle ener-

gies with ∆ and λ the pairing gap and the Fermi energy,
respectively. The average projected pairing energy, for a
pairing window of width 2Ω, symmetric in energy with
respect to the Fermi level, is equal to
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where g̃ is the average single-particle level density and
∆̃ the average pairing gap corresponding to a pairing
strength G

∆̃ = 2Ω exp

(
− 1

Gg̃

)
. (10)

The pairing window for protons or neutrons contains
2
√
15N (N =N or Z) s.p. levels closest to the Fermi

energy states. For such a window, the paring strength
approximated in Ref. [42] is given by the following ex-
pression:

G =
g0

N 2/3 A1/3
. (11)

The same value g0 = gp0 = gn0 = 0.28ℏω0 is taken for

protons and neutrons, where ℏω0 = 41MeV/A1/3 is the
nuclear harmonic oscillator constant.
In our calculation, the single-particle spectra are ob-

tained by diagonalization of the s.p. Hamiltonian with
the Yukawa-folded potential [32, 33] with the same pa-
rameters as used in Ref. [43].
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III. SPES’S OF SELECTED PT, HG, AND PB
ISOTOPES

We show in Figs. 3, 4 and 5 the symmetrized potential
energy surfaces for the Pt, Hg, and Pb isotopes, obtained
in the full 3-dimensional deformation space, but then
minimized with respect to the neck a4 parameter and
projected on the traditional [35] (β cos γ, β sin γ) plane.
We have indeed found that the influence of the left-right
asymmetry parameter a3 for the SPESs of the consid-
ered nuclei is negligible at small deformations β < 0.6.
All maps, except when considering very elongated shapes
towards the end of our study (section 4), are therefore
shown for a3 = 0.

For the platinum isotopes 182Pt up to 186Pt, a broad
ground-state (g.s.) minimum is clearly visible at β ≈ 0.15
and γ = 0, and an oblate isomeric state (γ = 60◦)
at slightly larger β value. A barrier of approximately
0.5 MeV separates both minima. Please note that, for
practical reasons, we represent in all the figures the full
range γ = 0 − 90◦, where the symmetry of these fig-
ures with respect to the γ = 60◦-line should be noticed.
When comparing the SPES of the three platinum isotopes
shown here, one observes the emergence of some “valley”
that extends between β ≈ 0.4 and 0.5 along the prolate
axis. Such a valley will also be observed, even more pro-
nounced, in the mercury and lead isotopes discussed be-
low. In 186Pt, some bump emerges at {β ≈ 0.43, γ ≈ 20◦}
the appearance of which could already be expected when
looking at the SPES of the 184Pt nucleus.

For the mercury isotope 184Hg, the picture is again
about the same as for the platinum nuclei with a broad
minimum clearly visible at β ≈ 0.15, with the difference,
however, that the ground state now evolves, with increas-
ing mass number, to an oblate deformation (γ = 60◦).
The prolate minima at β ≈ 0.2 are visible in 184Hg and
186Hg isotopes. A very small barrier separates both pro-
late and oblate minima, which disappears in 188Hg. In
184Hg, a shallow shape isomer appears; in addition, at
{β ≈ 0.46, γ ≈ 27◦} around 6 MeV above the g.s. Sim-
ilar non-axial isomeric states are also found in the two
other mercury isotopes. In 188Hg an additional shape
isomer appears at {β ≈ 0.52, γ ≈ 20◦}. Some broad pro-
late valley develops around 4 MeV above the g.s. in all
three Hg isotopes at β ≈0.35, as already observed in the
Pt nuclei, valley which stretches to larger β values as the
neutron number increases.

The broad minimum along β ≈ 0.15 observed for the
platinum and mercury isotopes disappears in the lead nu-
clei from 186Pb up to 190Pb, in which the ground-state
minimum appears at the spherical shape (β = 0) and
which becomes gradually deeper as the mass number
increases and one approaches the doubly magic 208Pb.
Please notice that there is a small oblate (γ = 60◦) de-
pression that appears in 186Pb at β ≈ 0.38. The valley
along the prolate axis that has already been observed at
an elongation between β = 0.4 and β = 0.5 now leads
in 188Pb and 190Pb nuclei to a clearly defined shape iso-

FIG. 3: Symmetrized potential energy surfaces for Pt iso-
topes.

meric state at about 3 MeV above the ground state. In
addition, an oblate local minimum is found in the 190Pb
isotope at β = 0.18 and an energy of about 1.5 MeV.

The question now arises as to how reliable our esti-
mates really are. Trying to give an answer, we have
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FIG. 4: Symmetrized potential energy surfaces for Hg iso-
topes.

performed for the isotope 186Hg a self-consistent con-
strained HFB calculation with the Gogny D1S force [44]
using as a constraint the axial Q20 and non-axial Q22

mass quadrupole moments. This method allowed to show
the important role of triaxial deformation in the ground

FIG. 5: Symmetrized potential energy surfaces for Pb iso-
topes.

state shape of nuclei from the Pt region [46, 47]. The
corresponding PES is shown in the lower part of Fig.
6. In the HFB calculation, the ground state is found
for an essentially prolate shape with a slight triaxiality
of about γ = 12◦, about 200 keV lower than the oblate
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FIG. 6: Potential energy surface of 186Hg evaluated within
the macroscopic-microscopic approach (upper part) and, for
comparison, in the HFB approach with the Gogny D1S force
[44] (lower part), using constraints on the axial Q20 and non-
axial Q22 mass quadrupole moments. Yellow dots mark local
minima and the ground state is indicated by a cross.

minimum. In the macroscopic-microscopic approach, the
ground state is found, on the contrary, to be oblate de-
formed, about 300 keV lower than the prolate minimum
(upper part of Fig. 6). In both calculations, several pro-
late local minima are found. HFB calculations show these
at Q20 ≈ 21.0, 34.4 and 70.5b, corresponding respectively
to a value of β = 0.56, 0,79 and 1,13 in the macroscopic-
microscopic calculation, obtained from a rough estimate

β =
4π

5

√
Q2

20 +Q2
22

Ar2rms

. (12)

The corresponding energies are found, respectively, at
about E = 3.0, 6.5 and 15.3 MeV above the ground state.
There is a clear correspondence with the shape of the
potential energy surface of the LSD model where similar
minima are found, respectively, at β = 0.38, 0.71 and
1.01 with energies E = 2.3, 6.6 and 8.9 MeV above the
ground-state. Despite some quantitative differences, one
can notice an equivalence in the structure of this nucleus
in both descriptions.

IV. HIGHER DEFORMATIONS EFFECT

Since essentially no triaxial local minima have been
found in the studied nuclei, apart from 184Hg and 186Hg,
we only show the influence of the a3 and a4 deformations

on the SPES in the axially symmetric case (γ = 0). Let
us take the illustrative example of the SPES calculated
for the nucleus 186Hg (Fig. 7), where the non-axiality pa-
rameter γ has now been explicitly set to zero. In the
upper part of Fig. 7, the SPES is plotted as a function of
(β, a3) assuming a4 = β2/5 which corresponds approxi-
mately to the bottom of the valley in the (β, a4) plane.
It is seen in Fig. 7 that the minimal-energy deformation
is obtained for left-right symmetric shapes. Considering

FIG. 7: Potential energy surface of 186Hg for the axially sym-
metric case (γ = 0) as function of β and a3 (upper map) and
of β and a4 (lower map).

only this figure, one would be tempted to conclude the
possible presence of two minimal-energy configurations,
corresponding one to a prolate (β ≈ 0.20) and the other
to an oblate shape (β ≈ 0.15 separated by a barrier of
about 0.5 MeV. However, a minimization with respect to
the parameters a3 and a4, as shown in Fig. 4, does not
support the existence of a prolate minimum. The ten-
dency to form a rather elongated prolate shape around
(β ≈ 0.725), clearly visible in Fig. 7, seems, on the con-
trary, to be confirmed by a minimization calculation with
respect to a3 and a4, as shown in Fig. 4 and described
above. Another minimum similar to the one visible in
Fig. 6 at Q20=70 b is formed at β > 1.0 in Fig. 7.
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V. SUMMARY AND CONCLUSION

In our study of shape isomers in even-even nuclei of the
isotopic chains of Pt, Hg, and Pb around 186Hg, a cer-
tain number of general remarks should be made. First of
all, we have found that the left-right asymmetry degree
of freedom does not play any important role in any of
the here-considered nuclei, and this not only around the
ground state but throughout the whole range of defor-
mations, as long as the elongation does not become too
large (β < 0.6). Let us mention at this point, however,
that this conclusion does not necessarily hold when go-
ing to very large elongations, as it is well known that the
left-right asymmetry becomes important for elongations
encountered in the fission process. On the contrary, the
minimization of the SPESs with respect to the neck de-
formation parameter a4 makes the ground state minima
in Pt and Hg isotopes deeper. It is, therefore, important
for the study of shape isomers.

A prolate-oblate shape coexistence has been shown to
be possible in the considered Pt and Hg isotopes, where
the ground-state deformation is found on the prolate side
in the platinium isotopes with a tendency, with increas-
ing mass number, towards triaxial shapes (increasing γ
value). In all three platinium isotopes, a clearly identified
oblate shape isomer is found around β ≈ 0.18.

In the neighboring mercury isotopes, the ground-state
deformation is found on the oblate side, with a prolate
shape isomer. With increasing mass numbers, the ground
state becomes successively deeper while the prolate shape
isomer gets shallower. In all three mercury isotopes, tri-
axial shape isomeric states are found around γ ≈ 20◦ at
an elongation of β ≈ 0.5.
In the lead isotopes, the ground-state deformation has

clearly shifted towards a spherical shape with an oblate
shape-isomeric state around β ≈ 0.2 and a prolate shape
isomer that develops with increasing mass number at an
elongation of β ≈ 0.45. A triaxial shape isomer is found
in all three lead isotopes at {β ≈ 0.2, γ ≈ 30◦}
Future investigations of other nuclear isotopic chains

in the Z ≈ 82 and other very different mass regions
should be considered to probe, from a comparison with
the experimental data, the predictive power of our
theoretical approach.
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