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Calculations to reconstruct rotational level patterns in the 220Rn and 226Ra nuclei have been
performed using a collective quadrupole+octupole approach with microscopic mass tensor and mo-
ments of inertia dependent on deformation and pairing degrees of freedom. The main objective
is to quantitatively confirm the known experimental observations that the Rn nucleus passes from
octupole vibrational to octupole deformed with increasing rotation frequency, while the Ra nucleus
is relatively weakly affected by collective rotation, being octupole deformed from the beginning.
The collective potential in a nine-dimensional collective space is determined using the macroscopic-
microscopic method with Strutinsky and the BCS with an approximate particle number projection
microscopic corrections. The corresponding Hamiltonian is diagonalized based on the projected so-
lutions of the harmonic oscillators coupled with Wigner functions. Such an orthogonalized basis is
additionally symmetrized with respect to the so-called intrinsic symmetrization group, specifically
dedicated to the collective space used, to ensure the uniqueness of the Hamiltonian eigen-solutions
in the laboratory frame. The response of the pairing and deformation degrees of freedom to external
rotation is discussed in the variational approach, where the total energy is minimized by the defor-
mation and pairing variables. As the nuclear spin increases, the pairing gaps of protons and neutrons
decrease from its ground-state equilibrium values to zero (no superfluid solution). Consequently,
the corresponding microscopic moments of inertia increase with collective spin (Coriolis antiparing
effect), resulting in effectively lower rotational energy levels Iπ with respect to pure classical-rotor
pattern I(I+1). The expression for cranking microscopic moments of inertia allows to discuss the
rotational Hamiltonian term as depending on the nuclear structure. The effect of vibrations of the
pairing field is considered only on average by introducing a multiplicative constant factor to rescale
the moment of inertia values. The obtained comparison of experimental and theoretical rotational
energy level schemes, dipole, quadrupole and octupole transition probabilities of B(Eλ) in 220Rn
and 226Ra is satisfactory.

I. INTRODUCTION

Spectroscopic observations of collective bands, espe-
cially of negative parity, carried out since roughly the
middle of the last century, allow us to distinguish two
main types of octupole instabilities in atomic nuclei:
(a) a vibration of a quadrupole-deformed nucleus sur-
face, breaking the reflection symmetry with respect to
the XOY plane of the body-fixed frame while preserv-
ing the axial symmetry, alternatively, (b) the posses-
sion by the nucleus of a more or less permanent oc-
tupole deformation [1, 2]. The latter scenario is real-
ized in nuclei around the so-called octupole magic num-
bers Z,N = 34, 56, 88, 134, ..., that is, at values just
greater than the magic numbers where the nuclei are
nearly spherical. In such nuclei, the appearance of oc-
tupole deformation entails the appearance of intruder
states close to the Fermi level, allowing for octupole-
type interaction Y30 with the occupied particle states.
The magnitude of this coupling, depending mainly on
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the difference in their energies and single-particle angu-
lar momenta, which must be ∆l = ∆j = 3, determines
essentially the depth of the double-degenerated octupole
minima located symmetrically around β3 = 0 and there-
fore also the persistence of such a configuration due to
collective rotation.

Until recently, it was thought that breaking the in-
trinsic axial symmetry (defined in the intrinsic reference
system) by the octupole interaction seems to be very un-
likely. Nevertheless, in the works [3, 4] the existence of
energy states with characteristic degrees of their degen-
eracy that have not been considered so far in nuclear
spectroscopy is seriously discussed. It is known from el-
ementary group theory that this degree of degeneracy
is directly related to the intrinsic symmetry of the nu-
cleus and the dimensions of its irreducible representa-
tions. However, the symmetry most commonly discussed
in the context of octupole instabilities remains the axial
symmetry created only by pear-like shapes proportional
to Y20 + Y30 harmonics. Few collective models treat the
deformations of the quadrupole and octupole with effec-
tive triaxiality, that is, [5] with rotation and vibration
included or the PROXY-SU(3) symmetry model [6]. An
overview of the results for various collective models is
presented in [7].

Considering possible non-axial octupole degrees of free-
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dom, we open up the opportunity to discuss the occur-
rence of states or even entire bands with non-axial, break-
ing the XOY reflection symmetries, often referred to as
exotic symmetries. Even if the aspect of new exotic sym-
metries is not explicitly addressed in this work, the model
from which the results of [8–10] were obtained allows the
description of rotational states built on the full set of
six, axial and non-axial quadrupole and octupole collec-
tive excitations and also the hexadecapole parameter α40

with respect to which total potential energy is minimized.
All of these describe the nuclear surface in the body-fixed
coordinate system.

In order to ensure the unambiguousness of the nu-
clear wave functions in the laboratory reference system in
which the nucleus is measured, we apply a symmetriza-
tion procedure to obtain eigenstates of the Hamiltonian,
acting in the space of intrinsic variables (deformations),
with respect to a specific symmetrization group, different,
however, from that octahedral group for the well-known
Bohr Hamiltonian [11] in quadrupole variables. The re-
sults presented in the following sections are obtained
within the framework of this model, which has, however,
undergone significant modifications with respect to the
original version mentioned, improving the ability to re-
produce the level energies, the intraband and interband
B(Eλ) transitions compared to less complex rigid-rotor
nuclei.

In the present work, our aim is to generate the low-
lying rotational even-spin ground-state band (GSB) with
positive parity, and a low-lying odd-spin negative-parity
band, as well as related to the GSB through B(E1) dipole
and B(E3) octupole electric transitions for the 226Ra and
220Rn nuclei. In the work [2], the heavier nucleus is con-
sidered to have a permanent axial-octupole deformation
while the lighter one is supposed to be vibrational. The
vibrational nature of Radon isotope gradually transforms
into an octupole-deformed nucleus as the collective ro-
tation frequency increases, starting from its lowest val-
ues. Such characteristics of the studied nuclei can be ev-
idenced by experimental spin alignments as a function of
rotation frequency, which are extensively reported in the
above articles, and also by the energy interval between
the states 0+ and 1− (or 3−). In the energy spectrum
of 220Rn, this substantial interval of around 0.64 MeV
is explained by a coupling of collective rotation with an
octupole phonon with the angular momentum of 3ℏ per-
forming precession around the OZ axis, tending to align
quickly with the rotation axis as the rotation frequency
increases.

The rotation of the well-deformed octupole configu-
ration observed in the 226Ra nucleus, being the effect
of the aforementioned significant coupling of the valence
single-particle state to an intruder of opposite parity with
∆j = ∆l = 3, the 1− state built on it lies higher than
0+ of the GSB only by 253 keV (compared to 645 keV
in 220Rn). This energy difference is, of course, related
to the purely rotational excitation and, in addition, to
the difference in the zero-point vibrational levels of the

octupole and quadrupole phonons, which are the vibra-
tional heads of both bands.
The Sec. II a short description of the applied theoreti-

cal models is presented, followed by results (Sec. III) for
moments of inertia and pairing interaction, which give
the total energy estimates. The transition probabilities
are compared with experimental data and concluded in
Sec. III E.

II. THEORY

A. Modeling collective vibrations and rotations

The basic means to describe vibrational motion of the
nuclear surface is to expand it in the intrinsic reference
frame in terms of the orthogonal set of the spherical har-
monics {Yλµ(ϑ, φ)} expressed in spherical coordinates.
The use of such type of shape parameterization given by,

R(ϑ, φ) = R0c(α)
[
1 +

3∑
λ=1

λ∑
µ=−λ

(α⋆
λµ)Yλµ(ϑ, φ),

]
, (1)

limited to the dipole (λ = 1), quadrupole (λ = 2) and oc-
tupole (λ = 3) terms offers for the present study the exact
treatment of the uniqueness of the intrinsic Hamiltonian
eigensolutions in the laboratory reference frame and al-
lows to calculate the B(Eλ) transition rates in a system-
atic way, taking into account the couplings between all
the above mentioned multipole vibrational modes.
The function c(α) depending on all α-type variables is

obtained from the volume conservation condition. The
dipole α10 and α1±1 deformation parameters are deter-
mined from the condition that the center of mass of the
nuclear body, for any value of the quadrupole and oc-
tupole deformation, is shifted to the onset of the coordi-
nate system and thus are dependent on {α2ν , α3µ} inde-
pendent variables. Although dipole coordinates α1ν are
not independent within this model, their values calcu-
lated as described above are taken into account in electric
multipole transition operators, widely discussed in [8].
For a spherical tensor defined in SO(3) manifold,

represented e.g. by αλµ or Yλµ, the relation α⋆
λµ =

(−1)ναλ−µ obviously holds true. As the space of effec-
tively two quadrupole variables (α20, α22 = α2−2) with
vanishing α21 = α2−1 = 0 determines the direction of
a body-fixed frame axes with respect to the nuclear sur-
face, the full octupole {α3ν}, ν = 0, 1, 2, 3 complex tensor
together with Euler angles form the twelve-dimensional
collective-variable space. Using, in addition, often ap-
plied conditions that the imaginary parts of the α3µ ten-
sor vanish, i.e. Im(α3µ) = 0, we are end up with nine
collective real variables to define our Hamiltonian and
the resulting wave functions. Although such a condition
limits the full class of octupole shapes, it nevertheless pre-
serves shapes that are physically relevant, especially in
the context of above mentioned exotic symmetries. Men-
tion, that due to the fact that the low-lying rotational
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bands in question are built on normal deformed configu-
rations with small and moderate deformations of (β2, β3),
so there is no concern that the formula (1) will produce
completely nonphysical shapes, as could be the case, for
example, when discussing the nuclear fission process.

B. Collective Hamiltonian

The vibrational-rotational Hamiltonian defined in the
set of αλµ variables, reproducing the shape of the nuclear
system in the body-fixed frame, and the three Euler an-
gles Ω, giving its orientation with respect to the labora-
tory frame, seem to produce a reasonable approximation
of measured spectroscopic observables, such as rotational
energies and the B(Eλ) transition probabilities. A fur-
ther simplification of this approach may rely on the appli-
cation of the so-called adiabatic approximation that leads
to a separation of the vibrational and rotational motions.
Such separation may be possible because of the signifi-
cantly different energy scales of both of these collective
modes. Neglecting the coupling between the collective-
variable subspaces {α2ν} and {α3µ}, the two independent
mass tensors for the vibrational quadrupole and octupole
modes are determined. Now, profiting of the above ap-
proximations, a realistic, quantized quadrupole-octupole
Hamiltonian with varying mass parameters and micro-
scopic cranking moments of inertia [12] can be written,
as e.g. in [8, 9]

Hcoll(α2, α3,Ω) =
−ℏ2

2

{
1√
|B2|

2∑
νν′=0

∂

∂α2ν

√
|B2|

[
B−1

2

]νν′ ∂

∂α2ν′
+

1√
|B3|

3∑
µµ′=0

∂

∂α3µ

√
|B3|

[
B−1

3

]µµ′ ∂

∂α3µ′

}
+

Ĥrot(Ω) + V̂ (α2, α3) (2)

where α2 and α3 denote symbolically the quadrupole
and octupole subspaces, respectively, while B2(α2) and
B3(α3) are the corresponding, widely used in the nu-
clear structure physics microscopic cranking mass tensors
[12, 13] with their determinants |B2| = detB2µ(α2µ) and
|B3| = detB3µ(α3µ).
In an explicit form, (Bλ)νν′(αλ) reads:

(Bλ)νν′ =
∑
kl

⟨k|∂Ĥsp

∂αλν
|l⟩ ⟨l| ∂Ĥsp

∂αλν′
|k⟩

(Ek + El)3
(
uk vl + vk ul

)2
, (3)

where the double summation runs over the full set of
the BCS quasi-particles, obtained out of the eigensolu-
tions of the folded-Yukawa mean-field Hamiltonian Ĥsp

of Ref. [14] and used pairing approach. The amplitudes
of the occupation probability vn and un are related by
u2
n = 1−v2n and En is the energy of the nth quasiparticle.

Nowadays, the potential energy of a nucleus is usu-
ally generated within various self-consistent microscopic
models, however, in this work, due to the very exten-
sive six-dimensional space of nuclear deformations, a
more effective solution seems to be reasonable. Thus,
calculations are performed with a still widely exploited
macroscopic-microscopic model with Strutinsky shell cor-
rection of 6th order and particle-projected BCS approach
[15–17]. The strength of the pairing force is given by an
(A,Z)-dependent phenomenological formula of Ref. [18].
For a wise choice of mean-field potential, pairing interac-
tion and the smooth liquid-drop energy prescription, the
macroscopic-microscopic method offers quite realistic es-
timates of V̂ (α2, α3) function.
Due to significantly different energy scales of the col-

lective vibrational and rotational motions, they are as-
sumed here to be totally decoupled. Consequently, the
rotational Hamiltonian term ˆHrot depends only on the
Euler angles Ω, and parametrically on the static deforma-
tion and the pairing gap parameters (∆n,∆p) for protons
and neutrons, determined in equilibrium state by a given
spin value I. The spin-dependent energy equilibrium ap-
pears when the potential plus the rotational energy of a
rotating nucleus of given spin in the form:

EI
tot(α2, α3,∆n,∆p; I) = V (α2, α3,∆n,∆p) +

I(I + 1)ℏ2

2J⊥(α2, α3,∆n,∆p)
(4)

reaches its minimum in the deformation-pairing space.
Obviously, the cranking moment of inertia with respect
to the axis perpendicular to the symmetry OZ axis,
J⊥(α2, α3,∆n,∆p), entering Eq. (4), is calculated for a
given spin value I, the actual deformation and the BCS
occupation probability amplitudes u and v, as:

J⊥(α2, α3,∆n,∆p) = 2ℏ2
∑
kl

|⟨k|ĵ⊥|l⟩|2

Ek + El
(ukvl − ulvk)

2.

(5)

The operator ĵ⊥ expresses the single-particle total an-
gular momentum along the axis perpendicular to OZ. If
the non-axiality α22 is taken into account, J⊥ can be ei-
ther Jx or Jy, depending which of them is larger. This
choice, similarly as in classical mechanics, guarantees the
strongest stability of the collective rotation.
Since, as widely discussed in [8, 9], the eigenstates of

the Hamiltonian (2) must be symmetrized with respect to
the specific symmetrization Ḡs = D4y group, the Hamil-
tonian itself, (including rotational Hamiltonian term) has
to be scalar with respect to this group. Then, by special
choice of the deformation space, the potential energy op-
erator V̂ (α2, α3,∆n,∆p) and the kinetic term are both
D4y−symmetric by construction. An identical property
must occur for the rotor Hamiltonian. In contrast to the
traditional form of the triaxial, D̄2−symmetric rotor, it
is convenient to construct it out of the irreducible tensors
of Ḡs group, as presented in details in Refs. [8, 9, 19, 20].
In this context, one can say about a systematic way of
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building rotor Hamiltonians, symmetric with respect to
a demanded symmetry group. Let us emphasize that Ḡs

should be considered as a subgroup of the full symmetry
group of the Hamiltonian associated only with purely
rotational transformations, which can, in general, be dif-
ferent if other than mentioned in subsection (IIA) set of
αλµ shape variables is chosen.

Having diagonalized the Hamiltonian (2) in the space
of D4y symmetrized basis functions constructed out of
the six-dimensional harmonic-oscillator multiphonon so-
lutions, as in Refs. [8, 9], we obtain full set of collective
energies for which the reduced probabilities of electric
dipole, quadrupole, and octupole transitions B(Eλ) are
determined. A certain subset of its low-energy eigen-
states, which have collective energies together with the
interband and intraband B(Eλ) values close to those,
measured for low-lying bands, can be considered as the
models of experimentally populated spectra of given spin,
parity etc.

III. RESULTS

A. Total energy

The shape evolution of the nucleus with an increase
in angular momentum is still a complex problem. The
open question is whether the nuclear shape can change
within a single band and if there exists a possibility to
notice it. It is clear that in this context, the presence of
microscopic shell effects whose energies are a fraction of
the value of the nucleus’ liquid-drop energy, are crucial
for low-energy rotational transitions of the order of tens
of keV, considered in this work.

In the present model, based on the intrinsic configu-
rations characterized by the dipole, quadrupole and oc-
tupole deformation tensors, αλµ, or the corresponding
multipole moments Qλµ, Euler angles and parameters
describing the field of pairing interactions, ∆p(n), the ro-
tational states are obtained as eigen-solutions of the full
vibration-rotation Hamiltonian (2).

The pairing interaction, determined in the BCS
method with an approximate projection onto a good
number of particles [16], are included both in the po-
tential energy function of the macroscopic-microscopic
model in the form of a pairing energy correction to the
LSD liquid drop energy [21] and through the amplitudes
of the pairing probabilities in the microscopic cranking
formula [12] on the moments of inertia. The idea of us-
ing the moments of inertia varying with nuclear spin in
the rotational part of the Hamiltonian gives, in a macro-
scopic way, the influence of Coriolis and centrifugal forces
on the energies and structure of rotational states.

Currently, the total energy, for a given spin value,
is minimized over axial and non-axial quadrupole
(α20, α22), octupole (α30,α31, α32, α33) and hexadecapole
(α40) deformation parameters. Additionally, the mini-
mization has also been performed over the pairing ∆n,p

for neutrons and protons, independently.
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FIG. 1: The total energy minimized over deformation param-
eters (α20, α22, α3ν , ν = 1, 2, 3) and pairing ∆n, ∆p gap pa-
rameters, displayed in spin I and axial-octupole deformation
plane for 220Rn and 226Ra.

The global behavior of the energy minimum in the
spin-mass asymmetry plane is presented in Fig. 1. The
minimum of total energy changes smoothly towards
higher octupole deformation and is well localized for the
almost constant value of α30 ≈ 0.17 for 226Ra. For lighter
220Rn nucleus, this trend is more dynamical leading to
a rapid energy increase as function of spin. In addition
to the axial deformation parameters α20 and α30, other
non-axial degrees of freedom describing the quadrupole
and octupole shape oscillations of the nuclei in question
are not excited in low spin collective rotational motion.
A more convincing comparison of energy profiles is

shown in Figs. 2, where the lines go through the min-
ima of total energy (4) with respect to the energy of the
spherical nucleus for given spins, I = 0, 4, 8, 10 ℏ for (a)
220Rn and (b) 226Ra as a function of the octupole defor-
mation parameter. The energy lines in 226Ra correspond-
ing to different spins are almost parallel, revealing very
little effect of collective rotation on the shape of, in fact,
quite shallow octupole energy well, which exists even in
a non-rotating system. A tiny depth of the octupole well
of around 0.5 MeV in 226Ra is also reported in other
theoretical estimates, e.g. [1]. As also predicted in [2],
this nucleus does not undergo significant rearrangements
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a)

b)

FIG. 2: Evolution of the total energy for 220Rn (a) and 226Ra
(b) with spin.

in the intrinsic structure; however, the variable field of
neutron pairing indicates that this nucleus is not at all
a classcal rotor. This can also be easily observed by ex-
amining the distortions of the spacing between measured
levels from the I(I + 1) pattern in the low-lying bands,
also shown in [2].

The case of 220Rn is more interesting as the lo-
cation and depth of the minimum octupole energy
change abruptly with spin. As mentioned earlier, due
to the relatively large softness of the potential energy
surface around the ground-state point along axial oc-
tupole shapes and mainly neutron pairing-induced rapid
changes in microscopic moments of inertia as a function
of deformation and spin, the increasing rotation rate pro-
vokes an immediate shift of the equilibrium state towards
increasingly reflection-asymmetric shapes.

a)

b)

FIG. 3: Pairing energy gap ∆ values for protons (red) and
neutrons (green) obtained after energy minimization for se-
lected spin values, I = 2 ℏ (a) and 6 ℏ (b) for in 220Rn. The
evolution of moment of inertia value, (J⊥), is also displayed
(magenta).

B. Impact of pairing correlations

The pairing correlations are known to be sensitive
to collective processes. In particular, the increase of
the velocity of collective rotation causes, in general, a
weakening of the pairing mean-field. The critical spin
where pairing abruptly decreases due to Cooper pair scat-
tering depends on the pattern of single particle levels
around Fermi level, as e.g. density of levels or pres-
ence of energy gaps which may change with deforma-
tion, excitation energy etc. The behavior of pairing de-
grees of freedom in a given collective process can be
reconstructed in a natural way in microscopic theories,
as e.g. commonly used Hartree-Fock-Bogoliubov or a
more simplistic version of this known as Hartree-Fock-
Bogoliubov+Cranking (HFBC) developed, e.g. in [22].
However, a similar dependence of the pairing ∆ in the



6

a)

b)

220
86Rn134Delta Pairing

0.0 0.1 0.2 0.3

Octupole Deformation α30

0

2

4

6

8

10

Sp
in

(~
)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

MeV

0.0 0.1 0.2 0.3

Octupole Deformation α30

0

2

4

6

8

10

Sp
in

(~
)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

MeV

∆p

∆n

c)

d)

226
88Ra138 Delta Pairing

0.0 0.1 0.2 0.3

Octupole Deformation α30

0

2

4

6

8

10

Sp
in

(~
)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

MeV

0.0 0.1 0.2 0.3

Octupole Deformation α30

0

2

4

6

8

10

Sp
in

(~
)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

MeV

∆p

∆n

FIG. 4: Proton and neutron pairing ∆ values in spin and deformation α30 plane compared for 220Rn (a,b) and 226Ra (c,d),
obtained by minimizing the total energy (4) over all axial and non-axial quadrupole and octupole deformation parameters.

equilibrium point for a given spin I can also be repro-
duced within a variational scheme by minimizing the to-
tal macroscopic-microscopic energy with an additional
classical rotational term dependent on the deformation
and the pairing-dependent microscopic moment of iner-
tia, as used in Eq. (4).

Figure 3 shows the comparison of the ∆ values for pro-
tons and neutrons in 220 Rn obtained by minimizing the
total energy given by (4) in nine-dimensional space over
α20, α22, α30, α31, α32, α33, α40 and ∆n, ∆p. The J⊥
moment of inertia is also presented. For a low value of
spin (I = 2 ℏ), the proton ∆p decreases with increas-
ing deformation α30, reducing the pairing energy correc-
tion, thus effectively increasing the contribution of the
Strutinsky shell energy correction, capable of creating an
octupole energy minimum. As seen, this trend is under-
going a kind of saturation, starting from I ≈ 5 ℏ. At the
same time the neutron ∆n changes rather weakly with
the deformation α30. This behavior for ∆n persists also
for higher spins.

Comparison of the pairing ∆s as a function of spin and
axial octupole deformation for the studied nuclei 220Rn
and 226Ra are shown in Fig. 4. At first glance, one can
notice a rapid decrease in the neutron pairing parame-
ter ∆ with increasing spin throughout the entire range
of octupole axial deformation that, in the case of 220 Rn,
practically falls to ∆n ≈ 0 for I = 9 ℏ and α30 ≈ 0.2 (re-

gion of strongest shell effects), indicating the transition
from superfluid to normal state in the neutron distribu-
tion.

A less pronounced effect of this kind has been noted in
226Ra, but some fluctuations of ∆n are observed for low
spins, I = 0, 1, implies a slight reorganization in neutron
shell structure, reflected in Fig. (2) as a minor decrease
in the depth of the potential energy well just after the
collective rotation is switched on.

In contrast, the proton ∆ field is poorly affected by
the external rotation in both nuclei, because the pair-
ing correlations are very weak for I=0. The above ob-
servations for ∆n can be explained by the fact that, as
the angular velocity of rotation increases, the interacting
neutron valence levels in 220Rn and 226Ra (panels a-b)
under the influence of the Coriolis force evolve rapidly
towards maximum alignment, leading to decoupling of
the corresponding time-reversal correlated pairs. Never-
theless, these arguments do not entirely apply to proton
interacting orbitals in both nuclei (panels b-d), which,
due to the less favorable values of the quantum numbers
j and m, are much less susceptible to alignment. These
theoretical results are in line with the predictions on the
octupolarity character of our two nuclei, contained in the
experimental work [2].
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FIG. 5: Moment of inertia for in the equilibrium points of
220Rn and 226Ra as function of spin.

C. Impact of rotation term

Knowledge of microscopic moments of inertia as a func-
tion of spin (Fig. 5) becomes particularly important for
nuclei, where the character of octupole instabilities can
dynamically vary with rotation frequency. Then, most
often, the nucleus is not an easily predictable classical
rotor of spin I with energies proportional to I(I + 1),
but its shell structure and consequently, its equilibrium
shape may experience strong variations with collective
rotation. In such nuclei, there may happen a change in
the nature of the octupole instability: an initially vibra-
tional nucleus may gradually become octupole-deformed,
where, with increasing rotation frequency, such an energy
well stabilizes its minimum position and depth. Such a
phenomenon is favored by substantial ”softness” of the
potential energy function to changes in octupole defor-
mation. In such a case, the equilibrium configurations
corresponding to neighboring spin values within a band
may differ significantly in terms of deformation and pair-
ing interaction properties defined, e.g. by the ∆ gap pa-
rameter. As shown later, this behavior is fully observed
in the nucleus 220Rn in contrast to 226Ra, whose intrin-
sic structure is less sensitive to the influence of external
rotation.

Studying Fig. 5 we are convinced that the use of con-
stant, rigid-body or even microscopic moments of inertia
across the energy band would be meaningless in nuclei
with an internal structure highly susceptible to external
rotation, such as 220Rn nucleus. On the other hand, in
the second 226Ra system studied here, the low-energy se-
quences resemble the behavior of a classical rotor. For
this case, a comparison of model bands generated using
a constant moment of inertia with the one in which it
changes with spin can reveal the level of non-collectivity
in the rotational mode.
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FIG. 6: Changes of moment of inertia for the minimum-energy
deformation with respect to its ground-state value in 220Rn
and 226Ra nuclei for various pairing ∆n and ∆p parameters.

The pairing ∆n,p is known to modify the values of the
moment of inertia as shown in (Fig. 6). Especially, in the
limit of ∆ → 0 this moment can increase even by a factor
of 2-3 compared to the value in superfluid equilibrium,
reaching in a well-deformed quadrupole nucleus the value
of the moment of inertia of a rigid body. The plotted vari-
ation of the ground-state microscopic moment of inertia
as a function of pairing ∆n and ∆p gaps evolves smoothly
but the rate of increase depends on the changes of occu-
pation probabilities with rotation speed, different in both
nuclei. In well deformed 226Ra (α20 ≈ 0.17, α30 ≈ 0.1)
the moment of inertia J⊥ grows much faster with decreas-
ing pairing ∆ than in nearly spherical 220Rn. This study
sheds some light on the problem of the pairing collective
vibration effect, to which we also refer in the following
sections, results in a value for the most probable pairing
∆ that is typically lower by 20-30% on average than its
static BCS solution.

This implies that for the range of ∆n, 0.5 ≤ ∆n ≤ 0.8,
the changes of moments of inertia are the fastest. Such
∆n values occur for spins I = 4 − 7ℏ, where the transi-
tion energies between the 4+ and 6+ or 3− and 5− states,
reported in the following sections, are visibly overesti-
mated. Therefore, a thorough study of the pairing vibra-
tion problem, gives hope for obtaining larger moments of
inertia in this range of spins than at present, which would
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FIG. 7: The microscopic (pairing and shell) part of total en-
ergy in 220Rn for I = 0, minimized over axial and non-axial
quadrupole α2µ and octupole α3µ deformation parameters,
displayed in (α20, α30) deformation plane.

significantly reduce the mentioned transition energies. A
similar reasoning leads us to the general conclusion that
this effect will cause the expected ”compression” of both
discussed collective spectra in 226Ra in a rather homoge-
neous manner.

Changes in the moment of inertia with spin I obtained
from the minimization of the energy (Fig. 4) over nine
degrees of freedom of deformation and pairing fields:
α20, α22, α3ν , (ν = 0, 1, 2, 3), α40, ∆n, ∆p, denoting
axial and non-axial quadrupole and octupole deforma-
tions, and neutron and proton pairing gaps, respectively,
is presented in Fig. 5. As both discussed here nuclei are
practically axially symmetric in their energy equilibrium
states, the Jx and Jy values are almost indistinguishable.
An interesting trend of the moment of inertia can be

observed in 220Rn. As shown, in case of no rotation,
this nucleus is in the ground state almost spherical with
α20 ≈ 0.05 and α30 = 0. In view of earlier remarks, the
collective rotation of such a configuration cannot be de-
scribed by rigid body moments of inertia that give Jx a
few dozens of ℏ2/MeV but rather with the use of mi-
croscopic estimates, producing a realistic, small value of
Jx ≈ 2 − 3 ℏ2/MeV . As the rotation angular velocity
increases, that is, for I > 2ℏ, the total energy mini-
mum starts to gradually shift toward octupole deforma-

tion α30 ≈ 0.15, which has not yet been achieved for
I ≥ 5. In parallel, the emerging reflection-asymmetric
energy well is becoming deeper and deeper, stabiliz-
ing the octupole permanent deformation in this nucleus.
Such phenomenon is a result of relatively weak quan-
tal effects in this nucleus. In terms of the macroscopic-
microscopic approach, the pairing energy correction oc-
curs to be strongly sensitive on collective rotation, par-
ticularly in the neutron part, as depicted in Fig. 4 by
fast lowering of the ∆n parameter with I, thus tending
to weaken the total pairing contribution in the region of
emerging octupole energy ”pocket”. On the other hand,
the spin-independent Strutinsky shell energy term, whose
value is, in general, greater than the pairing correction
energy (see, Fig. 7) and having opposite sign, is effec-
tively responsible for substantial susceptibility of 220Rn
to octupole deformation (octupole softness). As a result,
when the pairing term decreases with increasing spin, the
shell energy becomes more and more dominant, creating
an increasingly pronounced octupole energy minimum.
As already mentioned, intrinsic structure rearrange-

ments in nuclei under external rotation are the Coriolis
and centrifugal effects which result from the coupling of
collective rotation to the single-particle angular momenta
of the valence nucleons, forcing them to align along the
angular velocity vector, see, e.g. [22]. This alignment
obviously leads to a reduction in the total energy of the
rotating system. The orbitals most susceptible to this
type of interaction are those with a relatively large total
angular momentum and the minimum possible projec-
tion of this momentum onto the quantization OZ axis
(as parallel as possible to the collective rotation axis).
This mechanism contributes to a gradual weakening of

the pairing field with increasing spin until one or a few
nucleonic Cooper pairs break completely, thus affecting a
significant increase of the moment of inertia. The above
microscopic mechanism can be easily explained in terms
of the sign of the derivative of a single-particle orbital
(ϵν , ν

ω) over rotational frequency ω, dϵν/dω, given as
e.g. in [22]

dϵν
dω

= −ℏ⟨νω|ĵ⊥|νω⟩. (6)

Leaving aside the question of the consequences of break-
ing the time-reversal symmetry in mean-field Hamilto-
nian due to the external rotation, relation (6) shows ba-
sically that with increasing ω, the orbitals above Fermi
surface, for which ⟨νω|ĵ⊥|νω⟩ is non-negligible and neg-
ative, can fall down closer to Fermi surface enhancing
the probability of scattering a correlated pair from under
Fermi level. This case is in favor of rapid alignment.
Otherwise, if such orbitals are moving away from the
Fermi surface, the correlated pairs respond more weakly
to increasing rotation speed, tending to reduce the pair-
breaking probability and the back-bending effect in mo-
ments of inertia.
Another important effect that can modify the moments

of inertia is vibration of the pairing field, mentioned as



9

collective pairing vibrations, proposed in [23] and suc-
cessfully applied, e.g. in [24–26] to reproduce and pre-
dict the spectroscopic observables using the Bohr Hamil-
tonian model. Briefly, apart from vibrations and rota-
tions of nuclear surface described by the change in time
of the deformation tensor components αλµ and Euler an-
gles, a nucleus may rotate and vibrate in the space of
the pairing ∆ and so called θ gauge angle parameters,
considered as additional collective variables. Similarly as
in the case of our Hamiltonian (2), the collective rota-
tion in θ space and vibration in ∆’s can be considered
independently with some specific inertia parameters. To
a fair approximation, the coupling of this motion to the
surface vibrations and rotations is negligible.

The resulting pairing ∆ parameters are essentially
lower by about 20-30% than the static BCS-PNP so-
lutions, thus providing some 30-60% increase in micro-
scopic moments of inertia (5). Since this effect is not
considered in detail as part of this work, we assume that,
on average, all moments of inertia in (2) will be increased
by a factor of 1.4, improving the consistency of rotational
level energy estimates with experimental data. However,
we are aware that above mentioned effect of pairing vi-
brations may change with spin of the nucleus, which will
make the multiplying factor also depend on it. We will
soon devote a separate work to this issue.

In turn, centrifugal effects, analogous to the classical
behavior of an elastic body undergoing rotation with re-
spect to a given axis perpendicular to the nucleus sym-
metry OZ axis, force changes in the elongation of the
nucleus with respect to the symmetry axis, usually as
a function of the rotation frequency with a concomitant
narrowing of the cross-sectional area of the nucleus. This
is referred to as the stretching effect [27]. Such induced
stretching, by changing the shape of the nucleus, leads to
reorganizing its internal structure and thus also its po-
tential energy and moments of inertia as direct functions
of the deformation and pairing variables.

As can be deduced, the primary goal of present calcu-
lations is first of all, to accurately determine the micro-
scopic moments of inertia of the nucleus in the deforma-
tion and the pairing variables space at fixed values of the
nucleus spin and then use them to determine the energy
and structure of the rotational levels as eigen-solutions
of Hamiltonian (2). Its eigenfunctions are further used
to calculate the reduced transition probabilities B(Eλ) to
model the low-lying bands.

D. Electric transition probabilities

Convincing evidence that most nuclei have non-zero
reflection-symmetric quadrupole deformation comes from
measurements of B(E2) electric transitions resulting from
the charge distribution in the quadrupole deformed
body. Similarly, octupole-shaped proton distribution
contribute to enhanced B(E1) electric dipole and B(E3)
octupole transitions between rotational states of opposite

parity.

It is known, however, that the B(E1) value consists not
only of the contribution of purely collective effects, but
also of microscopic shell effects. The role of B(E1) rates
to unambiguously resolve the nature of octupole instabil-
ity in a given nucleus is therefore limited. The collective
component of the dipole transition operator is the result
of the interplay of the purely dipole deformation vari-
ables, which, if small enough, contribute essentially to
the displacement of the nucleus’ center of mass relative
to the onset of the coordinate system, and the magni-
tude of the coupling between octupole and quadrupole
deformations. Such determined, say, macroscopic values
of B(E1) matrix elements are still significantly influenced
by the aforementioned fluctuating single-particle effects,
as well as by the inhomogeneous electric charge distribu-
tion associated with the variable curvature of the nucleus
surface, as discussed in [1], which, however, are not con-
sidered in this work.

A more reliable indicator of octupole correlations may
therefore be B(E3) transitions, which result directly from
the reflection-asymmetric charge distribution in the nu-
cleus volume, which essentially depends on the collective
behavior of the nucleus. Even if both octupole oscil-
lations and stable octupole deformations contribute to-
gether to the B(E3) value, it is possible to distinguish be-
tween the two types of octupole instability by performing
comparative analyses with other available observables,
such as energy spacing between band states varying with
spin, values of experimental spin alignment coefficients as
a function of rotational frequency, branching coefficients
of B(Eλ)s, etc.

The experimental data for 220Rn and 226Ra include
not only the energy spectra, but also selected values of
the reduced transition probabilities B(E1), B(E2) and
B(E3). A comparison of the measured and theoretical en-
ergy spectra and transitions is shown in Fig. 8, where J0
denotes the band-wide constant moment of inertia calcu-
lated for I = 0 and static BCS-PNP values of the pairing

gaps, ∆
(0)
p,n, while J(∆p,n; I) refers to its spin-dependent

value. Apart from B(E2)s, also dipole and octupole tran-
sition probabilities have been extracted from measure-
ment. The comparison with theoretical predictions are
given in Tabs. I and II.
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FIG. 8: Comparison of theoretical and experimental [1] bands
for 220Rn (a) and 226Ra (b) obtained with the spin-dependent
moment of inertia J(∆n,p; I) and, in case of 226Ra, ad-
ditionally with constant J0 value. Transition probability
B(E2)(efm) are marked in brackets.

TABLE I: Transitions B(E1) and B(E3) for 220Rn.

B(E1) (W.u.·10−5) J(∆n,p; I) exp. [28]

1− → 0+ 15 35

3− → 2+ 90 < 200

5− → 4+ 45 3+2
−1.6

7− → 6+ 200 < 5000

9− → 8+ 222

B(E3) (W.u.) J(∆n,p; I) exp. [28]

3− → 0+ 26 33±4

5− → 2+ 21 90±50

7− → 4+ 6.4

9− → 6+ 9.8

TABLE II: Transitions B(E1) and B(E3) for 226Ra.

B(E1) (W.u.·10−5) J0 J(∆n,p; I) exp. [29]

1− → 0+ 100 88 35±13

3− → 2+ 129 107 22±5

5− → 4+ 137 105 33±5

7− → 6+ 140 101 69±9

9− → 8+ 142 96 127±21

B(E3) (W.u.) J0 J(∆n,p; I) exp. [29]

3− → 0+ 0.007 13 0.157±0.015

5− → 2+ 0.009 16.2

7− → 4+ 0.006 16

9− → 6+ 0.002 7.5

Fig. 8 gives the comparison of rotational levels of the
ground-state and low energy negative-parity bands, gen-
erated by our collective Hamiltonian with microscopic
variable mass tensor and spin-dependent moments of in-
ertia, with experimental data. From more than a dozen
eigensolutions of the Hamiltonian characterized by en-
ergy, spin and phonon number of either quadrupole or
octupole excitation (band head), we selected several that
were identified as measured states. The theoretical bands
are made up of low-lying energy states of a given parity,
which are connected by the strongest intraband transi-
tions B(E2), which, as can be seen, have been shown
to be comparable to the measured ones. Both positive
and negative parity bands must be connected by a B(E1)
dipole of an order similar to that given in the experiment.
The decisive test of whether a given set of states consti-
tutes the desired bandwidth is the values of the interband
octupole transitions B(E3), which are assumed to differ
from the measured ones up to at most 2 orders of mag-
nitude. We are aware that better theoretical estimates
of that observables exist, e.g. [30]. Nevertheless, our
aim is to present the results obtained in an approach in
which there are no parameters adapted to the experimen-
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tal data relating directly to energy levels or electromag-
netic transitions.

As can be seen, in the nucleus 220Rn, the discordance
of the estimation of the energies of low-lying states ob-
tained with spin-dependent moments of inertia for spins
from 0+ to 8+(9−), compared to experimental values,
varies from a several tens of keV in the entire GS band
with the aforementioned exception of about 200 keV for
a single E6+ −E4+ transition energy. Similarly, an aver-
age discrepancy in the negative-parity band is less than
100 keV. In particular cases, it systematically grows with
spin from 40 keV between 1− partners, reaching about
180 keV for the pair of 9− states.
A similar conclusions apply to 226Ra, where the max-
imum inaccuracy within the range of 100-200 keV is
noted between the theoretical and experimental 7− and
9− states. Comparing the bands obtained using the spin-
dependent moments of inertia J(∆n,p; I) and their coun-
terparts obtained with the spin-independent J0 moment,
we find that the latter sequences are generally increas-
ingly stretched in energy with growing spin than the for-
mer, proving that the nature of this nucleus is far from
the collective behavior of I(I + 1), but to a lesser extent
than in 220Rn.
The fact that the discrepancy in question increases as a
function of spin indicates the need for a more accurate
treatment of the pairing forces in microscopic moments
of inertia, in particular considering the spin-dependent
effect of pairing vibrations, taken into account only on
average by increasing all moments by 40%. We believe
that this effect will help us to reduce the extremely small
(as little as 10 keV) energy gap between 1− and 3− mea-
sured in 220Rn, since it is supposed to result from the rel-
atively rapid change of shape, and thus moment of inertia
(from 2.3ℏ2/MeV for the I = 1− to above 10ℏ2/MeV for
3−) as the nucleus alters its octupolarity character from
initially vibrational, gradually toward a stably deformed
octupole with α30 ≈ 0.1 and α20 ≈ 0.05 for I = 3−. This
relatively rapid increase in moment of inertia with spin
makes both model spectra in question, generated at con-
stant moment of inertia J0 < 1 ℏ2/MeV would be highly
stretched in energy and thus not comparable in any way
to the experimental.
As for the electromagnetic transition probabilities, high-
lighted in Fig. 8 quadrupole B(E2) and listed in Tabs. I
and II B(E1) and B(E3), they remain in general agree-
ment to an order of magnitude with the measured values
in both nuclei. The difference of two orders of magnitude
in B(E3, 3− → 0+)=13 W.u. (versus experimental 0.157
W.u., see Tab. II for 226Ra), with respect to the experi-
mental value is, first, due to the absence of couplings of
the type α30×α20 in the octupole transition operator, as-
sumed in this work to be Q̂3 = 3ZR0 α30/4π and second,
as a result of above mentioned uncertainty about the in-
trinsic structure of the theoretical 3− state, which ranks
too high in energy relative to 1−. The last statement
seems obvious if one compares the two estimates of B(E3,
3→0+) in Tab. II, which differ by more than three orders

of magnitude for two different values of the applied mo-
ment of inertia. In turn, the second-order term in Q̂3 can
have a significant impact in a well-deformed state, where
both the equilibrium octupole and quadrupole α−type
deformations have significant values, of 0.11 and 0.17, re-
spectively. Note that the corresponding value of B(E3) in
the on-average very weakly quadrupole-deformed 220Rn,
where the product of α30 ×α20 is neglected, is quite well
reproduced using the above simplest form of Q̂3.
The general agreement of the results presented above
with the measured data proves the realistic nature of
the proposed collective Hamiltonian model, as well as
the correctness of the choice of states representing the
experimental bands. As can be seen from the aforemen-
tioned inconsistencies, the concept of pairing collective
oscillations still needs a proper implementation. Since
the model actually has only one free parameter in the
form of a constant coefficient, rescaling the moments of
inertia due to that effect, we believe that the obtained
estimates are satisfactory.

E. Conclusions

The presented work is devoted to investigate the char-
acter of the octupole instabilities in two nuclei, 220Rn
and 226Ra, which were predicted by the experimental-
ists more than two decades ago. Since these nuclei are
not classical rotors, the effects of Coriolis and centrifugal
effects are proved to modify the single-particle structure
around the Fermi levels. As shown, even if the mass num-
bers in these nuclei differ by six mass units (2 protons and
4 neutrons), the response of the pairing field on external
rotation leads to significantly different ways of evolution
of potential energy wells towards octupole deformation
with increasing spin. These effects are also evident in
the structure of the level diagrams of both nuclei, where
significant deviations from the parabolic dependence of
energy on spin are observed.
Although, the model used here is not a self-consistent

one, involving a modern effective nucleon-nucleon inter-
action and enabling for a proper treatment of subtle
microscopic phenomena, a complex transition from vi-
brational to stable deformed configuration is ultimately
achieved. This is possible due to large precision of the
calculations made on very dense deformation and pairing
∆ grid and ingredients of the macroscopic-microscopic
model well tested in different fields of nuclear physics.
The collective model used to determine the rotational
states with spin-dependent moments of inertia is capa-
ble of reproducing on average the energies as well as the
electric transitions within order of magnitude accuracy.
The problem of collective vibrations of the pairing field

is implemented only on average by rescaling the micro-
scopic moments of inertia by a constant for all states
factor of 1.4 to preserve the mutual layout of the pos-
itive and negative parity band members. A more de-
tailed study of this very important and also complex phe-
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nomenon as a function of nuclear spin will be the subject of future research.
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hoziński, Nucl. Phys. A 274, 151 (1976).

[18] J. Dudek, A. Majhofer and J. Skalski, J. Phys. G 6, 447
(1981).
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