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New liquid drop model with the isospin-square dependence of the volume and surface energy terms
is applied to reproduce experimentally known masses of nuclei with number of protons and neutrons
larger or equal to twenty. The ground-state microscopic energy corrections are taken into account.
In spite of the fact that the model contains only six adjustable parameters, the quality of mass
reproduction is good, and it is comparable with other contemporary mass models. Also, the fission
barrier heights of actinide nuclei evaluated using the topographical theorem of Myers and Świa̧tecki
are close to the data.
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I. INTRODUCTION

The liquid-drop (LD) model is one of the oldest nuclear
theories. Von Weizsaecker first proposed it [1] 1935. His
spherical LD model has reproduced with a reasonable
accuracy all measured at that time atomic masses. Four
years later, Meitner and Frisch [2] have added deforma-
tion degrees of freedom to the LD model to explain the
fission phenomenon discovered by Hahn and Strassmann
when bombarding the metallic uranium with neutrons
[3]. Also in 1939, Bohr and Wheeler proposed this new
phenomenon’s first theory by expanding the deformed
nuclear liquid drop surface in a series of Legendre poly-
nomials [4].

A modern version of the LD model was proposed in
1966 by Myers and Świa̧tecki [5]. They have shown that
the LD energy enriched by the shell and pairing effects
can describe well the binding energies and quadrupole
moments of known nuclei and gives a reasonable descrip-
tion of the fission-barrier height of heavy nuclei (see also

[6]). Unfortunately, neither the Myers and Świa̧tecki
LD formula nor its refined version called the droplet
model could adequately reproduce the barrier heights of
medium-heavy and lighter nuclei [7]. In addition, it was
shown by von Groote and Hilf [8] that a further cor-
rection to the LD model, namely the curvature term, did
not change much in this respect. Due to these results fur-
ther development of the nuclear LD model was stopped
in practice for more than three decades. Other much
more complicated models like the droplet, Yukawa-folded
(YF), Yukawa-plus-Exponential (YpE), or Finite-Range
Droplet Models (FRDM) have been used to obtain within
the so-called macroroscopic-microscopic (mac-mic) ap-
proximation [5] of the binding energies and the fission
barrier heights (for overview look, e.g., Ref. [9]).

Twenty years ago, it was shown in Ref. [10] that the

original model of Myers and Świa̧tecki with an addi-
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tional term containing the curvature energy can simul-
taneously describe the experimental binding energies of
all known at that time isotopes as well as the fission
barrier heights. One has to stress that this Lublin-
Strasbourg-Drop (LSD) model has reproduced the data
with better or comparable accuracy than any other more
advanced theories containing even more adjustable pa-
rameters (e.g., Refs.[11, 12]). In the following years,
some other parametrizations of the nuclear liquid-drop
formula were studied (see, e.g., [13–15]). Unfortunately,
the fission-barrier heights estimated using these models
are pretty far from the experimental or estimated ones
[21].
In the present paper, we will follow the idea of Moretto

et al. [15] and use the quadratic in isospin dependence
of the nuclear part of the binding energy in the LD for-
mula. Namely, contrary to Moretto, we allow a differ-
ent isospin-square dependence of the volume and surface
terms here. Such extension with respect to the version
(i) of the Moretto et al. LD model [15] allows to repro-
duce much better the experimental masses from the last
mass-table [22]. We have used the microscopic energy
correction evaluated by Möller et al. [23] to perform the
mass fit.

II. THEORETICAL MODEL

A typical nuclear LD formula consists of volume, sur-
face, and Coulomb energy terms:

ELD = Evol +Esur ·Bsur(def) +ECoul ·BCoul(def) . (1)

Only the first term is deformation-independent since one
assumes that the volume of the nucleus is conserved,
while the other terms change with deformation. One has
to evaluate their variance assuming some parametriza-
tion of the shape of the deformed nuclei. The geometri-
cal, deformation-dependent factors Bsur and BCoul have
to be evaluated for a given shape parametrization of the
deformed nucleus (see, e.g., [16]).
We assume the following isospin-square dependent

liquid-drop (ISLD) formula for the energy of a spherical
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nucleus (see also Ref. [15]):

EISLD(Z,A) = −avolA ·
(
1− 4κvol

T (T + 1)

A2

)
+asurA

2/3 ·
(
1− 4κsur

T (T + 1)

A2

)
+
3

5
e2

Z(Z − 1)

A1/3
+ Eodd(Z,A)

−3

4
e2

(
3

2π

)2/3
Z4/3

r0A1/3
.

(2)

Here, Z and A are a nucleus’s charge and mass num-
bers, and e2 = 1.43996518MeV·fm is the elementary
charge square. Here, the volume and the surface part
of the binding energies are dependent on the square
of the isospin of nucleus T (T + 1), which is equal to
T = |Tz| = |N − Z|/2, where N = A = Z is the neutron
number. It is easy to show that

4T (T + 1) = |N − Z|(|N − Z|+ 2)

while in typical LD model were |N − Z|2 present. The
odd-even energy Eodd is assumed in the following form:

Eodd(Z,A) =

 2∆ for Z and N = A− Z odd ,
∆ for Z or N odd ,
0 for Z and N even .

(3)

The last term in Eq. (2) describes the Coulomb exchange
energy [24].

Note that the linear in isospin term in the ISLD
model (2) corresponds to the Wigner (or congruence)
energy present in typical LD-like models (confer, e.g.,
[5, 12]). In addition, in the ISLD model, the deforma-
tion dependence of this linear in |N − Z| is well defined,
whereas, in Ref. [12], one has to add an additional phe-
nomenological deformation dependence in order to ob-
tain a doubling of the congruence at the scission point,
when two fission fragment nuclei are born. The only
free, i.e., adjustable, parameters of the ISLD model are:
avol, κvol, asur, κsur, r0, and ∆.
The following equation gives the mass of an atomic

nucleus:

Mth(Z,A) = Z ·MH +N ·Mn + EISLD + Emicr

− 0.00001433Z2.39 ,
(4)

where MH=7.289034 MeV and Mn=8.071431 MeV are
the hydrogen and neutron masses measured with respect
to the mass unit. The microscopic energy correction orig-
inates from the shell and pairing effects. It is equal to
the difference between the ground-state energy of the nu-
cleus and its spherical macroscopic energy. The last term
approximates the shell energy of electrons.

The Fourier-over-Spheroid (FoS) shape parametriza-
tion [17, 18] has been shown to reproduce nuclear shapes
very close to the optimal shapes obtained by the Strutin-
sky variational procedure [19] and allows to evaluate pre-
cisely the liquid drop energy at the saddle point. Know-
ing this energy, one can estimate the fission barrier height

(Vsadd) with the help of the Myers and Świa̧tecki topo-
graphical theorem [12]

Vsadd = Mmac
sadd −Mexp(g.s.) , (5)

where Mmac
sadd is the macroscopic mass at the saddle point

and Mexp(g.s.) is the ground-state experimental mass.

The argument of Świa̧tecki in favor of Eq. (5) was that
the shell, or better to say microscopic energy corrections
at the saddle-point, are small as the fissioning system,
tries to avoid hills and holes on its way to fission. Of
course, such argumentation is only valid when one dis-
cusses the energy of the highest saddle point, not the
deformation of the nucleus at the saddle point. It was
shown in Ref. [20] that the above rough approximation
reproduces fairly well the experimental fission barrier
heights.

III. NUCLEAR MASSES IN DIFFERENT
MACROSCOPIC-MICROSCOPIC MODELS

In the last issue of the atomics mass table [22], there
are 2259 measured and 906 estimated masses of isotopes
with Z,N ≥ 20 having the experimental error smaller
than 1.5 MeV. All these masses are taken to find the
best set of six adjustable parameters of our ISLD model
(2). The mean square deviation of theoretical estimates
and the experimental masses is minimized to obtain the
best set of parameters. The microscopic energy Emicr

from the Möller et al. mass-table [23] were used when
evaluating the masses of isotopes using Eq. (4). Two pa-
rameter sets are found: one (a) corresponding to 2259
measured masses and the second one (b) obtained using
3165 measured and estimated masses. The r.m.s. devia-
tion, which is a measure of the fit quality, is taken in the
following form:

σ =
1

n

n∑
i=1

(Mth −Mexp)
2 , (6)

where i runs over all isotopes taken into account. We
have also evaluated σ for three traditional models:
Thomas-Fermi (TF) of Myers and Świa̧tecki [12], LSD
of Pomorski and Dudek [10], FRDM of Möller et al. [23].
The results are presented in Table I, where n corre-

sponds to the number of nuclei with the measured masses
(1st raw) and those 3165 nuclei having measured masses
or derived not from purely experimental data and system-
atics (2nd raw), denoted by # sign in the mass-table [22].
Surprisingly, the 28-year-old Thomas-Fermi model pre-
dicts these 906 additional masses better than the FRDM.
Also, the LSD model made in 2003 describes both exper-
imental data and all experimental and estimated data
very well, proving its good predictive power. It is seen in
Table I that the ISLD model with only six adjustable pa-
rameters fitted to the experimental data for 2259 isotopes
(a) reproduces the isotope masses with even better qual-
ity than the FRDM from which the microscopic energy
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TABLE I: Root mean square deviations (in MeV) of the ex-
perimental masses [22] and the theoretical ones evaluated in
different models.

n TF LSD FRDM ISLD (a) ISLD (b)

2259 0.669 0.523 0.536 0.532 0.638

3165 0.874 0.817 0.956 0.939 0.760

corrections are taken. Of course, the r.m.s. deviation
of the theoretical and measured masses grows when one
makes the fit to all 3165 masses. So, an additional fit
(b) of the ISLD parameters was performed when all 3165
isotope masses were considered.

A question appears, which set of the ISLD parame-
ters should be used? The one fitted to the experimen-
tal masses only (a) or that adjusted to all experimental
and estimated masses (b). Answering this question, one
has to note that more than half of the isotopic masses
of heavy nuclei with mass-number A ≥ 220 listed in
the mass table [22] corresponds to the estimated, not
the measured data. In addition, the pure experimen-
tal masses are only less than 10% of the data for the
super-heavy nuclei (SHN) with Z ≥ 104. So, the ISLD
parameters listed in Tab. II which corespond to the fit
(b) are recommended when describing the properties of
the heavy and super-heavy nuclei.

TABLE II: The parameter set of the ISLD (2) model fitted to
the experimental and derived from systematics masses (case
(b) in Tab. I).

avol κvol asur κsur r0 ∆

MeV - MeV - fm MeV

-15.48409 1.8778 17.58207 2.2667 1.21589 11.62
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FIG. 1: Difference of the atomic mass estimates obtained us-
ing the ISLD (b) and the LSD [10] models.

One has to mention here that we have also per-

formed mass fits by using a similar as (2) LD formula
but with the curvature term (proportional to A1/3) and
the Coulomb redistribution terms (∼ Z2/A). However,
adding such two terms to the ISLD formula almost did
not change the r.m.s. deviation from the data.
It is well known that the nuclear masses predictions for

nuclei close to the β-stability line obtained within differ-
ent macroscopic models are close. Significant differences
between the models may appear when one goes toward
the proton or neutron drip lines. This effect is illustrated
in Fig. 1, where the differences between the ISLD (b)
and LSD mass estimates of all bound systems are shown
as a function of neutron (N) and proton (Z) numbers.
It is seen that the deferences do not exceed the range
(-0.5, 0.5) MeV for isotopes with A ≤ 220 laying between
the two-proton drip and β-stability lines. Also, both es-
timates are close to each other for neutron reach isotopes
close to the β-stability line. In the region of super-heavy
nuclei and for isotopes close to the two-neutron drip line,
the ISLD masses are even 1.5 MeV larger than the LSD
ones. Differences in the mass estimates may be signifi-
cant for the prediction of the astrophysical r-process or
stability and decay of the SHN.

IV. POTENTIAL ENERGY SURFACES AND
FISSION BARRIER HEIGHTS

The LSD and ISLD macroscopic energy surfaces of
250Cf are compared in Fig. 2. We have used here the
FoS shape parametrization [18]. One has assumed here
that the macroscopic energy of a spherical nucleus (c =
1, a4 = 0) is zero. It is seen that the surfaces obtained
in both models are close to each other, and only tiny dif-
ferences can be noticed. Namely, the ISLD fission valley
(top row) is slightly deeper and corresponds to more elon-
gated shapes than the LSD one. The bottom of the LSD
valley around the scission configuration (bottom raw) is
located at the elongation c = 2.62. It is located around 4
MeV above the ISLD exit from the valley which appears
at c = 2.70. Such differences in energy and elongation of
the nucleus in the macroscopic scission point may have
some influence on the total kinetic energy (TKE) of the
fission fragments. On the other hand, the stiffnesses of
LSD and ISLD potentials with respect to the fission frag-
ment mass asymmetry (Ah) (see the maps in the bottom
raw) are very close to each other. The saddle points in
both (c, a4) maps correspond to almost the same energy
(Esadd ≈ 1.3 MeV and are located around the deforma-
tion c ≈ 1.35 and a4 ≈ 0.06.
Such macroscopic saddle-point energies will be used in

the following to estimate the fission barrier heights of the
actinide nuclei by the topographical theorem of Myers
and Świa̧tecki (5).

The fission barrier heights estimated using Eq. (5) and
the ISLD and the LSD parameters are compared in Fig. 3
with the experimental data taken from Refs. [25, 26] as
well as with the theoretical estimates of the highest fission
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FIG. 2: Macroscopic energy surfaces of 250Cf on the (c, a4) plane (top) and around the scission configuration (bottom) are
evaluated using the LSD (l.h.s) c and ISLD(r.h.s.) formulae. Here c is the elongation of the nucleus, a4 is related to the neck
size, and Ah is the heavy fission fragment mass number [18].
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FIG. 3: Fission barrier heights evaluated with the ISLD set
of parameters are compared with the empirical/experimental
data taken from Ref. [25] (triangles) and [26] (stars) and with
the theoretical values (squares) obtained within the mac-mic
model in Ref. [27].

barrier made in Ref. [27]. The experimental, or better to
say empirical, fission barrier heights come mainly from
analysis of the fission cross-section energy dependence
and fissionability of nuclei, supplemented by data ob-
tained from analysis of the excitation functions of spon-
taneously fissioning isomers and the group of strong res-
onances in the sub-barrier fission cross-section [25, 26].
The theoretical barrier heights tabulated in Ref. [27] were
evaluated within the 7D mac-mic model with the YpE
macroscopic energy part and the microscopic energy eval-
uated using the Woods-Saxon (WS) single-particle po-
tential.
As one can see, the fission barrier heights obtained us-

ing the Myers and Świa̧tecki topographical theorem and
the LSD and ISLD models underestimate, in most cases,
the experimental barrier heights while those of Ref. [27]
are, as a rule, larger than the experimental values. One
can expect that the fission barrier evaluated in similar
as in Ref. [27] but with the ISLD macroscopic part of
the energy will be closer to the data as the topographical
theorem says that the effect of the microscopic energy
part at the fission saddle is small but not equal to zero.

V. CONCLUSIONS

We have shown that the new liquid drop mass formula
with the asymmetry term proportional to the isospin
square (ISLD) describes the presently known experimen-
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tal and estimates masses well. One has to stress here that
the ISLD formula contains only six adjustable parame-
ters. The other models contain more free parameters,
e.g., the 21 years old LSD mass formula [10], which repro-
duces the binding energies even better than the FRDM
theory [23], possesses eight directly fitted parameters
and five others (in the congruence/Wigner and odd-even
terms) taken from the adjustments made in Ref. [11]. In
this place, it is good to remember that microscopic mod-
els, which typically have up to 14 parameters in the in-
teractions, can reproduce 2149 experimental masses with
the r.m.s. deviation equal to 0.798 MeV [28].

It was also shown that both ISLD and LSD models de-
scribe well the fission barrier heights of the heavy nuclei.
The ISLD model predicts slightly larger atomic masses

than the LSD one in the super-heavy region of nuclei
and for neutron-rich isotopes close to the neutron drip
line. This difference in the mass estimates could be sig-
nificant for SHN physics, and it can influence the nuclear
r-process probabilities, which is very important in astro-
physical theories. Also, the ISLD model predicts more
elongated shape of fissioning nuclei at scission configura-
tion than the LSD formula. This effect can influence on
estimates of the fission fragment TKE and their charge
equilibration (confer Ref. [29].

We plan to perform extended dynamical calculations
like those made in Refs. [18, 29–32] but use the new ISLD
formula when evaluating the potential energy surfaces of
fissioning nuclei.
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