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The shell-correction energy is calculated using the single-particle levels obtained with
the folded-Yukawa mean-field potential. Three different ways of evaluation of the shell-
correction are compared: the traditional Strutinsky method, the modified prescription by
the smearing of the total energy sum in the nucleon-number space, and by the smoothing
of the single-particle energies of occupied states and summing them up. The dependence
of these three energies on nuclear elongation is investigated.

1. Introduction

In spite of the great success of the selfconsistent models the macroscopic-microscopic

method 1 of calculating the nuclear binding energies is still a powerful tool giving

satisfactory results for nuclear masses, fission barriers heights and sizes of nuclei.

The Lublin-Strasbourg-Drop (LSD) model 2 gives quite satisfactory description of

the mentioned global properties of the nuclei when the appropriate microscopic shell

and pairing corrections (taken from the tables 3) are added to the macroscopic part

composed of the volume, surface, curvature and Coulomb energy terms.

An alternative prescription to the traditional Strutinsky shell-correction method

(I) 4 was proposed in. Ref. 5, where one performed the averaging of the single-

particle energy sum in the nucleon number space (II). It turns out that the new

shell-corrections evaluated for spherical nuclei are deeper (i.e. negative and larger

in absolute value) as compared to the traditional Strutinsky results 4, while for the

deformed isotopes the two estimates do not differ much. It was shown in Ref. 6

that the including of the collective zero-point vibrations could bring the value of

the new shell energy towards the experimental estimates, which could mean that

the new method can lead to a reasonable estimate of nuclear masses. Similarly as

in Ref. 5 the averaging in the particle number space can also be applied to the BCS

energy in order to obtain an estimate of the pairing correction 7.

Another way (III) of evaluating the shell-correction energy by summing up the

smoothed single-particle energies is presented in this paper. All the three methods

are compared for Ca and Sn isotopes.
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2. Nuclear energy

In the macroscopic-microscopic method the binding energy E of a nucleus consists

of the macroscopic part and the microscopic corrections for protons and neutrons

E = Emacr + E
(p)
micr + E

(n)
micr . (1)

The microscopic correction due to the shell and pairing effects of protons (p) and

neutrons (n) is

Emicr = δE
(p)
shell + δE

(n)
shell + δE

(p)
pair + δE

(n)
pair . (2)

In this paper we are only interested in the shell-correction and its dependence

on the nuclear elongation c 8. The single-particle energies are obtained by the

diagonalisation of the single-particle Hamiltonian with the mean-field given by the

folded-Yukawa potential 9,8. The shell effects in the nuclear energy are obtained by

smoothing out the single-particle level scheme and subtracting this average value

from the sum of the single-particle energies 4.

3. Shell-correction methods

The shell-correction energy can be expressed as the difference between the sum of

the single-particle energies over occupied states and the corresponding smoothed

energy

δE
(q)
shell =

∑

νocc

e(q)
ν − Ẽ(q) = E(q) − Ẽ(q) , (3)

where (q=p) for protons and (q=n) for neutrons.

We are going to discuss here the three ways of evaluating the shell-corrections:

the traditional Strutinsky approach 4, consisting of a smearing of the single-particle

energy spectrum in energy (e) space (I), the method proposed in Ref. 5 by smoothing

in particle number (N 1/3) space of the whole single-particle energy sum (II) and

the new prescription to obtain the average single-particle energy by the summation

of the previously smoothed in the N 1/3 space energies of occupied single-particle

states (III).

(I) In the traditional Strutinsky method 4 one defines the averaged, in the

energy, density of the single-particle states

g̃(e) =

∞∫

−∞

g(e′) j

(
e − e′

γ̃

)
de′ (4)

through the smoothing procedure of the exact single-particle level density g with

the Gauss function multiplied by a M th order correctional polynomial (see e.g.

Ref. 5) which in the case of M = 6 has the form

j(u) =
1√
π γ̃

e−u2

(
35

16
− 35

8
u2 +

7

4
u4 − 1

6
u6

)
. (5)
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The smooth energy Ẽ(q) is obtained by the integration of the average density of the

single-particle states over energy from −∞ to λ̃q, where λ̃q is the average Fermi

energy fixed by the particle number conservation.

Ẽ(q) =

eλq∫

−∞

g̃(e) e de ,

eλq∫

−∞

g̃(e) de = N . (6)

It was shown in Ref. 5 that the smoothed energy Ẽ(q) calculated in this way did not

always coincide with the averaged sum of the single-particle energies which could

be visible for near spherical nuclei 10,5.

(II) In the N 1/3-averaging method the smoothed energy Ẽ(q) is approximated

by the following form:

Ẽ(q)(N) = S̃N + b N4/3 + V0 N , (7)

where S̃N is the average of the difference Sn between the sum of the single-particle

energies and the corresponding global energy sum dependence as in the harmonic

oscillator potential

Sn =

n∑

ν=1

eν − b n4/3 − V0 n . (8)

A quantity S̃N can be determined using a Gauss-Hermite folding procedure

S̃N =

Nmax∑

n=Nmin

1

3 n2/3
Sn j

(
N1/3 − n1/3

γ

)
, (9)

where the weight function j(u) is defined by (5) with γ instead of γ̃. The parameter

γ is the smearing width, for which the plateau condition of S̃(γ) is fulfilled. For

heavier nuclei γ is of the order 0.5 − 1.0. The parameters b and V0 of Eq. (8) are

fixed by minimizing the mean-square deviations:

Nmax∑

n=Nmin

Sn
2 = min , (10)

where Nmax and Nmin given by
(
N1/3 ± 3γ

)3
respectively. Contrary to the tradi-

tional procedure this new approach yields a smooth energy which is, indeed, the

average of the single-particle energy sum in Eq. (3). The shell-corrections estimated

with procedure (II) turn out to be smaller (larger absolute value) for spherical nu-

clei, but almost the same for deformed nuclei as compared to those evaluated using

the method (I).

(III) One can also introduce an alternative way of defining of the smoothed

single-particle sum. First, one averages the single-particle energies by folding in the

particle number space (N 1/3-space)

ẽ(q)
n =

∑

ν

e(q)
ν j

(
n1/3 − ν1/3

γ

)
(11)
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and then evaluates the sum of the smoothed energies

Ẽ(q)(N) =
N∑

n=1

ẽ(q)
n . (12)

Such a smoothed energy still gives the average estimate of the single-particle energy

sum and conserves exactly the nucleons number, not only on the average as it was

in the case of the traditional Strutinsky method (I). The results of method (II)

and (III) are almost the same which proves that the type of averaging in nucleon

number space is not so important.

The proper quantitative results now demand a new fit of the macroscopic model

parameters and of the pairing strength to the experimental masses. Appropriate

calculations are in progress (now). We can expect that the new methods (II) or (III)

will show new features of the nuclear energy surface: stronger binding of spherical

nuclei, new shape isomers or higher spontaneous fission barriers.

4. Results

Fig. 1 shows the results obtained with the folded-Yukawa mean-field level scheme

of 40Ca using the N -smoothing of the individual single-particle energies method

(III).
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Fig. 1. Single-particle levels scheme of neutrons for spherical 40Ca (l.h.s. panel) obtained with the
folded-Yukawa mean-field potential (crosses) compared with the smoothed single-particle energies
(Eq. (11)-open circles). (R.h.s.): The sums of the exact (solid line) and the smoothed ( Eq. (12)-
dashed line) neutron single-particle energies for a few Ca isotopes.

In the left panel of Fig. 1 the neutron single-particle energies e
(n)
n (crosses) are

shown as a function of n1/3 at the spherical shape (c = 1) 8. The smoothed single-

particle energies ẽ
(n)
n (11) are marked with open circles. In Fig. 1 they are shown for
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Fig. 2. The neutron shell-corrections of Ca (l.h.s) and Sn (r.h.s) isotopes obtained by methods (I),
(II) and (III) as functions of neutron number N .

discrete values of n (which are necessary in order to calculate the smoothed energy

(12)), though Eq. (11) defines ẽ
(n)
n for any continuous values of n). The right panel

of Fig. 1 shows the sum Ẽ(n) (see Eq. (12)) of the smoothed neutron energies of

spherical Ca isotopes with 15 ≤ N ≤ 35 (dashed line) compared with the sum E(n)

of the exact single-particle energies (Eq. (3)-solid line).
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Fig. 3. (L.h.s.) - Smoothed (dashed lines - ee
(p)
n ) and sharp (solid lines - e

(p)
n ) single-particle levels

of 6 protons closest to Fermi surface of 40Ca as functions of the nuclear elongation c. (R.h.s.) -
The sum of the proton single-particle levels (solid line - E(p)) and the energy smoothed by the
(III) method (dashed line - eE(p)(20)) in function of elongation c.
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As one can see from the right side of Fig. 1, the difference between E(n) and Ẽ(n)

is very small in comparison to the energies themselves. To represent this difference

(the shell-correction) better, we show it in Fig. 2 as a function of the neutron number

for a few Ca (l.h.s) and Sn (r.h.s.) isotopes. For a better comparison the shell-

corrections obtained by methods (I) and (II) are also shown. The magic numbers

N=20, 50, 82 are nicely reproduced by all the three methods. One can see that the

methods (II, III) lead to almost identical values of the shell-correction. At the same

time this values remain several MeV smaller than these obtained by the energy-

averaging method (I).

The deformation dependence of the smoothed single-particle energies (11) is also

worth investigating, see Fig. 3. Although the smoothed levels seem to be the regular

functions of the deformation, a tiny pick around the spherical shape (c = 1) is still

visible, which (after summation over the occupied states) leads to the maximum

in the smoothed single-particle energy sum seen in the right panel of Fig. 3. This

effect makes the shell-corrections shown in Fig. 4 smaller (dashed line - III) than

in the Strutinsky estimates (dotted line - I).

The comparison of the deformation dependence of the shell-corrections calcu-

lated by all the three methods is shown in Fig. 4 for 40Ca (top panel) and for
132Sn (bottom panel). It turns out the results of methods (II) and (III) remain very

close to each other. At the same time the shell-corrections (II) and (III) around the

spherical shape are larger (by absolute value) as compared with (I). This means

that in the new approaches (II) and (III) spherical nuclei and near- spherical nuclei

are calculated to be more bound than what is obtained in the traditional Strutinsky

method.

The difference between the energy smoothing (I) and the particle number

smoothing (II) was discussed in earlier works 11,5. This difference is caused by

the degeneration of the single-particle states and is especially large in the (magic)

particle numbers or deformations where the shell effects have the largest magnitude.

5. Conclusions

The estimate of the average single-particle energy by the sum (III) of the smoothed

single-particle energies in the particle number space is similar to that evaluated by

the N 1/3-averaging procedure of the single-particle energy sum (II). Both methods

lead to the deeper shell-corrections for spherical nuclei than the traditional Struti-

nsky result. The difference between the three estimates of the shell-corrections

becomes smaller with the developing nuclear deformation.
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Fig. 4. Proton (l.h.s.) and neutron (r.h.s.) shell-corrections obtained by Strutinsky method (dotted
lines - I), the averaging of single-particle sum in nucleon number space (solid lines - II) and the
summing of the smoothed single-particle energies (dashed lines - III) for 40Ca (top) and 132Sn
(bottom) as function of the nuclear elongation c. Averaging parameters are: eγ = 7 MeV, γ =0.5
(top), eγ = 10 MeV, γ = 0.75 (bottom).
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