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Global properties of spherical nuclei obtained from Hartree-Fock-Bogoliubov calculations
with the Gogny force
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Self-consistent Hartree-Fock-Bogoliub@FB) calculations have been performed with the Gogny force for
nuclei along several constaitand constanN chains, with the purpose of extracting the macroscopic part of
the binding energy using the Strutinsky prescription. The macroscopic energy obtained in this way is compared
to current liquid-drop formulas. The evolution of the single-particle levels derived from the HFB calculations
along the constarZ and constanN chains and the variations of the different kinds of nuclear radii are also
analyzed. Those radii are shown to follow isospin-dependent three parameter laws close to the phenomeno-
logical formulas which reproduce experimental data.
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[. INTRODUCTION are determined, which appear in excellent agreement with
those derived using the relativistic mean-field metti6d
Microscopic calculations using the effective nucleon-The formula obtained for the deformation-independent ratios
nucleon interaction proposed by Gogny have been shown tof proton to neutron rms radii is especially useful, since it
reproduce in a very satisfactory way a variety of nuclearshould be valid for all even-even nuclei, either spherical or
properties over a wide range of proton and neutron numberdeformed. Conclusions and perspectives for further work are
[1]. For instance, binding energies, separation energies dfathered at the end of the paper.

2
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one or two nucleons, and charge and neutron mean square
In view of this, it seems appropriate to use theoretical results . .
obtained in such a framework to derive systematics of The Gogny density-dependent effective nucleon-nucleon
tions concerning nuclear species or aspects of nuclear struc-
ture not yet known, such as neutron distribution radii or

In the present work, simple formulas are used in order to
represent the binding energies and the charge, proton, and 'WLs(Vl V2)><5(r1 fz)(Vl V,)- (014_02)
Fock-Bogoliubov(HFB) calculations with the Gogny force, . - -
and they are compared with existing phenomenological for- FTlo(1+XoPy) 8(r1—r) +Veoun
parametrizations that would avoid performing time- Y
consuming microscopic calculations when only rough esti-
liminary results have already been published in RES$4], range spin-orbit term, and a Zero-range density-dependent
for a smaller number of nuclei however. interaction, respectively, to which one has to add the Cou-
models used in this work. Section 11l explains how the basidion is made up of two distinct Gaussians with ranggsand
parameters employed in the self-consistent calculations have, Whose values are given beloRo and P+ denote the
single-particle level schemes of representative isotonic antesents the total density. _
isotopic chains are analyzed. Section V gives the method We use the Gogny D1R] interaction, the parameters of
corrections from the HFB energy. The “macroscopic Gogny
energy” obtained in this way is then parametrized by means W,;=-1720.30 MeV, W,=103.639 MeV,
the mass, charge, proton, and neutron radii and of the ratios B;=1300.00 MeV, B,=-163.483 MeV,
of proton to neutron radii are presented. Simple isospin- and

radii usually agree quite well with known experimental data. Il. THEORY
nuclear properties that could be useful for making predicforce is of the following forn[1]:
binding energies of superheavy nuclei.
neutron root-mean-squargms) radii obtained in Hartree- L
ri+ry
A2

mulas. Our aim is to determine simple but realistic enough
mates of the binding energies or radii are needed. Some prg\mich represents a central finite-range interaction, a zero-

Section Il presents a short overview of the theoreucallomb interaction in the case of protons. The central interac-
been determined. In Sec. IV, the results concerning thé&pin and isospin exchange operators, respectivelypaieg-
used to subtract the neutron and proton shell and pairing/hich are given below:
of a liquid-drop-like formulg5]. In Sec. VI, systematics of
mass number-dependent parametrizations of these quantities H,=-1813.53 MeV, H,=162.812 MeV,
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M,;=1397.60 MeV, M,=-223.934 MeV, (2 The obtained rms radii of the neutron, proton, charge, and

mass density distributions are obtained in the microscopic

w1=0.7 fm, u,=1.2 fm, HFB calculations in the usual way. In deformed nuclei, these

different radii contain the effect of the quadrupole and other

to=1390.6 MeV 7  x,=1, deformationg[8]. However, the ratios of proton to neutron

radii are almost deformation independent since the proton

y=1/3, W, s=130 MeV fnP. and neutron density distributions are very similarly de-
formed.

When pairing correlations are neglected, the HFB approach Starting from the HFB mean square ragfif), equivalent
reduces to the Hartree-Fo@dF) method which determines a spherical liquid-drop radiR can be defined through the ex-
self-consistent approximation of the nuclear mean field. The@ression

corresponding ground state enelgyg includes a contribu-

tion Egpe from shell effects which can be evaluated by ap- B \F N

plying the Strutinsky smearing procedu[&] to the HF R= 3 (ro, (8)
single-particle level distribution. The remaining part®i:

can be considered as a macroscopic, liquid-drop-like contriwhich follows from the formula giving the mean square ra-
bution E. Denoting bye, the HF proton or neutron single- dius of a uniform spherical density distribution of radirs
particle energies, the Strutinsky shell correction endtgy,

is (r3)= gRZ. 9

Eqher= >, 2€,—E, (3 These equivalent radii have then been fitted to a three
v parameter formula, with explicit isospin adddependencies,

whereE is the smoothed energy

+
1aA

R:roo

+§) A3=r (A DAYS (10

~ N
E=2J ep(e)de. 4
—w p(e) @ similar to the formula used in Reff9] in the analysis of the

- radii obtained from relativistic mean-field calculations. As

With the Strutinsky prescription, the smoothed dengitis  the ratios of the proton and neutron rms radii are almost
given by deformation independent, they could be well approximated
by the following formula depending only on the numbers of

_ 1 [(+= ., e—e protons and neutrons:
p(e)=—=| p(e)e ¢ f(—>de’. (5
= Y r N-Z b
—=c| 1l+a A +K . (12
where\ is the Fermi energyf the Strutinsky(sixth ordej fn

curvature correction polynomial, andthe width over which  riq 46t relation, together with the effect of the non-point-

smooth_ing_ _Of the §ingle-particle IeV(_aI scheme is_, performed"ke charge distribution of the proton evaluated with the ap-
The reliability of this procedure requires tHag,. displays a proximate formula

plateau when drawn as a functiongfseparately for protons
and neutrons. A crucial parameter in this respect is the num- (rﬁh)=<r,2)>+0.64 fre, (12)

ber of single-particle levels taken into account in the evalu-

ation of the shell correction. This problem will be discussedcan be useful for estimating the neutron radius of a nucleus

in Sec. V. when its rms charge radius,= (rZ) is known:
Subtracting from the Hartree-Fock energy the shell cor- = AT
rection energies of neutrori&}, ., and of protonsE?, ., one ‘/<rczh>_0'64 frrf
gets the following estimate of the macroscopic part of the M= N—Z bl (13
binding energy: =
g )% cll+a A ta
Emac™ EvF— Eghell_ E’sjhell' (6)

. . o IIl. PARAMETERS OF THE CALCULATION
Another correction to the macroscopic part of the binding

energy is the contributiok ,,, of pairing correlations. This The nuclei studied in the present work are represented by
correction has been calculated for each nucleus by taking thHefosses and dots in thé(Z) plot of Fig. 1. These are the

difference between the enerdgy,g obtained in a full HFB  nuclei close to magic proton and neutron numbers and along
calculation with the Gogny force and the eneigy- com-  the g-stability line whose ground states are expected to be

puted using the simple HF method: spherical[10]. They include Ca, Sr, Sn, Sm, Pb, and Th
isotopes, thiN=50, 82, and 126 isotone chains between the
Epair= Enrs— Ene- (7) proton and neutron drip lines, and a fg8vstable spherical
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FIG. 1. (N,Z) plot of the spherical nuclei analyzed in the
present work. The circles indicate the-stable nuclei and the
crosses a few representative isotope and isotone chains.

nuclei betweerA=38 andA=218.

In the microscopic HF and HFB calculations, the self-
consistent equations have been solved in matrix form by ex-
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large enough for all these nuclei. The error bars indicate the
ranges ofi w for which the variation o does not exceed
100 keV. One can see that, with this number of HO shells,
relatively large changes ihw do not significantly affect
calculated values oEyr. Consequently, approximate ana-
lytical interpolation formulas can be used.

A large scale investigation of the values found in spherical
nuclei shows that an interpolation formula such as

N—-Z) s
homn=n| 1+k——|A (14)

can be adopted for all even-even nuclei, witandk depend-

ing on the numbeN,, of shells included in the bases. In the
present work, all the obtained valuestfab,,;, could be fitted
with the valuesn=64.05 MeV andk=—0.46. An even
more accurate interpolation formula, represented by the solid
curve in Fig. 2, has been obtained for the specific set of
nuclei for whichNy=14 is found to be a sufficiently large
number:

hwmin=(0.000A%—0.1A+21.1) MeV. (15)

bases made of spherical harmonic oscillgté®) eigenfunc-

tions. These bases depend on two parameters: the niNgber
of major HO shells included in the bases and the oscillator

parametet: w.
In the present study, bases wily=12, 14, 16, or 18

for the Ca up to the Pb isotopes and for e 126 isotones.

IV. SINGLE-PARTICLE LEVELS

In order to better visualize the origin of shell effects in the

major shells have been taken into account, depending on theuclei considered in this work, the Hartree-Fock single-

nucleus under study, the criterion being thé§ is large
enough to ensure convergence of the HFB enefyr£)
within a few keV. For each nucleus and each valudlgfthe
parameter. o has been chosen as the value,,;, that mini-
mizes the HF energi . The values ofi w,, obtained for
Ca, Sn, and Pb isotopes, and for tNe=126 isotones are
plotted in Fig. 2 as a function &k for Ny= 14, a value oN,

particle energies obtained with the Gogny force are plotted in
Figs. 3-5 for neutrongleft hand sidesand protons(right
hand sides The three figures correspond ltb=50, N=82,
andN= 126 isotones, respectively, and the levels are drawn
as functions of the proton numbgr They are labeled with
the usual radial quantum numbaevsorbital angular momen-
tum |, and total angular momentuin The numberdNg be-

ho,

min =(

No=14

hwpyi, [MeV]

b

0.0002A%-0.1A+21.1) MeV

AEpe = 0.1 MeV

FIG. 2. The dependence dh
of the parametefi w,;, of the N,
=14 HO bases employed in Ca,
Sn, and Pb isotopes. The error
bars indicate ranges ofw for
which the variation of the HF en-
ergy does not exceed 0.1 MeV.
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tween the levels indicate the number of nucleons necessanumbersNg=50, 82, 126, and 184. It is interesting to note
to fill all the levels located below. that the magnitude of the proton and neutfdg=50 shell

One can see that, in addition to the magic shells corregaps steadily decreases fromb6 MeV down to=4 MeV
sponding toNg=20, 28, 50, 82, 126, and 184, well-marked as the proton numbeZ increases from 20 to 90. This de-
subshells appear depending on the number of neutkbns crease does not occur in the case of the other magic numbers
For instance, subshells witkis=40 are clearly visible in the Ng=82 andNg=126.
neutron and proton level schemes of tie=50 andN =282
isotones, and\g=64 also appears as a subshell in the
=126 isotones.

In Figs. 6—11 the neutrofleft hand sides and proton
(right hand sidessingle-particle levels of the Ca, Sr, Sn, Sm, As explained in Sec. Il, the HF single-particle levels
Pb and Th isotopes are plotted as functions of the neutroshown in Figs. 3—11 have been used to separate HF binding
numberN. Subshells corresponding t8s=40, 64, or 100 energies into two components by means of Strutinsky’s
can also be observed in these figures besides the usual magiethod: a macroscopic part behaving smoothly as a function

V. MICROSCOPIC AND MACROSCOPIC PARTS OF
BINDING ENERGIES
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FIG. 4. The neutrorleft) and
proton (right) single-particle lev-
els in N=82 isotones versus the
proton numbetZ.
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FIG. 5. The neutrorleft) and

proton (right) single-particle lev-
els in N=126 isotones versus the
proton numbetZ.

of A and a shell correction reflecting the neutron and proton For this reason, the HF single-particle proton and neutron
shells. The method of Strutinsky is a subtle technique whiclevels included in the Strutinsky smoothing procedure have
demands a very careful choice of the number of singlebeen chosen in the following way: For lighter nuclei, a cutoff
particle states above the Fermi level included in the smoothin the single-particle energy has been introduced, having the
ing procedure so as to obtain a plateau in the variations afisual value\ + 2% wg, with A the proton or neutron Fermi
the shell corrections with respect to the smoothing wiglth  energy and: w, the average spacing between major shells.
In particular, including too many single-particle states withThe number of single-particle levels taken into account in
positive energies strongly affects the determination of thehis way is of the order of 30, with maximum energies 5
shell effects associated with occupied orbitals. This is so beMeV for neutrons and 15 MeV for protons above the Fermi
cause single particle states with positive energies are oblevel. In heavier nuclei, the number of levels included in the
tained in the present microscopic approach as a discrete s&mnoothing procedure was increased to 50, which corre-
whose energy spectrum and shell structure can strongly deponds to a cutoff in the single-particle energies of the order
of N\+4hwgy, i.e., 15 MeV for neutrons and 30 MeV for

pend on the choice of basis parameters.

Neutrons, Ca Protons, Ca
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Neutrons, Sr Protons, Sr
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protons. These numbers have been found to provide a satishell corrections of twelvél= 82 isotones ranging from Nd
factory stabilization of shell corrections in all the nuclei stud-to Pb are plotted as functions off(wg). In Fig. 13, the

ied in this work. different curves represent the shell corrections for neutrons
In order to find a plateau in the variations of the shell (top) and protongbottom) calculated inN= 82 (left) and N
corrections with respect to the widthappearing in Eq(5), =126 (right) isotones. One can see that, except for a few

y has been varied, taking as a scale the average shell spaciogses, as in the proton shell correctionsifyb and %Dy,
hwo=40A"3 MeV [11]. In fact Strutinsky calculations reasonable plateaus are always found around the vglue
generally obtain a plateau in the shell correction energy o= 1.2 w,. The results shown in the next figures are those
both protons and neutrons forin the vicinity of the tradi-  obtained with the latter value of the averaging width

tional value y=1.2hwq [11]. Figures 12 and 13 give ex- In the upper part of Fig. 14 the neutron and proton
amples of the variations with/(% wg) of the shell correc- (dashed lings and total(solid lineg shell corrections are
tions obtained in the present work. Similar behaviors aredrawn as functions oA for the Ca up to Th isotopegeft),
found in all the nuclei displayed in théN(Z) plot of Fig. 1. ~ N=50, 82 and 126 isotone&entej and B-stable nuclei

In Fig. 12, the neutroiisolid lines and proton(dashed lines  (right) included in this study. The lower part of this figure
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Neutrons, Sm Protons, Sm
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displays the corresponding pairing corrections calculated
from Eq. (7) . One observes that the variations of the shell Ep=|15.651—1.92%)A—18.921—2.1%)A%3
corrections nicely reproduce the expected pattern, with
minima located at magic proton and neutron numbers. Neu- 2 2
tron shell corrections are seen to be almost independent of —0.73——+1.99—| MeV, (16)
the nucleus neutron numbé\, as they should, and proton A3 A

shell corrections are found practically independenk.of

The macroscopic energi€g) obtained by subtracting the with | =(N—2Z)/A. The numerical parameters in this formula
proton and neutron shell corrections from the Hartree-Foclare in good agreement with those of Myers andigecki
energiesE ¢ for all the nuclei displayed in Fig. 1 are repre- (MS) [5], except for the coefficient in the last term: 1.99
sented by lines in the three upper plots of Fig. 15. A fit ofinstead of 1.21. This term represents the correction to the
these macroscopic energies using a liquid-drop formula o€oulomb energy of a charge liquid drop that accounts for the
the form proposed by Myers andaitecki [5] yields the  diffuseness of the proton density distribution. The correction

following expression: appears to be larger in the case of form(ll&)—the differ-
Neutrons, Pb Protons, Pb
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ence with the equivalent MS term reaches30 MeV in
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N

131

132 133

127
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N

133

energy scale. One observes that these differences do not ex-

252Fm—which compensates for the fact that the Coulombeceed 3 MeV, which represents less than 0.5% of the Btal
energy derived from the self-consistent results is larger thagnergy.
the MS one. Let us also note that the asymmetry coefficients

in the volume and surface terms of Efj6)—the coefficients

of I2—are not equal, contrary to what is assumed in the MS ) ) - )
formula. On the other hand, the parameters appearing in Eq, In order_to qlerlve systematics for the radii of all the nuclei
(16) are closer to those of the most recent best empirical fitsdisplayed in Fig. 1, Eq8) has been used to extract from the

where the whole set of presently known nuclear masses a

VI. RADII

rfjfferent—neutron, proton, mass, and charge—Hartree-Fock-

fission barriers is used, than to those of the various formula80goliubov rms radii, corresponding to isospin-dependent

derived from liquid-drop modelgl2].
The fitted macroscopic energ¥6) and the calculated val- microscopic rms radius is multiplied by5/3A~ 3. A fit of

ues Enaer are completely superimposed in the three uppethe obtained_values with formuld0) yielded the following

plots of Fig. 15. In order to better appreciate the quality ofparametrizations:

the fit given by Eq(16), the difference&, .. E\p are dis-

played in the lower part of the figure, using an enlarged

-
[=l ool

. Eghey [MeV]
A

1
N -+ -
[=l ool

17 1
. Eshoy [MeV]

. Eghey [MeV]

. Eghey [MeV]

. Eghey [MeV]

. Eghey [MeV]

. Eghey [MeV]

. Eghey [MeV]

radius constantsg, r§,

-

[=l ool
i
/

. Eghey [MeV]
A

. Eghey [MeV]

. Eghey [MeV]

Eghey [MeV]

- "%pp
-30 L L

0.6 1.4 22 3

¥ Hwo)

024309-8

r=1.171+0.12 +3.29A) fm,
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FIG. 12. Proton(dashed linesand neutron

(solid lineg shell corrections of the Nd up to Pd
N=82 isotones as functions of/(fhwg) with
fwg=40A"13 MeV.



GLOBAL PROPERTIES OF SPHERICAL NUCLEI ... PHYSICAL REVIEW 65 024309
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5k 4
s oL ha=40A"" MeV 1 %
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15
20 .
FIG. 13. Shell corrections for
2. neutrons(upper row and protons
(lower row) of N=82 (left) and
15 N=126 (right) isotones versus
10 vl (hwg) with hog
5k =40A"1° MevV.
g oF g
F10 &
15
20 | N=82 protons 1 -20 - N=126 protons 1
.05 | I R TR ST T S N o b 01
0.6 0.8 1 1.2 1.4 1.6 1.8 2 0.6 0.8 1 1.2 14 1.6 1.8 2
¥/ (hwg) ¥ (hwg)
rb=1.211-0.14 +1.83A) fm, (19 M
r—=1.04(1—0.27l—l.12A). (21
r=1.191+0.03 +2.70A) fm, (19 !
rgh: 1.221—0.19 +2.32A) fm. (20 This parametrization again appears very close to those de-

rived in the studies of Ref$3,4,9) mentioned above.

It is interesting to observe that the leading coefficient in Eq. Let us point out that the parametrization given by formula
(19) is almost equal to the usual valug=1.2 fm, although (21), which has been established for the spherical nuclei
thel andA dependencies included in the next terms may leaghown in Fig. 1, has been found later on to reproduce the
to significant deviations in the case of light or exotic nuclei.ratios of the HFB proton to neutron radii of all nuclei be-

The above parametrizations appear very close to thoswveen the proton and neutron drip lines, spherical or de-
derived in Ref[3] by taking into account the Ca, Sr, Sn, Sm, formed, in the range 20A<318. This latter result follows
and Pb isotopes only, and to those obtained in the analysis éfom large scale HFB calculations with axial symmetry pres-
the rms radii calculated in the framework of the relativistic ently under way with the Gogny force.
mean-field theory for a set of nuclei similar to the one envis- The results obtained in the present work are summarized

aged herd9]. in Figs. 16 and 17. The upper part of Fig. 16 displays the
Using formula(11), the ratios of proton to neutron radii mass HFB radiisolid lineg at constanZ (left), constantN
could be fitted with the parametrization (centey, and for B-stable(right) nuclei, together with the fits
30 T T T T 30 T T T T 30 T T T T
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20 | 4 20F 4 20 Betable . and proton (dashed lines shell
go LR Srensp e T | oLy NPONBE Nl ol corrections of Ca up to Th iso-
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 tOpeS (Ieft) N=50 N=82. and
A A A 7’ ’ ’
%0 %0 %0 N=126 isotones (centey, and
" EureEir — EureEre — EureEre — B-stable nuclei(right) versus the
2or 1 27 1 27 1 mass numberA. The lower row
%‘ 10F Ca SrSnSm Pb The EWO o N=50 N=82 N=126 EWO - Bstable b displays the pairing corrections
> =3 L _ a
5 O ¥ PNM WM s or VAV OF ot . calculated as the differencés,;
w10 | 4 w0 | 4 w0 | . =Eurg— Enr for the same nuclei.
20 4 20 4 20 E
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FIG. 15. The fitted liquid-drop
energy E,p given by Eg. (16)
(solid lineg for constantZ (left),
constantN (centej, and B-stable
(right) nuclei versus their mass
numberA. The differencesE e
—E,p are shown in the three
lower plots for the same nuclei.

FIG. 16. Upper row: total HFB
rms radii (solid lineg, and their
fits with formula (19) (dashed
lines) in constantZ (left), constant
N (centej, and B-stable (right)
nuclei. Lower row: HFB charge
radii (dashed linescompared with
experimental data (Ref. [13])
(crossesand with the fit given by
formula (20).

FIG. 17. Neutron(upper row,
solid lineg and proton(lower row,
dashed lines HFB rms radii of
constantZ (left), constantN (cen-
ter), and B-stable (left) nuclei
compared with experimental data
(Refs.[13,14) (crossesand with
formulas (17) and (18) (dashed
lines).
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given by Eq.(19). The lower part of the figure shows in a surface terms are found to be unequal, contrary to the MS
similar way the results obtained for charged radii. The fits ardormula, and the reduced radius parametgris slightly
given by Eq.(20), and experimental data, taken from Ref. smaller ¢,=1.19 fm instead of ;=1.205 fm). When all
[13], have been indicated by crosses. Calculated charge radibntributions are added, the differences betweer(Hj.and
appear in good agreement with experimental ones, except ime MS formula compensate, yielding nuclear binding ener-
a few cases. One must stress in this respect that the charg&s in agreement within 3 MeV.
radii obtained in the HFB approach do not include the influ-  (2) The rms of the neutron and charge distributions agree
ence of the long range correlations associated with collectivén a quite satisfactory way with experimental data. From the
oscillations of the mean field, such as random-phase approxset of nuclei studied in this work, systematics of the neutron,
mation ground state correlations or shape coexistence effecggoton, charge, and mass rms radii are obtained for spherical
occurring in soft nuclei. As is well known, these correlationsnuclei in the form of parametrizations depending on the mass
beyond the mean field may lead to a significant increase afiumber A and asymmetryl =(N—2Z)/A [see Eqgs.(17)—
HFB rms radii. (20)]. These parametrizations are of the same form as those
Figure 17 is the equivalent of Fig. 16 for neutr@mpper first proposed in Ref8]. The values of the parameters found
par) and proton(lower par} radii. Experimental data on pro- in the present work are consistent with those derived from
ton radii (crosses have been taken from Refgl3,14 and  experimental datf8] and from the microscopic calculations
the fits are given by formula&l7) and (18). performed in the framework of the relativistic mean-field ap-
Finally, as already pointed out in Sec. Il, the ratiggr , proach[6].
are deformation-independent quantities that can be used to (3) Systematics of the ratio,/r,, of the proton rms to
calculate the neutron radii of nuclei whose charged radii ar@eutron rms radii are of special interest because they are, to
known [see Eq.(13)]. From formula(21), one gets the fol- a very good approximation, independent of the nuclear de-
lowing expression for neutron radii as functions Af | formation and, in addition, they can be used to determine the
=(N—-2)/A and<r§h>, the mean square charge radius: value of the neutron radius of any nucleus, either spherical or
deformed, when its charge radius is knojsee Eq.(13)].
\/(rczh>—0.64 The parametrization af,/r, obtained from the set of nuclei
T1.041-027—1.12A) considered in the present stuflyq. (21)] appears in excel-
lent agreement with previous ones based either on experi-
mental datd8] or on the relativistic mean-field approaldi.
This parametrization can therefore be considered as robust
In this work, the results of self-consistent HFB calcula-€nough to be used for predictions concerning nuclei for
tions performed with the Gogny effective interaction for sev-which experimental data are not yet available, such as nuclei
eral isotopic and isotonic chains of spherical nuclei haveclose to the neutron drip line or superheavy elements.
been analyzed and compared with those given by phenom-
enological expressions and by the relativistic mean field ap-
proach. The more important conclusions that can be drawn
from this analysis are the following: We wish to express our thanks to Krzysztof Pomorski for
(1) The average binding energy of nuclei calculated bythe helpful discussions. The careful reading of the manu-
applying the Strutinsky smoothing procedure to the singlescript done by Jony Bartel is also acknowledged. B.N.P. is
particle level scheme obtained from the HFB self-consistenvery grateful for the hospitality extended to her by the Ser-
mean field, Eq.(16), is in excellent agreement with the vice de Physique Nuckire of the Center d’Etudes de
liquid-drop formula of Myers and \Biatecki (MS) [5]. The  Bruyeres-le-Chgel. The work was partially sponsored by the
main difference occurs in the term correcting the chargedPolish Committee of Scientific Research KBN Grant No. 2P
liquid-drop Coulomb energy for the diffuseness of the proton03B 115 19, POLONIUM Grant No. 017 04 U@001), and
density. Also, the asymmetry coefficients in the volume andN2P3 Convention 99-95.

M fm. (22

VIl. CONCLUSIONS
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