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The realistic single-particle Woods-Saxon potential was used to evaluate the mean-square charge
radii of even-even nuclei. The results are compared with experimental data and theoretical val-

ues obtained with the single-particle Nilsson potential.

An evidence for a need of improving of

the “universal” parametrization of the deformed Woods-Saxon Hamiltonian, suggested earlier, is
investigated in more detail and a possible solution of the optimization problem is formulated.

PACS number(s): 21.10.—k
I. INTRODUCTION

A compilation of the all experimental mean-square
charge radii (r2), obtained from elastic electron scatter-
ing on nuclei is presented in [1]. The use of laser and mass
spectroscopy techniques in measurements of the isotopic
shifts in the nuclear mean-square charge radii (MSR) has
resulted in a wealth of new information concerning this
fundamental property of nuclei [2-5]. The systematics
of the MSR and quadrupole moments can be used to
test the quality of theoretical models, and in particular a
competition between the macroscopic, “liquid-drop” fea-
tures and shell closures determining the sizes and shapes
of nuclei.

Over the years a number of theoretical papers have
been devoted to calculations of the isotopic shifts in the
MSR of the nuclei. For instance, in Refs. [6,7], the
ground-state static electric quadrupole and hexadecapole
moments and MSR of even nuclei were calculated micro-
scopically using the standard Nilsson single-particle po-
tential.

The later papers [8-10] on the MSR have been based
on the microscopic collective dynamical model and the
Nilsson potential with a set of parameters that are par-
tially determined by the Hamiltonian itself [11]. More
precisely, the Nl-shell-dependent Nilsson model parame-
ters pn; and kn; have been re-defined using three con-
stants adjusted simultaneously for the protons and neu-
trons while the NI dependence in u and s has been de-
fined phenomenologically using the corresponding nucle-
onic wave functions. The quality of the new parametriza-
tion has been tested on the spectrum of the spherical
nuclei only. However, it was shown [6-10] that within
parametrization [11] it was possible to reproduce the ex-
perimental isotopic shifts of the MSR. The theoretical
shifts were too large on average. Moreover, it has been
shown in Ref. [12] that the isotopic shifts of the mean-
square radii are well reproduced when the isotopic factor
in the oscillator frequency Ao in the Nilsson potential
was omitted.

The choice of the single-particle nuclear potential is
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of fundamental importance for a wide variety of nuclear
calculations. The aim of the present investigation is the
analysis of the mean-square radii of nuclei calculated with
the realistic Woods-Saxon potential [13].

An axially symmetric Woods-Saxon (WS) potential
has been earlier applied in predicting and explaining the
structure of the high-spin isomers [14], in analyzing the
nucleon binding energies [15], in reproducing the static
nuclear equilibrium deformations and moments [16], in
calculating the fission barriers and the number of the
single-particle effects for strongly deformed and fast ro-
tating nuclei [17,18]. It is of interest to check if the the-
oretical predictions of the mean-square radii calculated
with the Woods-Saxon potential reproduce the experi-
mental data, especially for nuclei far from the 3 stability
line.

An important advantage of the so-called universal
parametrizations of nuclear average-field Hamiltonian,
i.e., those which employ one single set of constants for
a very large number of nuclei (e.g., for all nuclei with
Z > 20 and N > 20) is that they may be used for extrap-
olating some nuclear properties into yet unknown nuclear
regions.

A universal set of parameters (cf. [13] for references)
adopted to the Woods-Saxon Hamiltonian has been
based on the earlier Rost [19] parametrization of the
central nuclear potential; however the spin-orbit part of
the potential which is mainly responsible for the single-
particle level order has been reanalyzed using a rich body
of experimental data in particular for the deformed nu-
clei.

While successful in describing quite well, on the aver-
age, the single-particle level order at the nuclear equilib-
rium deformations in nuclei with Z, N > 20, the universal
set of parameters [13] suffered from the unusually large
radius parameters introduced originally by Rost.

The corresponding values of 7o, = 1.347 fm and
rop = 1.275 fm for neutrons and protons, respectively,
exceed markedly the radius-parameter values known from
the literature of other nuclear phenomena. Moreover,
the nuclear high-spin calculations have revealed that the
microscopic results for the nuclear moments of inertia
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can be markedly exaggerated as well if the above radius-
parameters are used.

A series of tests of the idea of a universal parametriza-
tion of the nuclear Woods-Saxon average field has been
made in Ref. [20] where B(E2) and the nuclear separa-
tion energies have been calculated and compared with the
experimental data for several hundreds of nuclei through-
out the periodic table.

It has been concluded that the central potential radius
parameters need to be decreased to about 1.25 fm for pro-
tons and neutrons in order to improve an average agree-
ment with experiments on both quadrupole moments and
on the average rotational properties of deformed nuclei.

It is the purpose of this study to determine in more de-
tail the size of derivations caused by the above-mentioned
deficiency of the central potential parametrization in or-
der to suggest more precisely an amelioration of the over-
all performance of the Woods-Saxon Hamiltonian.

The microscopic static calculation of the MSR has been
performed in two steps: calculations of the equilibrium
deformations of nuclei and the evaluation of the MSR at
the equilibrium. The calculations were performed for the
nuclei around Sn with 46 < Z < 60 and for the rare-earth
nuclei 60 < Z < 70. The method of calculating the MSR
is described in Sec. II. In Sec. III the main results are
presented. Conclusions are drawn in Sec. IV.

II. THEORETICAL MODEL

The calculations were performed for even-even isotopes
in the range of 46 < Z < 60 and Z < N < 120, i.e., in
the Sn and in the rare-earth region with 60 < Z < 70
and Z < N < 150. The quadrupole B> and hexadecapole
B4 deformations were taken into account.

The ground-state energy of each nucleus has been eval-
uated using the Strutinsky [21] prescription. The energy
of a nucleus consists of the macroscopic liquid drop Eyip
[22] part and the shell correction §Egspen describing the
shell and the pairing effects:

Etot = ELD + 6Eshell- (1)

The shell corrections in Eq. (1) have been calculated as
usual [21] employing a correction polynomial of the sixth
order. We have used the single-particle spectra of the
Woods-Saxon deformed potential. As this potential is
widely described in the literature (see [13]), we restricted
ourselves to a brief presentation of the basic formulas.

The Woods-Saxon potential consists of the central part
Veent, the spin-orbit part V., and the Coulomb potential
Vcoul for protons:

VWS(F,ﬁa ,§'; /8) = Vcent(F; IB) + ‘/;0(7?717’ ,§'; ,6)
+VCoul(7_"; /6) (Za‘)

with
Ifso("?aﬁ’a g; /3) = '—A(v‘fcent X 1_7) - 5. (2b)

The central part is defined by

Vo[l £ (N — Z)/(N + 2))
[1+exp(i(7;8)/a)]

where a is the diffuseness of the nuclear surface, the plus
(+) sign holding for protons, the minus (—) sign for neu-
trons, and x = 0.86 [13]. The set of B\ parameters is
denoted by 8. The function I(7,3), describing the dis-
tance between a given point 7 and the nuclear surface,
has been determined numerically [13]. For spherical nu-
clei I(7,8 = 0) = r — Ry, where Ry = roA!/3 is the ra-
dius of the corresponding spherical nucleus. In the above
formulas 3 stands for the parameters characterizing the
nuclear shape:

‘/cent (Fv :8) =

®3)

R(0) = c(B)Ro |1+ D _ BaYro(cosh)| . (4)
A

The function ¢(3) ensures the conservation of the nuclear
volume with a change in the nuclear shape.

In our calculations we have used the single-particle WS
potential with the “universal” variant of its parameters
adjusted to the single-particle levels of all odd-A nuclei
with A > 40. The values of the 12 constants which de-
termine the WS potential parametrization are specified
in Ref. [13].

The residual pairing interaction has been treated
within the usual BCS procedure with the pairing strength
parameters taken from Ref. [23]. The equilibrium defor-

o o
mation parameters (85, 3,) have been calculated by min-
imizing the total nuclear energy according to Eq. (1).
The formulas for the microscopic multipole moments
Q», calculated as the mean values of the Q) operators in
the ground-state BCS wave function, are given by

or =S a2z, (5)

where ¢}, denotes the diagonal matrix element of the
Q» operator and v, denotes the BCS particle occupation
factor in a single-particle state | v). The summation runs
over proton states.

The proton mean-square radii (rf,
electric monopole moments Qo by

(r)* = Qo/Z. (6)

The charge distribution is obtained by the convolution
of the ponctual density (stemming from sp wave func-
tions) with a Gaussian form factor f(7) of the proton:

)4 are related to the

1 —2 2
) = ——ze /7, (7a)
(oy/7)
where o = 0.65 fm [24]. It is proven in [24] that the result
of folding process on the mean-square charge radii (r?)4
can be approximated by the following formula:

(r3)* = (r2)* + 1.507. (7b)

The experimental mean-square charge radii obtained
from electron scattering [1] and their isotopic shifts from
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the laser techniques [2-5] allow us to determine the abso-
lute values of the experimental RMS for a large number
of isotopes. Our calculated radii (r?)4 will be compared
with this experimental information in the following sec-
tion.

III. RESULTS

The equilibrium deformations were found by minimiz-
ing the ground state potential energies [see Eq. (1)] in
the B;-, B4- deformation space. The two-dimensional grid
of deformations,

B2 € [—0.40 (0.05) 0.45], (8a)

B4 € [—0.12 (0.04) 0.12], (8b)

has been presently used. The calculations of the equi-
librium deformations have been carried out by using the
“average” level spectrum of the 12°Xe nucleus for the nu-
clei in the Sn region (Z € [46-58]) and 92Dy for the
rare-earth nuclei (Z € [60-70]). Nevertheless in latter
calculations of the RMS the proper spectrum for every
nucleus was used.

The characteristic plot of the equilibrium deformations

o o

(B2, B4) of the rare-earth nuclei is given in Fig. 1 for illus-
tration. It can be seen from the figure that the position
of the equilibrium moves from a spherical shape for the
nuclei with N close to the magic number N=82, towards
positive hexadecapole deformations for lighter rare-earth
nuclei (Nd, Sm, Gd). The medium heavy nuclei have
the maximum quadrupole deformation while B4 is close
to zero. The heavier rare-earth nuclei show the charac-
teristic negative hexadecapole and decreasing quadrupole
deformations.

In Fig. 2 the mean-square radii of Sn-region isotopes
are shown. The results are presented for all the even-
even combinations of 46 < Z < 58 and Z < N < 100.
The curves are labeled by the chemical symbols of the
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FIG. 1. Values of the equilibrium deformation parameters
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(B, and B,) for rare-earth region of nuclei. The terminal
values of mass number A and chemical symbols of elements
are indicated at the end of each curve.
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FIG. 2. The mean-square radii of nuclei (r?) of the Sn re-
gion. The results obtained with the WS potential are denoted
by empty diamonds, the Nilsson spectrum, as in Ref. [12], by
circles, and experimental values by crosses. The left-hand
scale corresponds to the palladium element. For clarity the
results of the remaining nuclei are shifted upwards by 2 fm?
each.

elements. The left-hand side scale corresponds to the
lightest nucleus, palladium. The other curves are shifted
upwards by 2 fm? each.

The MSR calculated with the single-particle Woods-
Saxon potential are denoted by the empty diamonds.
The results corresponding to the calculations with the
Seo-Nilsson [11] single-particle spectrum and without iso-

topic factors in the oscillator frequency ﬁxf!o as in [12] are
marked by empty circles. The crosses, joined by solid
lines, denote the experimental values [1-5]. It is seen
that the (r2) calculated with the single-particle Nilsson
potential reproduce the experimental data better.

The MSR obtained with the Woods-Saxon model are
in general too big as compared to the experimental data.
This effect is especially evident for the neutron-deficient
isotopes, far from the ( stability line. Also the depen-
dence of (r?) versus neutron numbers is not proper.

Figure 3 gives similar results for the rare-earth region
(Z € 60-70). Asin Fig. 2 the left-hand scale corresponds
to the lighter nucleus, neodymium. As previously, each
next curve is shifted upwards by 2 fm2. The results of
MSR based on the WS potential are on average about
0.5-1.0 fm? larger than the experimental data. Unfor-
tunately the experimental data for neutron-deficient iso-
topes of the tested nuclei do not exist for isotopes where
the difference between results of Nilsson and WS single-
particle spectrum becomes very large (~ 1.5-2.0 fm?).

In order to explain the discrepancies between results of
calculations of (r2) with the WS potential and the exper-
imental data, far from the 3 line of stability we have an-
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FIG. 3. The same as in Fig. 2, but for the rare-earth of
nuclei. The left-hand scale corresponds to the neodymium
isotopes.

15 T T T

Sp, er (MeV)

60 80 100 120 140 160
N

FIG. 4. The separation energies of proton S, defined as in
Eq. (9) and Fermi levels er obtained with the WS potential
for rare-earth of nuclei. The left-hand scale corresponds to
the dysprosium isotopes. The results of the remaining nuclei
are shifted upwards or downwards by 5 MeV each.

alyzed the proton and neutron separation energies. The
results are presented in Figs. 4 and 5.
The separation energies (proton or neutron) are de-

fined by "
Sp(N,Z) =0.5[B(N,Z) — B(N, Z - 2)], (9a)

S.(N,Z) = 05[B(N,Z) — B(N —2,Z)],  (9b)

where B(N,Z) denote the binding energy of even-even
nuclei, with Z protons and N neutrons. They can be
also interpreted as the experimental values of the actual
Fermi levels.

In Figs. 4 and 5 the proton and neutron separation en-
ergies S, (n) of rare-earth region nuclei are shown. The
experimental values are denoted by crosses. The theo-
retical ones, obtained using formula (9a and 9b) and the
nuclear masses from the tables by Moller and Nix [25],
are shown by circles. The corresponding Fermi levels ob-
tained with the WS potential are denoted by diamonds.
The left-hand scale corresponds to the dysprosium iso-
topes. Results for other nuclei are shifted upwards or
downwards by 5 MeV.

It is seen that for nuclei near the 3 stability line the
experimental separation energy of the last nucleon is in a
very good agreement with the actual value of the Fermi
level. The opposite situation is for the neutron-deficient
nuclei far from the 3 stability line. In this region the dif-
ference between the experimental S (,) values and the
Fermi energies is about 2-3 MeV, occasionally 4 MeV.
The calculations show that Fermi levels for protons lay
too high (or the depth of the WS potential is too small)
and exactly reverse for neutrons. It means that the uni-
versal set of parameters of the WS potential is good for
nuclei near to the 3 stability line but for isotopes far

15pF———mm——— 777

10 |

Sn, er (MeV)
&

_.10,

w15>

_gok

e | o Sn(th.) |

25 < St
F °er

ao

60 70 80 90 100110120130 140 150
N

FIG. 5. The same as in Fig. 4 for neutrons.
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from this line it does not reproduce the binding energies
correctly.

The position of the Fermi level depends mainly on the
radius parameter, 79 and depth of the central potential,
V. It is worth noticing that variation of ro and V act on
the single-particle spectrum mainly by “pushing it up”
or “pulling it down” whereas the other parameters of the
potential are responsible mainly for the relative positions
of levels.

The depth of the central potential is parametrized as

V = Vol  &(N — 2)/(N + 2)] (10)

with the plus sign (+) for protons and the minus (—)
for neutrons. The universal set of parameters quoted in
[13] employed too large values of the radius constants as
indicated in Sec. I. Consequently, for a fixed potential
depth the calculated Fermi levels should appear too low.
This has been counteracted by adjusting the Vp and
constants in Eq. (10) to several nuclei close to 3 stability
line.

Since the effective potential depth is determined by
both V4 and « values it becomes clear that a large range
of the N and Z variations will be necessary to determine
Vo and k with a sufficiently high precision. Our analy-
sis, although partly model dependent, has been extended
to the neutron-deficient nuclei in which the variation of
the isospin factor (N — Z)/(N + Z) is relatively rapid.
Consequently, our results should contain an improved in-
formation on the corresponding neutron deficient nuclei.
While the isotopic dependence of the depth of the poten-
tial is controlled by two parameters, Vg and x, the Fermi
energies are also strongly radius dependent. Our results
on the MSR values confirm the earlier observation of too
large radius constants contained in the universal set of
[13]. At the same time they indicate that the isotopic
spin dependence on Fermi energies is systematically too

strong. Consequently, the modification (decrease) of the
improved radius parametrization of the new universal set
to be constructed should be accompanied by an increase
of Vy and a decrease of k parameters.

IV. CONCLUSIONS

The following conclusion can be drawn from our inves-
tigation:

The model with the Woods-Saxon potential gives the
RMS in good agreement with experimental data on the
nuclei near the @ stability line only. The WS values of
RMS for the neutron deficient isotopes are too large.

The proton separation energies estimated with the
Woods-Saxon potential are too large for the neutron-
deficient isotopes, whereas for neutrons they are too
small.

Since the universal set of the Woods-Saxon potential
parameters has been fitted only for nuclei near the g
stability line, their use in the present form to the neutron
deficient region seems to be rather risky.

The calculations with Skyrme forces suggest that the
isotopic dependence of the depth of the nuclear potential
is weaker than that proposed in Woods-Saxon potential.
The new list of parameters for the WS potential should
therefore take into account the new information following
from our study: (a) smaller values of the central potential
radius parameter, (b) weaker isotopic spin dependence
[smaller k-values in Eq. (10)], (c) deeper central potential
constant [larger V; in Eq. (10)].

The second of the above observations corresponds, in
fact, with the results obtained by using different argu-
ments in Ref. [26].
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