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Abstract

We present a comparison of our model treating fission dynamics in conjunction with light-particle
(n,p,α) evaporation with the available experimental data for the nuclei126Ba, 188Pt and three
isotopes of the elementZ = 110. The dynamics of the symmetric fission process is described through
the solution of a classical Langevin equation for a single collective variable characterizing the nuclear
deformation along the fission path. A microscopic approach is used to evaluate the emission rates for
prefission light particles. Entrance-channel effects are taken into account by generating an initial spin
distribution of the compound nucleus formed by the fusion of two deformed nuclei with different
relative orientations. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The dynamical time evolution of the fission process from an initially formed compound
nucleus with a more or less compact shape to the saddle and scission configurations and the
simultaneous emission during this deformation process of light particles constitutes a very
complex problem. It is the aim of our study to describe this process taking into account the
excitation of both thermal and rotational nature, the initial configuration and to calculate
the evaporation of light particles from an excited, rotating, deformed nucleus on its way
from the initial compact shape to the scission point.

In the absence of a complete microscopic ab initio theory of such a dynamical process,
many different theoretical approaches aiming at its description have been worked out [6–9].
They generally rely on a classical description of the evolution of the collective coordinates
which are introduced as abundant variables. In these descriptions, collective parameters
appear (collective mass, friction, and diffusion coefficients) which depend on the collective
coordinates. It seems clear that the quality of the theoretical description will depend on the
more or less pertinent choice of the collective coordinates and the degree of realism of the
underlying theory used to determine the collective parameter functions. The importance of
pure quantum effects such as pairing correlations and the existence of shell effects which
are present at low excitation energies has been investigated recently [10–14].

The multiplicity and the characteristics (energies, angular distributions, correlation
functions) of prefission light particles and gamma emission may provide some useful
information on the time evolution of the nucleus as it evolves towards the saddle and
scission point. Observables like prefission light-particle multiplicities may, indeed, work as
a clock. Angular distributions and particle correlations may give information on the surface
and deformation of the fissioning nucleus.

We recently developed a realistic time dependent model which described the time
evolution of an excited nucleus as it is, e.g. generated in a heavy-ion collision and decaying
through symmetric fission with pre- and postfission light particle emission [15]. We applied
our description to the case of160Yb and made a detailed analysis of different physical
quantities characterizing the decaying system. We found a rather good agreement of our
theoretical predictions with the experimentally observed light-particle multiplicities.

More recently, several new sets of experimental data have become available [16–21]
with a more complete analysis of the emitted light particles. It is the aim of the present
work to systematically test our approach by a comparison with these experimental data.
The fact that these data are obtained in quite different regions of the periodic table makes
a comparison between calculated and experimental results all the more challenging.

A particular motivation for this work is the explicit description of the entrance channel
through which the initial spin distribution of the system is generated. This is achieved by
considering all possible relative orientations of the two colliding deformed nuclei in the
entrance channel. Their different orientations and the different possible impact parameters
of the reaction yield the initial spin distribution dσ/dL versusL which determines the
relative weights of the initial angular momentum of the compound nucleus with which the
Langevin trajectories are started.
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Still another motivation for the present work is the presentation of the link between
the well-known Weisskopf formula [22] and a new and more microscopically founded
description of the emission width for the light particles in terms of phase-space densities
of the particle to be emitted [23].

The paper is organized as follows: the dynamical model describing the time evolution of
a deformed, hot, and rotating nucleus from its initial to a final configuration is presented
in Section 2. In Section 3 we specify how to determine the emission rates for light
particles from a hot, deformed and rotating nucleus moving along the previously described
trajectory. In Section 4 we show how we obtain the initial spin distribution which has
been not considered in our previous study [15]. Our results concerning the nuclear systems
126Ba,188Pt and266,272,278110 are presented in Section 5. The paper is closed in Section 6
with a summary of the most relevant results and an outlook on planned extensions of the
model.

2. Collective dynamics of an excited system

We consider an ensemble of deformed nuclei with finite excitation energies and
rotational angular momenta as given by the initial conditions determined from the
entrance channel. The subsequent time evolution of the nucleus is governed in our present
description by a single collective coordinateq =R12/R0 whereR12 is the distance between
the two centers of mass of the left–right symmetric deformed nucleus andR0 is the radius
of the corresponding spherical nucleus having the same volume. This collective variable is
defined in the framework of a Trentalange–Koonin–Sierk (TKS) [24] parameterization of
the surface of the nucleus. The TKS deformation parameters are related toq by means of
a minimization procedure of the collective potential energy defined below [25].

Denoting the conjugate momentum byp(t) we use the following classical equations of
motion to describe the time evolution of the fissioning nucleus [15]

dq

dt
= p

M(q)
, (1)

dp

dt
= 1

2

(
p

M(q)

)2 dM(q)

dq
− dV (q)

dq
− γ (q)

M(q)
p+ FL(t). (2)

HereM(q) is the collective mass determined in the incompressible fluid approxima-
tion [26] and γ (q) the friction coefficient calculated in the wall-and-window friction
model [27]. The collective potentialV (q) is obtained as the difference of the Helmholtz
free energy at deformationq minus the one for the ground-state deformation.

The free energy could in principle be obtained from a microscopic mean-field calculation
at finite temperature. To perform such a constraint Hartree–Fock calculation using a
reasonable effective nucleon–nucleon interaction of the Skyrme or Gogny type at every
point in the multidimensional deformation space is, of course, completely out of question
due to the tremendous computer time such an analysis would involve. Even to perform the
same kind of calculation on the level of a selfconsistent semiclassical approximation like



28 K. Pomorski et al. / Nuclear Physics A 679 (2000) 25–53

the Extended Thomas–Fermi (ETF) method [28] at finite temperature [29], which would
describe the average nuclear structure without shell oscillations, would be far too time
consuming. This is why we have rather used a still simpler semiclassical approach and
the liquid drop model with the parameterization of Myers and Swiatecki [30] as explained
in Appendix A. We have tested the barrier heights obtained in this way versus the ones
obtained from selfconsistent semiclassical calculations (at zero temperature) and obtained
agreement within a few MeV as described in Ref. [25]. These calculations describe, of
course, deformation properties of non excited nuclei. In order to take nuclear excitation into
account we have used the temperature dependence of the LDM parameters associated with
the Skyrme SkM∗ interaction [31], determined for that interaction through selfconsistent
semiclassical calculations at finite temperature in Ref. [25].

To use the temperature dependence of the LDM parameters associated with the Skyrme
SkM∗ force together with the Myers–Swiatecki parameterization of the LDM is, of course,
inconsistent. Since approaches give very similar results for the semiclassical energy at
zero temperature this approximation seems, however, very reasonable. The semiclassical
approach used here is of course only an approximation at low temperatures since shell
effects are absent from our description. It is however well known that nuclear shell effects
are washed out with increasing nuclear temperature and have essentially disappeared
beyondT ' 2.5–3 MeV. At these temperatures the semiclassical results are becoming
exact. For the cold systems the fission barriers obtained with this potential are higher that
those evaluated by Sierk [33], but already at excitation energiesE∗ ≈ 90 MeV both barriers
become comparable and forE∗ > 90 MeV the barriers evaluated in our model are even
smaller than the Yukawa folded ones of Sierk.

The friction term and the Langevin forceFL(t) in Eq. (2) generate the irreversible
production of heat energy and the energy fluctuations respectively which both originate
from the coupling of the collective dynamics to the intrinsic degrees of freedom. In practice
one definesFL(t) = √D(q)fL(t), whereD(q) is the diffusion coefficient. We take the
simplifying point of view that it is related to the friction coefficientγ (q) through the
Einstein relationD(q)= γ (q) T , whereT is the temperature of the system. The quantity
fL(τ ) can be written in the formfL(τ )=√τ η, whereτ is a time step length corresponding
to a time interval[t, t+τ ] andη is a gaussian distributed random number with zero average
〈η〉 = 0 and variance〈η2〉 = 2 where brackets represent ensemble averages.

The Einstein relation is in principle valid at high temperature, in a regime where
the process can be described in a classical framework. Quantum effects (pairing, shell
corrections, collective shape vibrations) may be present at low temperatures and modify
the relation betweenD andγ [11–14]. We shall come back to this point later on.

In principle, one would have to treat each ensemble of nuclei with a given initial angular
momentumL and a given initial excitation energy microcanonically. We assume that we
may replace this microcanonical ensemble by a grand canonical one in which, instead of
the mean excitation energy, the temperatureT has a well-defined value at a given time.
This simplifying assumption is innocuous as far as themean valuesof observables are
concerned, but it may falsify the fluctuations to a certain extent. We assume that the time
scale which governs the fission dynamics is much larger than the internal equilibration
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time, otherwise the definition of a nuclear temperature would make no sense. Under these
conditions the system can be considered as being continuously close to equilibrium. We
suppose that the nuclear excitation energyE∗ is related toT through the usual Fermi-
gas expressionsE∗ = a(q)T 2, where a(q) is the level density parameter at a given
deformationq .

For practical calculations Eqs. (1) and (2) are rewritten in a discretized form and
numerically integrated over small time stepsτ [15]. In order to perform such an integration
one needs to start from some fixed initial conditions which define the beginning of the
process. We take into account the possible emission of light particles in every time step
and we make sure that the average total energy of the system will be conserved. This
determines the nuclear excitation energy and hence the temperature at each instant of time.

3. Particle emission from a hot, deformed, and rotating nucleus

Particle emission before scission is governed by transition rates0
αβ
ν (E

∗,L) which
determine the number of particles of typeν (we take into account neutrons, protons, andα

particles) emitted per unit time with an energyeα in an interval[eα− 1
21e, eα+ 1

21e] and
with an angular momentum̀β from a nucleus with average excitation energyE∗ and total
angular momentumL. In Ref. [15] we used the well-known Weisskopf formula [22] for the
partial width0αβν (E∗,L) in terms of densities of states of the emitting and residual nucleus
and of the transmission coefficientwν(e, `β) for emitted a particleν with given energye
and angular momentum̀β . The determination ofwν takes into account the deformation
and rotation of the emitting nucleus (see Appendix B of Ref. [15] for details).

In Ref. [23] another more microscopic determination of these transition rates was
proposed. In this framework the transition rates0

αβ
ν are given as

0αβν =
d2nν

dεαd`β
1ε1`, (3)

whereεα and `β characterize an emission energy and angular momentum lying in the
intervals[

εα − 1
21ε,εα + 1

21ε
]

and
[
`β − 1

21`,`β + 1
21`

]
,

respectively.
The numbernν of particles of typeν which are emitted per time unit through the surface

Σ of the fissioning nucleus is given by [23]

nν =
∫
Σ

dσ
∫

d3p′ fν
(Er ′0, Ep ′)v′⊥(Er ′0)wν(v′⊥(Er ′0)), (4)

where Ep ′, Ev ′ are the momentum and velocity in the body-fixed frame. The quantityv′⊥ is
the velocity component perpendicular to the emission surface at the surface pointEr ′0. The
Ep ′ =mEv ′ +mEω×Er ′ is the momentum of the particle of massm in the laboratory reference
frame andEω the angular velocity of the nucleus in this frame. Here and henceforward,
primed quantities refer to the body-fixed frame.
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The classical distribution in phase space reads

fν(Er ′, Ep ′)= 2

h3

θ(Er ′)
1+ exp

[ 1
T

(p′2
2m +U −ω`′ −µν

)] . (5)

The θ function is 1 if Er ′ lies inside the nuclear volume or on its surfaceΣ and zero
otherwise. The quantityµν is the chemical potential and̀′ the body-fixed angular
momentum in the direction perpendicular to the axis of rotational symmetry of the
deformed nucleus. The potentialU is taken as

U(Er ′)=−V0+ VCb(Er ′), (6)

whereV0> 0 is chosen as a constant mean field potential andVCb is the Coulomb potential
experienced atEr ′ by protons.

The quantitywν(v′⊥(Er ′0)) is the classical transmission coefficient for the emission of
a particle of typeν. The transmission factorwν was chosen to be the one of an inverted
harmonic oscillator [15].

The explicit relation of (3) with the Weisskopf formulation is discussed in Appendix B
for a spherical emitting nucleus with angular momentumL= 0. The rates given by (3) can
be worked out numerically if the distribution function in the phase space is known, what is
the case for the neutrons and protons but not for theα-particles. We are working on a model
which describes the distribution ofα-particles by folding of the distributions of four (2n
and 2p) correlated particles. The present approach is like the one of Ref. [15] and it allows
us, in principle, to determine the particle emission in a given direction of space, hence the
determination of observables like angular distributions and particle–particle correlation
functions. Such observables may be worked out in the future. We did not attempt to do it
here because of the lack of corresponding experimental data.

The transition rates0αβν are used in a simulation algorithm by means of which we
determine at each time step[t, t + τ ] along each classical trajectory whether a particle
of given type with an energy and angular momentum in given intervals is emitted or not
from the compound nucleus. Since the algorithm is already described in detail in Ref. [15]
we do not repeat it here.

3.1. Initial conditions and energy balance

In order to integrate the classical equations (1) and (2) we need to fix the initial
conditions from which the compound system starts and evolves either through a fission
channel to its saddle and scission point or stays as a compound system which only emits
light particles, i.e. ends up as an evaporation residue.

All the experimental systems which are considered in the next section are generated by
means of heavy-ion collisions at some bombarding energy. The nuclei which are involved
in the reaction process can be deformed. The initial conditions corresponding to the origin
of time are fixed byq0 andp0, the initial value of the collective variable and its conjugate
momentum and the spin distribution of the system which fixes the relative weight of the
angular momentum of the initial compound systems.
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The coordinateq0 is fixed at the value ofq where the collective potentialV (q) is
minimal and its conjugate momentum is drawn from a normalized gaussian distribution

P(p0)= (2πMT0)
1/2 exp

(−p2
0/2MT0

)
, (7)

whereM =M(q0) is the collective mass. The initial temperatureT0 is obtained through
E∗0 = a(q0)T

2
0 , whereE∗0 is the initial excitation energy which can be obtained from the

knowledge of the total energy as explained below.
In the reaction process, the compound nucleus can be formed with different values of

the angular momentum. If both nuclei are spherical it is easy to construct the initial spin
distribution under the assumption that the reaction cross section is given by the geometrical
expression

dσ(L)

dL
= π

k2 (2L+ 1), (8)

wherek is the wavenumber of the relative motion.
The situation is more complicated if one or both initial nuclei are deformed. In principle

one should then consider all possible relative orientations of the nuclei and follow their
relative trajectories from an infinite distance up to fusion. This implies the knowledge of
the nuclear and Coulomb potential for given relative distance between the centers of mass
and given orientation. This raises intricate problems which have been considered by several
authors [34–36] but not yet solved in their full generality.

In a first step we want to avoid such cumbersome calculations and restrict ourselves to
a simplified procedure which has been already proposed in former work [36,37]. In practice
we consider the scattering of spherical ions of fixed energyE and introduce the gaussian
energy distribution with the width

1E = δE +11E +12E, (9)

where δE is the experimental beam width,11E describes the slowing down of the
projectile in the target, and the quantity12E is the difference of the Coulomb barriers
between two extreme geometries of touching spheroidally deformed nuclei, i.e. with
aligned (tip on tip) or parallel (side on side)z-axes.

One can now work out the classical trajectories describing the relative motion of the
equivalent spherical ions for every initial angular momentumL in [0,Lmax], whereLmax

is the maximal angular momentum for the colliding ions and for a sufficient number of
energy values within the distribution defined above.

Repeating the trajectory calculations leads to the spin distribution(
dσF

dL

)
Li

= 2π

k2
Li
NF
i

Ni
, (10)

whereLi is the considered angular momentum,NF
i is the number of trajectories which

lead to fusion andNi is the total number of trajectories. The quantityk is the wave-number
of the relative motion of the incident nuclei. The present procedure, even though it is not
rigorous, leads to spin distributions which are rather realistic [36,37].
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Finally, in order to describe the evolution of the excited compound system one needs to
follow the evolution of the average excitation energy along the trajectory. This is achieved
by the requirement of energy conservation.

At the initial point of a trajectory the total available energy can be written as

Etot=Ecoll+Erot+E∗0 =
p2

0

2M(q0)
+ V (q0)+ L2

0

2J (q0)
+E∗0. (11)

Here,J (q0) is the moment of inertia of the compound system taken as a rigid deformed
rotator andE∗0 is the initial intrinsic excitation energy of the compound nucleus. The
intrinsic excitation energyE∗(t) at any given later timet can be determined from the
energy balance

Etot=Ecoll+Erot+E∗0 +Bν + eα +Erecoil, (12)

whereBν is the binding energy of the emitted particle, different from zero only forα-
particles,eα is the kinetic energy of the emitted particle andErecoil is the recoil energy of
the nucleus after the emission of a particle, which can be neglected in practical calculations.

For each choice of the initial conditions one generates a separate trajectory. Emitted
particles are counted with their energy and angular momentum. If the system overcomes
the fission barrier the trajectory (event) contributes to the final fission cross section

σfiss=
∑
i

dσfiss

dLi
=
∑
i

(
dσF

dLi

)
Li

· N
fiss
i

NF
i

, (13)

whereNfiss
i is the number of trajectories which lead to fission, andNF

i — the number
of fused trajectories at a given angular momentumLi . The sum runs over all angular
momentum bins and dσF/dL is the fusion cross section given by Eq. (10).

The numbers of prefission particles obtained for each angular momentum of the
compound nucleus (Mν) are weighed with the differential fission cross section in order
to obtain the measured number of particles emitted in coincidence with fission:

〈Mν〉 =
∑
i

dσfiss

dLi
·Mν(Li)

/
σfiss. (14)

4. Application of the model to various experimentally studied systems

In the present section we aim to confront experimental results concerning the
multiplicities of emitted particles in coincidence with symmetric fission events with the
model described in the preceding section. All measured and calculated data are presented
in Table 1 for three systems:126Ba,188Pt, and266,272,278110 obtained by different entrance
channels and at different energies. These data result from experiments performed at the
SARA (Grenoble) and the VIVITRON (Strasbourg) [16–20] using the DEMON neutron
detector [38,39]. Unfortunately, the charged particles (p,α) were not measured, so we
give in Table 1 the theoretical predictions only. We present a more detailed discussion of
the results for each system in the next subsections.
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Table 1
Multiplicities of the prefission particles emitted by126Ba, 188Pt and266,272,278110 at different
excitation energies. The theoretical estimates for the compound nuclei withZ = 110 are done for
two values of the friction force. In the first rows are the data evaluated with the friction reduced by
50% while those in the second row correspond to the standard wall-and-window friction

CN Reaction Elab (MeV) E∗ (MeV) M
exp
n δM

exp
n Mn Mp Mα

126Ba 28Si+ 98Mo 204.0 131.7 2.52 0.12 2.29 0.03 0.79
187.2 118.5 2.01 0.13 1.71 0.00 0.09
165.8 101.4 1.32 0.09 1.83 0.00 0.04
142.8 84.1 – – 0.27 0.04 0.88

19F+ 107Ag 147.8 118.5 1.85 0.11 1.99 0.00 0.16
128.0 101.5 1.31 0.17 1.80 0.01 0.06

188Pt 34S+ 154Sm 202.6 100.0 4.5 0.7 3.52 0.00 0.10
159.8 66.5 2.5 0.7 1.10 0.00 0.00

16O+ 172Yb 137.6 99.7 5.4 0.6 3.79 0.00 0.06
266110 58Ni + 208Pb 513.9 185.9 7.83 0.46 8.66 0.26 1.04

9.72 0.23 0.95
486.6 164.6 7.35 0.50 7.65 0.20 0.93

8.56 0.21 0.79
461.1 144.6 6.17 0.48 6.50 0.16 0.81

7.30 0.17 0.73
436.2 125.1 4.74 0.49 5.45 0.10 0.63

6.21 0.11 0.58
410.1 104.7 4.41 0.41 4.35 0.07 0.48

4.94 0.07 0.48
377.0 78.8 2.94 0.36 2.77 0.03 0.30

3.23 0.03 0.33
272110 64Ni + 208Pb 472.3 138.3 5.98 0.43 7.49 0.08 0.42

8.25 0.08 0.34
449.9 121.1 5.52 0.38 6.40 0.05 0.30

7.12 0.06 0.28
423.0 100.6 5.13 0.33 5.09 0.02 0.20

5.58 0.04 0.20
403.9 85.9 3.54 0.31 3.94 0.01 0.15

4.49 0.01 0.12
377.0 65.3 3.03 0.32 2.27 0.00 0.10

2.83 0.00 0.08
40Ca+ 232Th 351.2 166.3 8.40 0.53 9.23 0.13 0.53

9.95 0.15 0.48
298.4 121.3 5.81 0.50 6.40 0.05 0.30

7.12 0.06 0.28
250.4 80.3 3.35 0.34 3.56 0.01 0.14

4.04 0.01 0.12
278110 40Ar + 238U 299.6 127.2 5.78 0.51 7.89 0.03 0.14

8.48 0.04 0.15
280.4 110.7 4.96 0.55 6.69 0.00 0.12

7.23 0.03 0.13
258.0 91.5 4.22 0.44 5.08 0.00 0.09

5.59 0.00 0.09
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4.1. The126Ba compound system

The compound nucleus126Ba has been experimentally produced through two different
entrance channels:

(I) 28Si+ 98Mo→ 126Ba atElab= 204, 187, and 166 MeV and
(II ) 19F+ 107Ag→ 126Ba atElab= 148 and 128 MeV.

Fig. 1 shows the fusion cross section and the fission yields as a function of the initial
angular momentum. The distributions of the initial angular momentum were calculated

Fig. 1. The differential fusion (solid lines) and fission (bars) cross sections for the compound nucleus
126Ba for different entrance channel reactions.
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with the help of the corresponding Langevin equation [5,9,36] for two different entrance
channels (I and II) and various bombarding energies. As it can be seen, the fission yields
are rather small and located in the tails of the distributions. This observation which also
holds for many other systems implies that it is of great importance to calculate carefully the
dependence of the fusion cross section on the angular momentum if one wants to describe
the competition between the decay of the compound nucleus by fission and by light particle
emission in a correct way. Concerning Fig. 1 we also note that the dominant part of the
initial excitation energy resides in the collective rotational motion. One observes in Fig. 1
a general increase of the fission cross section with the excitation energy of the compound
nucleus126Ba with the only exception of the highest excitation energy. In that case the
emission ofα-particles becomes important and competes with the fission process. This
causes a substantial loss of internal energy due to particle emission which in turn leads to
an increase of the fission barrier and therefore to a smaller fission yield.

In Fig. 2, the potential energyVfiss of the fissioning nucleus126Ba for different angular
momenta is plotted as a function of the relative distance between fission fragments. One
can see in Fig. 2 that the fission barrier of the fused nucleus at temperatureT = 1.6 MeV
and angular momentumL= 0 is quite high in our model. It is equal to 43 MeV. It vanishes
at very large angular momentum (L ≈ 80 h̄). The high temperature can also reduce
significantly the fission barrier as one can learn from Fig. 3, where the free energy of126Ba
is plotted for a few temperatures between 0 and 4.8 MeV. This is why one can observe
a significant fission rate only at large angular momenta and high excitation energies. All
curves representing the fission barriers in Figs. 2 and 3 end at the scission point region. It is
seen from Figs. 2 and 3 that the saddle and scission points are close to each other for126Ba.

Part of the excitation energy of126Ba is contained in the rotational mode. In Fig. 4, the
temperature of126Ba corresponding to different excitation energies is plotted as a function

Fig. 2. The deformation potentialVfiss for 126Ba as a function of the “fission variable”R12/R0 from
the ground state deformation up to the scission point. The different curves correspond to the different
values of the angular momentumL. The temperature of126Ba is fixed atT = 1.6 MeV.
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Fig. 3. The same as in Fig. 2, but now the different curves correspond to the different temperaturesT .
All plots are done forL= 30 h̄. The different curves are shifted vertically in order to make the relative
changes more visible.

Fig. 4. The temperature of the compound nucleus126Ba at the different excitation energies as a
function of angular momentum.

of angular momentum. One can see that, at the lowest excitation energyE∗ = 84 MeV
and the highest angular momentum, the temperature is 0.5 MeV only. This means that our
theoretical predictions based on the statistical equilibrium could be too rough in this case.

The experimental neutron multiplicities obtained for both the fission and the fusion
channel are shown in Table 1 along with the calculated neutron, proton, andα-particle
multiplicities.
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Fig. 5. The multiplicities of prefission particles as a function of excitation energy of the compound
nucleus126Ba obtained with the entrance channel28Si+ 98Mo.

Fig. 6. The same as in Fig. 5 but for the reaction19F+ 107Ag.

In Figs. 5 and 6, we show the calculated average numbers of neutrons, protons, and
α-particles emitted in coincidence with fission as a function of the excitation energyE∗
of the initial compound nucleus. The initial compound nucleus126Ba is produced by the
fusion reaction (I) in Fig. 5, and in Fig. 6 the same initial compound nucleus originates
from the fusion reaction (II). Only then-emission on the way to fission has been measured
so far. The measured numbers of prefission neutrons are indicated by points with error bars.
At two excitation energies we have measurements for the two different entrance channels.
As one can read from Table 1 at the excitation energyE∗ = 101.4 MeV the measured
and calculated numbers of emitted prefission neutrons (in coincidence with fission) are
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Mn = 1.32 and 1.83, respectively, for the entrance channel (I) (Fig. 5) andMn = 1.31 and
1.80, respectively, for the entrance channel (II) (Fig. 6). At the higher excitation energy
E∗ = 118.5 MeV the measured and calculated numbers of emitted neutrons areMn = 2.01
and 1.71 for the entrance channel (I) (Fig. 5) andMn = 1.85 and 1.99 for the entrance
channel (II) (Fig. 6).

The experimentally observed number of emitted prefission neutrons at given excitation
energyE∗ of the initial compound nucleus is thus larger for the entrance channel (I) than
for the entrance channel (II) and the difference of the number of emitted neutrons is seen
to be larger for the larger excitation energy.

The interpretation of this observation is that for126Ba only the compound nuclei formed
with high angular momentum may undergo fission and thus give rise to prefission neutrons
because the fission barrier for low angular momentum is high (> 15 MeV). ForT =
1.6 MeV the LD fission barriers vanish for aboutL = 70 h̄ as can be seen from Fig. 2.
Thus the main part of the prefission neutrons is obtained for angular momenta around
L = 80 h̄ as indicated in Fig. 1. At given excitation energyE∗ the number of compound
nuclei formed with such high angular momentum is larger for the entrance channel (I) with
28Si as a projectile than for the entrance channel (II) with19F as a projectile (see Fig. 1).

The theoretically estimated prefission proton multiplicities (Mp) are very small as one
can see in Figs. 5 and 6. The multiplicities ofα-particles are not negligible at the highest
(E∗ = 131.7 MeV) and the lowest (E∗ = 84.1 MeV) excitation energies (see Figs. 5 and 6).
The increase ofMα at high excitation energy is mostly due to the high temperature effects
while the unexpectedly large number of emittedα-particles atE∗ = 84.1 MeV is mostly
due to the large deformation of the emitter and the huge centrifugal potential (L> 80 h̄)
reducing the already small Coulomb barrier for theα-particles at the tips even further.

As for the comparison of measured and calculated numbers of emitted prefission
neutrons, the general agreement is not unsatisfactory. Nevertheless, one notices that the
calculated average emission numbers are larger than the observed ones for the higher
excitation energyE∗ = 118.5 MeV. If, instead of the temperature-independent friction,
which underlies these calculations, we would use a friction parameter increasing with
temperature, the agreement might be better.

4.2. The188Pt compound system

As seen in Table 1, the compound nucleus188Pt was produced at two excitation energies
E∗ = 100 MeV and 66.5 MeV using two different reactions [16]:

34S+ 154Sm→ 188Pt atElab= 203 and 160 MeV,
16O+ 172Yb→ 188Pt atElab= 138 MeV.

The theoretical estimates of the initial spin distributions (solid lines) as well as the fission
rates (bars) forE∗ = 100 MeV and two entrance channels as well as forE∗ = 66.5 MeV
are plotted in Fig. 7 as functions of angular momentum of the compound nucleus. It is seen
that each reaction leads to different spin distribution. These differences are responsible
for the entrance channel effects in the prefission neutron multiplicities emitted by188Pt at
E∗ = 100 MeV (see Table 1).



K
.P

o
m

o
rskie

ta
l./N

u
cle

a
r

P
h
ysics

A
6
7
9

(2
0
0
0
)

2
5
–
5
3

39

Fig. 7. The same as in Fig. 1 but for the compound nucleus188Pt.
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Fig. 8. The same as in Fig. 2 but for the compound nucleus188Pt.

Fig. 9. The same as in Fig. 3 but for the compound nucleus188Pt.

Similarly, as in the case of126Ba, we present in Fig. 8 the fission barriers of188Pt
obtained for different angular momenta (L) at fixed temperatureT = 1.6 MeV. It is seen
that forT = 1.6 MeV andL= 70 h̄ the fission barrier becomes negligible. Also one can see
in Fig. 9 that with increasing temperature the fission barrier decreases. AtT = 4.8 MeV
andL = 30 h̄, the fission barrier of188Pt is about four times lower than forT = 0 and
L= 30 h̄. Contrary to the case of126Ba, where the saddle point is very close to the scission
point, the path from the saddle point (q = R12/R0 ≈ 1.6) to the scission point (q ≈ 2.2)
of 188Pt is much longer and will take more time. This implies that the case of188Pt is
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better suited to study the influence of dynamical effects on the prefission light-particle
multiplicities.

The prescission neutron multiplicities theoretically predicted for188Pt are too small (by
∼ 1 unit on the average) in comparison with the experimental data [16]. Also the effect
of the entrance channel is not fully reproduced. Unfortunately, the protons andα-particle
multiplicities were not measured, so we cannot test the predictive power of our model in
this case.

4.3. TheZ = 110,N = 156,162, and 168 compound systems

Three isotopes of the superheavy compound nucleus withZ = 110 were formed by
means of the following fusion reactions:
• 58Ni + 208Pb→ 266110 [19],
• 64Ni + 208Pb→ 272110 [19],
• 40Ca+ 232Th→ 272110 [20],
• 40Ar + 238U→ 278110 [20],

at different excitation energies between 66 MeV and 186 MeV. The prefission neutron
multiplicities were determined experimentally and estimated theoretically within our
model. Both the experimental and theoretical results are given in Table 1.

Using Langevin type equations to describe the fusion process [5,9,36] we obtained the
initial spin distribution of compound nucleus. As an example, the differential fusion cross
section is plotted in Fig. 10 for the reaction40Ca+232Th atElab= 250.4 MeV as a function
of the angular momentum of the system. The effective fission cross section is marked by
bars in the figure. It is seen in Fig. 10 that only the lowest angular momenta contribute
to the fusion fission process of272110 due to the fact that the fission barrier of272110
vanishes atL > 22 h̄. All isotopes of the elementZ = 110 have a rather small fission
barrier which disappears rapidly with increasing spin (L). This is illustrated in Fig. 11,

Fig. 10. The same as in Fig. 1 but for the compound nucleus272110.
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Fig. 11. The same as in Fig. 2 but for the compound nucleus266110 and temperatureT = 0.

where the fission barriers of266110 corresponding to a fewL are plotted as functions of
the elongation.

In our calculations we only took into account those trajectories for which the saddle
point existed, i.e. we neglected the so-called quasifission events. The number of emitted
prescission particles is mostly governed by the dynamics from the saddle to the scission
point, but of course the initial conditions (see Section 3.1) play also an important role. In
our model we used two different sets of Langevin equations. The first set of equations
describes the fusion dynamics [5,9] while the second one, coupled with the Master
equations for particle emission, describes the fission process [15]. A better solution would
be a model in which the whole dynamics from fusion to fission as well as the light particles
emission would be described by one set of equations. Such an approach could immediately
solve the problem of the proper setting of the initial conditions for the compound nucleus.

The experimental and theoretical prefission neutron multiplicities forZ = 110 com-
pound nuclei are written in Table 1 and additionally they are drawn in Fig. 12 as functions
of the excitation energy of the system. The dashed lines correspond to the results obtained
with the wall-and-window friction (γww) reduced by 50% while the dotted lines stand for
the results obtained with the standard value ofγww. It is seen that for the lowest excitation
energies the agreement of theoretical results with the measurements of neutron multiplic-
ities is good, while the discrepancy grows with increasing excitation energy. For the most
excited compound nuclei our theoretical predictions are too large by 1 to 2 units. This result
could mean that the effective time which the system needs to pass from the saddle to the
scission point is too long in our model for a very hot compound nucleus. Any of transport
coefficients do not depend on the temperature. This could be the reason of the observed
discrepancy. In the near future we intend to perform a new calculation with temperature
dependent transport coefficients evaluated within the linear response theory [13,14]. The
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Fig. 12. The experimental (points with error bars) and theoretical multiplicities of prefission neutrons
as a function of the excitation energy of the compound nuclei withZ = 110 obtained in four different
reactions.

temperature dependence of the friction parameter could be important, because as one can
see in Fig. 12 the reduction of the friction parameter by 50% decrease the neutron multi-
plicities by 1 to 0.5 units depending on the excitation energy of compound nucleus.

In our model the superheavy nucleus withZ = 110 is already cold when it reaches the
scission point after emission of some neutrons andα-particles. So the shell effects begin
to play an important role for very deformed shapes. The shell effects could lead to the
compact fission, i.e. splitting of theZ = 110 nucleus into two spherical fragments. In our
model the shell effects are not present but we simulate partially their influence on the
number prefission particles by counting only those particles which have been evaporated
before reaching the elongation of nucleus close to the compact scission point (R12/R0 ∼
1.5).

Contrary to the case of decay of126Ba and188Pt compound nuclei a hot superheavy
nucleus withZ = 110 exists and fissions at very low angular momenta (L < 20 h̄). This
range ofL corresponds to the linear part of the differential fusion cross section dσ/dL
(see Fig. 10), so we do not expect entrance channel effects on multiplicities of prefission
neutrons.

The Coulomb barrier for emission of the charged particles fromZ = 110 isotopes is
rather high so the predicted proton andα multiplicities are much smaller than the neutron
multiplicities as one can see in Table 1.
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5. Summary, conclusions and further developments

In the first part of the present work we described an extension of our model [15] used
so far for describing the fission dynamics of an excited, rotating and possibly deformed
compound system. We considered the decay of compound nuclei produced by the fusion of
two heavy ions. The initial spin distribution was determined by a simple model calculation
[5,9] which took the possible deformation of the two ions into account [36]. Furthermore,
we introduced the microscopic classical expression for the emission rates of light particles
derived in reference [23] and showed the link of this expression with the Weisskopf
formulation [22].

In the second part of the paper we presented a detailed comparison of the calculated
neutron multiplicities with the ones obtained in different experiments involving systems
from different regions of the mass table. All five systems discussed in the paper (126Ba,
188Pt andZ = 110 isotopes) are good examples of different fission and particle evaporation
mechanisms.

The light nucleus126Ba fissions at very high angular momenta (L ∼ 80 h̄). Its saddle
point is close to the scission point, so the fission dynamics plays a rather minor role
in this case. The entrance channel effects influence significantly the decay properties of
the excited126Ba, via different initial spin distributions of compound nucleus. Also huge
centrifugal forces and big deformations corresponding to the saddle point lead in this case
to a true competition between the neutron andα-particle evaporation. The experimental
prefission neutron multiplicities grow with the excitation energy of126Ba while it is not
always the case in our theoretical estimates.

In the case of188Pt the average angular momentum of the fissioning nucleus is around
60 h̄, i.e. 20h̄ less than for126Ba. Also the way from the saddle point to the scission point
is longer so that the dynamics from the saddle to the scission plays here an important role.
In addition, the evaporation of a few particles does not increase so dramatically the height
of the fission barrier as in the case for126Ba. As a consequence the fission process takes
place during a longer time and the number of evaporated particles is larger. Similarly as in
the case of126Ba the initial spin distribution (the entrance channel effect) influences the
multiplicity of pre-fission neutrons which is here too small (by≈ 30%) in comparison with
the experimental data.

A completely different case is the decay of superheavy compound nuclei withZ = 110.
Here the way from the weakly deformed saddle point to the scission point is very long.
The fission barrier of a hot compound nucleus withZ = 110 is very small and it vanishes
already at low angular momenta (L < 22 h̄). The way in which theZ = 110 nuclei has
been produced does not influence their decay properties since such nuclei exist at small
angular momenta only, which belong to the linear part of the fusion cross section dσ/dL.
A majority of compound nuclei goes to fission with simultaneous emission of neutrons
andα-particles. The number of prefission neutrons depends in this case on details of the
fission dynamics, e.g. the slope of the potential and the magnitude of the friction and
diffusion parameters. Our model overestimates slightly (≈ 15%) the experimental number
of prefission neutrons here. The neutron emission process cools significantly theZ = 110
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compound nuclei, so the temperature dependence of the friction and diffusion parameters
could be “visible” in this case.

The present formulation of the model and its application can be improved on several
points:

(i) One may introduce a more detailed description of the formation process of the
compound nuclei. Such a description will involve explicit trajectory calculations of
the incident nuclei taking into account the nuclear and the Coulomb potentials for
different relative initial orientations of the deformed nuclei. Calculations of relative
potentials have been worked out in this framework [36,37] but, to our knowledge,
a full fledged dynamical trajectory calculation has yet to be done.

(ii) The full treatment of fusion fission dynamics with simultaneous emission of
the light particles will release us from a somewhat arbitrary choice of the
initial conditions for the compound nucleus. Such a project is at present under
investigation.

(iii) We used a classical description of fluctuations and a form of the fluctuation–
dissipation theorem which are valid for the case of high temperature. In fact, the
temperature of the systems which we considered above could be low enough for
quantum effects (pairing and shell effects) to play a non negligible role. This point
has been investigated in the recent past [12–14] within the framework of nuclear
transport theory [10]. It is our aim to come back to this point in the near future.

(iv) Our fission barrier estimates need also further improvements. The present model
bases on a modified (see Appendix A) liquid drop formula of Myers and
Swiatecki [30] and it is known that for the cold light nuclei like126Ba it
overestimates the fission barriers by≈ 10 MeV [45].

For reasons of comparison with experiment we shall generalize our model taking
asymmetric fission events into account. Many compound nuclei generated from mass
asymmetric formation process channels appear with a high statistical weight.

Last but not least it would be nice to extend the test of the model to observables
other than the light particle emission rates. Out-of plane particle angular distributions and
correlations between emitted light particles would provide further sensitive tests of the
validity of our approach. For instance, the ratio of neutrons emitted out of the reaction plane
and within the reaction plane (defined by the beam and the outgoing fission fragments)
would enable us to determine the deformation of the emitting compound nucleus.

Furthermore, we stress the importance of a measurement of the emitted neutrons,
protons, andα-particles in the same system because the emission rates of these particles
are reciprocally dependent on each other.
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Appendix A. Transport parameters used in the Langevin equation

Fission dynamics correlated with prefission particle emission is generally described in
a phenomenological framework, by means of quantities such as collective temperature-
dependent potentials, masses, moments of inertia and friction coefficients.

The fission process is described here in terms of the unique collective variableq =
R12/R0. The fission path parameterized byq is fixed by means of a minimalization of the
free energy of a nucleus in the(α0, α2, α4, α6) deformation space at a fixed temperatureT .
The deformation parameters are defined as follows [24]:

ρ2
s (z)=R2

0

3∑
`=0

α2`(q)P2`

( z
z0

)
, −z06 z6 z0, (A1)

where the functionρs(z) is the distance in cylindrical coordinates of any point of the
surface to the symmetry axis.

The Helmholtz free energy of the nucleus plays the role of the collective potential and
can be written, in a semiclassical approximation, as

F(N,Z,q,L,T )=E(N,Z,q,T = 0)− a(N,Z,q)T 2+Erot(N,Z,q,L). (A2)

The first term on the r.h.s. of Eq. (A2) is a liquid-drop (or any macroscopic model) type
energy expressing the semiclassical energy of the deformed cold nuclear system as a
function of the mass numberA = N + Z, and the isospin asymmetryI = (N − Z)/A.
The deformation dependence of the free energy is taken into account through the shape
functionsBs andBcoul. The rotational energy is calculated explicitly asErot= L2/2J (q)
with aq-dependent rigid-body moment of inertia. We have used in Eq. (A2) the liquid drop
parameterization of Myers and Swiatecki [30].

The effects of excitation are taken into account in Eq. (A2) through the level-density
parametera at a given deformation. As the Helmholtz free energy, which is the variational
quantity, is given by

F(T )=E(T )− T S(T ) (A3)

with the temperatureT as a Lagrange multiplier, one can show [40,41] that for a liquid-
drop type system, entropy and excitation energy read

S = 2aT and (A4)

E∗ =E(T )−E(T = 0)= aT 2 (A5)

from which one obtains the last relation in Eq. (A2).
The level density parametera can be written in the form

a(N,Z,q)= av
(
1+ kvI2)A+ as(1+ ksI2)A2/3Bs(q)

+ acoulZ
2A−1/3Bcoul(q), (A6)

where the parametersav = 0.0533 MeV−1, kv = 0.5261, as = 0.1059 MeV−1, ks =
2.7192, andacoul= 0.000458 MeV−1 are taken from Ref. [32]. In this expression, as well
as in the macroscopic energy in Eq. (A2), we have neglected the curvature and compression
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term proportional toA1/3 since its coefficient for the cold system is known experimentally
to be small [42]. When evaluating the Coulomb term in (A2) and (A6) the Coulomb
exchange contribution is neglected.

To describe the fission dynamics one also needs to calculate the mass parameterM(q)

which enters the kinetic term of the equation of motion describing the fission process.
In terms of the deformation parameterq the mass is given, in the incompressible fluid
approximation [26], as

M = πρ0

z0∫
−z0

[
ρ2
s (z)A

2(z)+ 1
2B

2(z)
]
dz, where (A7)

A(z)= 1

ρ2
s (z)

∂

∂q

z0∫
z

ρ2
s (z
′)dz′ and (A8)

B(z)= 1

2

∂ρ2
s

∂z
A+ ∂ρ

2
s

∂q
, (A9)

and whereρ0= 0.17 fm−3 is the matter density.
The friction coefficient associated with the collective coordinateq is calculated in the

framework of the wall and window model [43,44]. The wall contribution, which is the
dominant part of the friction parameterγ associated with the fission mode, is given by

γ = π
2
ρ0v̄

z0∫
−z0

(
∂ρ2
s

∂q

)2/√
ρ2
s (z)+

1

4

(
∂ρ2
s

∂z

)2

dz, (A10)

where the average velocitȳv of the nucleons inside the nucleus is at zero temperature
defined as

v̄

c
= p̄

mc
= 3

4

h̄

mc

(
3π2ρ0

)1/3
(A11)

with the Fermi momentumpF= h̄kF= h̄(3π2ρ0)
1/3.

Appendix B. Comparison between the microscopic semiclassical formulation of
emission rates with the Weisskopf formula

In Ref. [23], a formulation of emission rates has been given which is based on the picture
of a Fermi gas of nucleons at temperatureT being the confined to a deformed rotating
square well. In this appendix we shall show that in the special case of a spherical well, the
model of Ref. [23] becomes equivalent to Weisskopf’s emission rate formula [6,22]. We
consider the example of neutron emission.

According to Ref. [23], the total numbern of neutrons emitted per time unit is given by

n=
∫
Σ

dσ
∫

d3pfn
(Er0, Ep)v⊥(Er0)wcl

0

(
v⊥
(Er0)), (B1)
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where dσ is the infinitesimal element of the surfaceΣ at the surface pointEr0. The
momentumEp and the velocityEv of a neutron are related by the equation

Ep =mEv +mEω× Er, (B2)

whereEr is the position vector,m is the mass of the neutron, andEω is the angular velocity of
rotational motion of the nucleus. In the case of a spherical nucleus, a collective rotational
motion is not possible. Consequently, we may putEω = 0 without loss of generality.

The Wigner functionfn(Er0, Ep) then describes a gas of fermions confined to a spherical
well of depthV0 at a temperatureT . It is given by the expression

fn(Er, Ep)= 2

h3 ·
θ(Er)

1+ exp
[ 1
T

( p2

2m − V0−µn
)] , (B3)

whereθ(Er) is a step function defined to be 1 for position vectorsEr of points inside the
volume� enclosed by the surfaceΣ

θ(Er)=
{

1 for Er ∈� includingΣ,
0 otherwise.

(B4)

The parameterµn is the chemical potential of the neutrons.
The last factorwcl

0 in formula (B1) is the semiclassical transmission coefficient for
a neutron hitting the surfaceΣ at the pointEr0 with a velocityv⊥(Er0) perpendicular to
the surface. For a spherical surfaceΣ the unit vector normal to the surface at the surface
point Er0 is given by the radial unit vector

EnΣ
(Er0)= Er0

R0
, (B5)

whereR0 := |Er0| is the radius of the square well potential.
In Weisskopf’s theory of evaporation, the total number of emitted particles of a given sort

is represented as an integral over the energyε of the emitted particles [6,22]. Consequently,
we would like to rewrite the formula (B1) as an integral over the variable

ε = p2

2m
− V0 (B6)

performing at the same time the remaining integrations in a closed form. For this purpose
let us first introduce polar coordinates (p, θp , ϕp) in momentum space choosing the surface
unit vectorEnΣ(Er0) as the polar axis

pξ = p sinθp cosϕp, pη = p sinθp sinϕp, pζ = p cosθp.

In these coordinates the perpendicular velocityv⊥(Er0) is given by

v⊥
(Er0)= p cosθp

m
. (B7)

The transmission coefficientwcl
0 can only be unequal to zero, if the velocityv⊥(Er0) is

positive. Thus the polar angleθp can be restricted to the interval 06 θp 6 π/2. The total
neutron yield per time unit is thus given by
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n= 4π

h3

∫
Σ

dσ

∞∫
0

dp

π
2∫

0

dθp · p
3 cosθp sinθp

m
wcl

0

(
p cosθp
m

)

×
[
e

1
T
( p

2

2m−V0−µn) + 1
]−1

. (B8)

The surface integral yields for factor 4πR2
0. Instead of integration variablesp andθp, we

introduce the energyε and the orbital angular momentuml of the neutron impinging on
the surface

ε = p2

2m
− V0, (B9)

l =R0p sinθp. (B10)

The JacobianD of the transformation

D =

∣∣∣∣∣∣∣
∂p
∂ε

∂θp
∂ε

∂p
∂l

∂θp
∂l

∣∣∣∣∣∣∣ (B11)

is obtained from the inverse transformation
p =√2m(ε+ V0),

θp = arcsin

(
l

R0p

)
= arcsin

(
l

R0
√

2m(ε+ V0)

)
,

(B12)

in the form

D =
√

2m/(ε+ V0)

2
√

2mR2
0(ε+ V0)− l2

. (B13)

In formulating the integration limits for the new variablesε andl we must take into account
the condition

l2

2mR2
0

6 p2

2m
= ε + V0, (B14)

which implies that the total kinetic energy of the neutron can not be smaller than its
rotational part.

The factorp3 cosθp sinθp can be written in terms of the new variables as follows:

p3 cosθp sinθp = 2m(ε+ V0)

√
1− l2

2mR2
0(ε+ V0)

· l
R0
. (B15)

Making use the Eqs. (B13) to (B15) we obtain for the r.h.s. of Eq. (B8):

n= 2π · 2

h3 4πR2
0

∞∫
−V0

dε

√
2mR2

0(ε+V0)∫
0

dl
1

2

√
2m

(ε+ V0)

× 2(ε+ V0)√
2mR2

0(ε+ V0)− l2
·
√

1− l2

2mR2
0(ε+ V0)

· l
R0
· wcl

0 (ε, l)·[
e(ε−µn)/T + 1

] , (B16)
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or

n= (4π)
2

h3

∞∫
−V0

dε ·

√
2mR2

0(ε+V0)∫
0

dl · l · wcl
0 (ε, l)[

e(ε−µn)/T + 1
] . (B17)

In Eq. (B17), the transmission coefficientwcl
0 (ε, l) is obtained fromwcl

0 (v⊥) by
expressing the argumentv⊥ by the variablesε andl.

v⊥(ε, l)=
√

2mR2
0(ε+ V0)− l2
mR0

. (B18)

Introducing the dimensionless angular momentumλ instead of the variable

l = h̄λ, (B19)

the formula (B17) takes the form

n=
∞∫
−V0

dε

λmax(ε)∫
0

dλ
∂2n

∂ε∂λ
with (B20)

∂2n

∂ε ∂λ
= 4

h

λ ·wcl(ε, λ)[
e(ε−µn)/T + 1

] and (B21)

λmax(ε) := 1

h̄

√
2mR2

0(ε+ V0). (B22)

We wish to compare the result (B21) with the partial width0αβν (E∗,3) for the decay
of a nucleus of excitation energyE∗ and vanishing total angular momentum(3 = 0) by
emission of a neutron of energyεα and orbital angular momentumλβ as it is obtained from
Weisskopf’s theory (Refs. [15,23])

0αβn =
2(2λβ + 1)

hρ(E∗,3= 0)
· ρR

(
E∗R,3R

)
wn(εα,λβ). (B23)

In (B23), ρ(E∗,3) andρR(E∗R,3R) are the level densities for the mother and daughter
nucleus, respectively, which depend on the excitation energyE∗ (E∗R) and the total angular
momentum3 (3R) of the mother (daughter) nucleus. The quantitywn(εα,λβ) is the
transmission factor for a neutron having the energyεα and the orbital angular momentum
λβ . The factor 2(2λβ + 1), represents the product of the degeneracy factors of the emitted
neutron and of the residual daughter nucleus. We note that, in the derivation of Eq. (B23)
and also in our model, effects of the spin–orbit coupling on the emission probability are
neglected. We now use the level densities obtained in the Fermi gas model:

ρR
(
E∗R,0

)=( h̄2

2J

)3/2√
a

exp(2
√
aE∗R)

12E∗2R
, (B24)

ρ(E∗,0)=
(
h̄2

2J

)3/2√
a

exp(2
√
aE∗)

12E∗2
. (B25)
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HereJ is the rigid body moment of inertia of the nucleus which is assumed to be the same
for the mother and daughter nucleus, and “a” is the level density parameter.

The excitation energiesE∗ andE∗R are related by the energy conservation:

E∗ =E∗R + εα −µn. (B26)

The ratio of the level densities is thus given by

ρR

ρ
=
(
exp

[
2
√
aE∗R − 2

√
aE∗

])
·
(
E∗

E∗R

)2

,

(B27)
ρR

ρ
=
(

exp

[
2
√
aE∗ ·

(√
1− εα −µn

E∗
− 1

)])
·
(

1− εα −µn
E∗

)−2

.

Assuming that the ratio(εα −µn)/E∗ is much smaller than 1

εα −µn
E∗

� 1 (B28)

and using the relation between the excitation energyE∗ and the temperatureT as given by
the Fermi gas model

E∗ = aT 2, (B29)

we obtain for the ratio of the level densities

ρ(E∗R)
ρ(E∗)

≈ exp

(
−εα −µn

T

)
. (B30)

Using (B30) we obtain for the neutron width (B23)

0αβn ≈
2(2λβ + 1)

h
e−(εα−µn)/T ·wn(εα,λβ). (B31)

This form of Weisskopf’s general formula agrees indeed with our result (B21) if
the transmission factorwn is calculated classically (wn = wcl

0 ), if the orbital angular
momentumλβ is large enough so that

2λβ + 1≈ 2λβ (B32)

and if

exp

(
εα −µn
T

)
� 1, (B33)

so that the Fermi occupation factor in (B21) becomes equivalent to the Boltzmann factor

1

e(εα−µn)/T + 1
≈ e−(εα−µn)/T . (B34)

We note that the approximation (B34) is already used for obtaining the level density
formula (B25) from the Fermi-gas model.

We would like to comment that the well-known formula (B23) is already a slight
extension of the original result of Weisskopf published in Ref. [22]. There, the transmission
factorwn is expressed in terms of the cross section for the absorption of a neutron by the
daughter nucleus using detailed balance. In this form, Weisskopf’s result is of very general
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validity. The difficulty with it is only that detailed balance relates the transmission factor
wn to the cross section for absorption of a neutron by a nucleus with excitation energyE∗R
and angular momentum3R . This absorption cross section can, of course, not be measured.
Therefore, one needs a model to calculate the transmission factor.

The considerations in this appendix demonstrate at the same time that it is meaningful
to replace the purely classical transmission factorwcl

0 ,

wcl
0 (ε, l)= θ0

(
ε+ V0− l2

2mR2
0

)
, (B35)

by a quantum-mechanical barrier penetration factor as it is done in all our numerical
calculations.
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