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Self-consistent relativistic mean-field (RMF) calculations with the NL3 parameter set
were performed for 171 spherical even-even nuclei with 16≤A≤224 at temperatures in
the range 0≤T ≤4 MeV. For this sample of nuclei single-particle level densities are deter-
mined by analyzing the data obtained for various temperatures. A new shell-correction
method is used to evaluate shell effects at all temperatures. The single-particle level
density is expressed as function of mass number A and relative isospin I and compared
with previous estimates.

In fission dynamics and the decay of compound nuclei1 as well as in all kinds of

transport theories, the proper knowledge of the nuclear single-particle level density

is needed. The aim of the present paper is to determine this quantity using the RMF

theory2 with the NL33 set of parameters and a revised version of the Strutinsky

shell correction method.4 The smooth part of nuclear energy is evaluated in our ap-

proach by an averaging in particle-number space while in the traditional Strutinsky

method5 the smoothing is performed in single-particle energy space. The advantage

of the new approach consists in that the particle number is exactly conserved which

was only the case on the average in the old Strutinsky method.

Mass-number and isospin dependence of the single-particle level density ob-

tained in the RMF approach with the NL3 parameters3 were already discussed in

Ref.6. Using the Strutinsky shell-correction method5 we had “removed” shell ef-

fects from the selfconsistent RMF energies in a similar way as done in Refs.7,8,9 for

the Gogny hamiltonian10 and the RMF-NL3 model.3 Estimates of the macroscopic

binding energies (i.e. free of shell and pairing effects) obtained in such a way at zero

temperature were used as a reference to calculate the change of the total energies

with temperature. To simplify the calculations, the temperature dependence of the

shell-correction energy was approximated in6 by an analytical function11 instead of

explicitly evaluating the Strutinsky shell correction at finite temperatures.12
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Now, we proceed in a different and probably more consistent way, due to two

changes which are, as we believe, quite essential for our study: the revised Struti-

nsky method,4 with a particle-number averaging instead of an energy averaging, is

used to obtain the macroscopic nuclear energy. The disappearance of shell effects

with increasing temperature is obtained by an energy smoothing in particles num-

ber space for each temperature separately, instead of using6 the phenomenological

function of Ref.11. The comparison of the two methods and a study of the validity of

the simple analytical form11 for the temperature dependence of the shell-correction

energy will be given in a forthcoming publication.13

The macroscopic part of the total energy of a nucleus at temperature T can be

written as

Emacr(T ) = ESC(T ) − E
(n)
shell(T ) − E

(p)
shell(T ) , (1)

where ESC is the selfconsistent energy evaluated without taking into account pair-

ing correlations (which, anyhow, are weak or vanishing at non-zero temperatures)

and E
(n)
shell and E

(p)
shell are the temperature dependent shell-correction energies for

neutrons and protons respectively.

According to the Strutinsky prescription the shell-correction energy is given by

Eshell =
N∑

m=1

εm − Ẽ(N ) , (2)

where N is the number of nucleons (protons or neutrons) and Ẽ(N ) is the smooth

energy corresponding to a washed-out shell structure. This smooth energy can be

evaluated within the traditional Strutinsky energy-averaging method 5 or with the

new prescription of Ref.4 in which the smoothing is performed in particle-number

space (N -averaging). The single-particle energies εm obtained within the selfcon-

sistent RMF approach are used to evaluate the shell correction.

At higher temperatures shell effects disappear. According to Ref.12 they are neg-

ligible already at T =2 MeV. In Ref.6 we have used the approximate T dependence

of the shell-correction energy given in Refs.14,11 (with ~ω = 40A−1/3 MeV):

Eapp
shell(T ) = Eshell(0) · τ

sinh τ
, τ =

2π2T

~ω
. (3)

In the present work we have replaced this phenomenological Ansatz by the shell

corrections obtained by the N -averaging method4 at different temperatures. Our

prescription for the temperature dependence is then the following:

For every nucleon number n in Nmin ≤ n≤Nmax one evaluates the energy of the

n-fermion system assuming a Fermi distribution for the occupation numbers of the

single particle levels

E(n, T ) =
∞∑

i=1

εi νi(T ) , (4)
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where

νi(T ) =
1

1 + exp((εi − λ)/T )
(5)

and where the Fermi energy λ is found from the particle-number condition

2

∞∑

i=1

νi(T ) = n . (6)

Using the sample of E(n, T ) one evaluates the smooth energy Ẽ(N , T ) by perfor-

ming the averaging in particle-number space (more precisely in the n1/3- space):4

Ẽ(N , T ) =

Nmax∑

n=Nmin

2

3n2/3γ
E(n, T ) · j6

(N 1/3 − n1/3

γ

)
(7)

where

j6(u) =
1√
π
e−u2

(
35

16
− 35

8
u2 +

7

4
u4 − 1

6
u6

)
(8)

is the normalized sixth order Strutinsky weight function with the smearing width

γ = 0.77. The limits in the sum (7) are taken as {N 1/3 ± 3γ}3. The temperature

dependent shell corrections for the N nucleon systema is then given by the difference

of (4) and (7)

Eshell(T ) = E(N , T ) − Ẽ(N , T ) . (9)

These shell corrections for neutrons and protons are presented in Fig. 1 for some

chains of isotopes and isotones. Subtracting them from the selfconsistent RMF-NL3

energies we obtain the macroscopic energies at various temperatures. The vanishing

of the shell effects with temperature turns out to be weaker than with the previously

used13 phenomenological function.

The temperature dependence of the macroscopic part (1) of the selfconsistent

energy of a nucleus at finite temperatures can be approximated by

Emacr(T ) ≈ Emacr(0) + a T 2 , (10)

where a is the so-called single-particle level-density parameter which is connected

with the macroscopic nuclear entropy by the following relation

S = 2 a T . (11)

The level-density parameter a can then be related to the macroscopic Helmholtz

free energy through

Fmacr(T ) = Emacr(T ) − S T = Emacr(0) − a T 2 , (12)

aTo increase the accuracy of the shell-correction method the average energy dependence on the
particle number given by the harmonic-oscillator sum rule4 is subtracted from (4) when evaluated
(7) and then added to the average energy eE(N , T )
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Fig. 1. The RMF-NL3N shell corrections for neutrons (top) and protons (bottom) evaluated for
different temperatures as functions of mass number A for isotopes (left), isotones (right).

so the knowledge of a is very important in all cases where the free-energy is used,

as e.g. when evaluating the adiabatic fission barriers at finite temperatures.

Usually, in a rough estimate, the level density parameter a is assumed to be

proportional to the mass number

a = A/k MeV−1 , (13)

where k≈10. We have shown in Ref.6 that such a simplification is too crude since

the value of a varies with Z and A as well as with the deformation of the nucleus.

One can extract the value of the level-density parameter through Eq. (10) eval-

uated for different nuclei at different temperatures. The a values obtained at T = 1,

2, 3, 4 MeV for the above mentioned sample of nuclei are then used to express the

level-density parameter in a LDM type expansion in A−1/3. We have found that the

corresponding factor k in (13) is not at all constant but depends on mass number

A and isospin parameter I = (N − Z)/A of the nucleus.

The calculations were performed for 171 even-even nuclei between the drip lines

which have, according to Ref.15, quadrupole moments close to zero. These are: the
16−30O, 26−30Ne, 30−36Si, 32−44S, 34−46Ar, 38−50Ca, 82−94Sr, 96−132Sn, 142−146Sm,
162−220Pb, 216−220Th isotopic and the N = 50 (with A = 86 - 92), N = 82 (with

A = 122−162), and N = 126 (with A = 180−224) isotonic chains, and additional 31

spherical nuclei along the β stability line. The neutron and proton shell corrections

are shown in Fig. 1 for a few isotopic and isotonic chains.
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Fig. 2. Average level density parameter a as function of mass number A obtained in the RMF-
NL3N approach, as compared to the Skyrme SkM*16 and TF model17. The results are displayed
for isotopes (top left), isotones (top right) and β stable nuclei (bottom left). The k values of
Eq. (13) for β stable nuclei are also shown (bottom right). The estimate of Eq. (13) is given as a
dotted straight line.

Having determined the variation of Emacr with temperature we obtain (for each

nucleus separately) the level-density parameters a(Z,A) through Eq. (10). This

quantity is then fitted to the following mass and isospin-dependent liquid-drop type

formula containing ony surface and Coulomb terms:

aNL3N

MeV
= 0.38A2/3 + 1.13A2/3I2 + 0.0021

Z2

A1/3
. (14)

The volume term of aNL3N when included in such a fit turn out to be essentially

zero and we have decided to omit it altogether when performing the final fit.

In Fig. 2 the values of a obtained in this way for a few chains of isotopes, isotones

and some β stable nuclei are compared with the results of other models. The a

values obtained with the new NL3N shell-correction method4 are on the average in

between the results of the TF model17 and those of the Extended Thomas-Fermi

SkM∗ Skyrme calculations.16 The corresponding k values of Eq. (13) are shown in

the bottom right part of Fig. 2. For the RMF-NL3N approach one finds 7<k<12.

To guide the eye, the frequently used simple ansatz (13) is also given with k=10.

The following conclusions can be drawn from our analysis:

(i) The shell corrections obtained using the particle-number averaging method de-

crease slower with increasing temperature than those obtained with the phe-
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nomenological function (3) and survive until T ≈ 4 MeV.

(ii) The RMF-NL3N estimates of the macroscopic part of the nuclear energy change

almost parabolically with temperature.

(iii) The level-density parameter a deviates substantially from a simple behaviour

(A/10 MeV−1) with a strong dependence on mass and isospin parameter which

can be well approximated by a liquid-drop type expansion.

(iv) The RMF-NL3N model gives the single-particle level density closer to the TF

estimates of Ref.17 than the previous RMF-NL3 approach.6

To test the quality of the single-particle level-density parameter determined here

we are in the process of performing dynamical calculations (similar to those of Ref.1)

of the decay of hot compound nuclei and confront the theoretical predictions for

light-particle multiplicities and fission rates with the experimental data.
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