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The marosopi-mirosopi method is applied to alulate the energies of heavy

nulei (A > 220) in a multidimensional deformation spae f�

�;�

g inluding axial and

non-axial quadrupole (� = 2; � = 0; 2), axial and non-axial otupole (� = 3; � = 0; 2) and

axial hexadeapole (� = 4; � = 0) degrees of freedom. Shell and pairing orretions are

alulated from the single-partile energies of the Woods-Saxon potential with the uni-

versal parameters and added to the marosopi energy of the newest Lublin-Strasbourg

Drop (LSD) model to obtain the total deformation energy.

1. Introdution

We would like to present some preliminary results related to our systemati investigation

of the total nulear energy inluding simultaneously the mass-asymmetry and non-axial

degrees of freedom. The nulear shapes are parametrized as usual using the spherial

harmoni Y

�;�

basis:

R(�; �) = R
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�;�
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!

; (1)

where the funtion (f�

�;�

g) is obtained from the volume-onservation ondition. The

results presented below have the form of two-dimensional plots with the energy minimised

with respet to the other deformation variables.
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2. Realisation of the Marosopi-Mirosopi Method

The potential energy surfaes are obtained using the marosopi-mirosopi method.

The main ontribution to the total energy is oming from the marosopi part obtained

with the Lublin-Strasbourg-Drop formula,

1

whih has been shown to reprodue the masses

of 2766 nulei with a mean-square deviation of 0.698 MeV when the deformation, shell and

pairing orretions of Ref.

2

are inluded.

The orresponding marosopi energy (expressed in MeV) reads:

E
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� 10 exp (�4:2jIj) ; (2)

where A = Z + N and I = (N � Z)=A and where the surfae, urvature and Coulomb

terms depend on the nulear deformation.

3

The mirosopi part ontains a shell orretion alulated with the Strutinsky

method

4

and a pairing orretion

5

E
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and
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where N

1

and N

2

are limits of the pairing window, v

2

�

the single-partile oupation

probabilities, � the average level density and G the pairing strength. We are using the

average pairing gap �tted to the experimental masses of Ref.

6

:

�

n

= 9:08=

p

A MeV; �

p

= 9:85=

p

A MeV : (6)

The spetrum of single-partile energies e

�

is obtained with the Woods - Saxon single

partile potential with the universal set of parameters.

7

3. Results

We use the f�

20

; �

22

g -plane of the quadrupole deformation parameters and translate it

to Cartesian oordinates fx; yg de�ned by

x = �os( + 30) and y = �sin( + 30) (7)

where

�

20

= �os() and �

22

= �sin()=

p

2 (8)

In the following we present the total energies as geographial maps in oordinates x

and either �

30

or �

32

, minimised with respet to y and �

40

.
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Fig. 1. Comparison of the total nulear energies for

224

Rn as funtion of the oordinate x (f.

Eqs. (7)-(8)) and the axial �

30

(top) and non-axial �

32

(bottom) otupole deformation param-

eters. Notie that in both ases the equilibrium deformation involves to a non-zero quadrupole

deformation. The stati equilibrium deformation orresponds to a non-axial otupole deformation

with a barrier between the two minima of the order of 500 keV.

Let us emphasize that mass asymmetri deformations lead to di�erent pitures in

both ases: while in

224

Rn the minimum deformation orresponds to a non-axial mass-

asymmetri shape, the situation just the opposite in the neighbouring isotone

226

Ra. This

signi�es two di�erent lasses of shapes given the fat that the non-zero quadrupole defor-
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Fig. 2. Similar to Fig. (1) but for the isotone of

224

Rn, the

226

Ra nuleus. Observe that in

this ase the axially symmetri otupole deformation leads to stati mass asymmetri minima

separated by a barrier of over a 400 keV height while the �

32

degree of freedom does not lead to

a stati equlibrium deformations.

mations are superposed with the non-zero axial in one ase and the non-axial one in the

other. Consequently, the analysis of the otupole degrees of freedom strongly suggests a

muh more ompliated piture as ompared to the earlier analysis of Ref.

8

and several

others where only the axial-otupole deformations have been used.
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