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Majorana signatures in the tripartite uncertainty relations with quantum memory
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Quantumness imposes a fundamental limit on measurement accuracy. The paradigmatic cases are Heisen-
berg’s uncertainty relation in the original formulation, Robertson’s formulation, and improved uncertainty
relations. However, the more universal measures are given in terms of quantum entropies. Uncertainties of
measurements done on one quantum system correlated with another quantum system constitute a more intriguing
question. Quantum correlations can influence the lower bound of uncertainties, and the reason for this is
the quantum memory. In this article, we study uncertainties of measurements performed on one quantum
dot correlated with the second one through the superconductor, hosting the Majorana boundary modes. We
prove that the Majorana quasiparticles allow the uncertainties to reach the minimal possible lower bound. By
rigorous theoretical considerations, we obtain the result of experimental relevance expressed in terms of only
two parameters: the overlap between Majorana modes and their coupling strength with the quantum dots. We
show that the overlap between Majorana modes reduces quantum uncertainties, which is a general result of
fundamental importance. We also propose the protocol to measure spins in both quantum dots, consecutively, and
demonstrate that the result of the second measurement would depend on the presence of Majorana quasiparticles.
This could serve as an indirect tool for their empirical observation, which is of importance for the ongoing
discussions concerning unambiguous detection of the Majorana quasiparticles in nanoscopic hybrid structures.

DOI: 10.1103/dxb2-15jf

I. INTRODUCTION

If two Hermitian operators â and b̂ do not commute,
[â, b̂] �= 0, the uncertainty principle asserts a fundamental
limit on the accuracy of consecutive measurements done on
â and b̂. A prominent example is Heisenberg’s uncertainty
principle, which says that due to the noncommutativity of
momentum and coordinate operators [p̂, x̂] �= 0, pin-point
measurement of the coordinate operator x̂ reduces the ac-
curacy of measuring the momentum operator p̂, and vice
versa, i.e., �x�p � h̄, where h̄ is Planck’s constant. Fol-
lowing Robertson, one may write uncertainty relations in the
form [1]

�a�b � 1
2 | 〈ψ | [â, b̂] |ψ〉 |, (1)

where �O =
√

〈Ô2〉 − 〈Ô〉2. While Eq. (1) looks more gen-
eral than Heisenberg’s uncertainty relation, when |ψ〉 is the
eigenfunction of â or b̂, Eq. (1) takes a trivial form. There-
fore, one has to utilize more advanced entropic uncertainty
relations (EURs) to eliminate arbitrariness of the choice of
state |ψ〉. The right-hand side of inequality Eq. (1) defines
the minimal possible measurement uncertainty. In contrast,
the left-hand side quantifies the uncertainty of actual mea-
surements and can exceed the right-hand side. The measured
system A might be correlated with another quantum system B,
forming an entangled state ρ̂AB. Correlations between the two
systems influence the uncertainty of quantum measurements

performed on the system A. In the seminal work Ref. [2] it
has been shown that quantum memory can affect the bound of
entropic uncertainty relations. Different aspects of quantum
memory have been addressed in Refs. [3–12].

In this article we carry out rigorous studies of quantum
memory, which can in principle be stored in a device com-
posed of two quantum dots (QDs) connected by a short
topological wire with the boundary Majorana modes (Fig. 1).
It has been recently shown [13,14] that in such a system
the degree of entanglement between the quantum dots can
be varied by tuning the coupling strength with both Ma-
jorana modes. As it turns out, this is only one particular
aspect of the larger picture we have unveiled in the present
study. In a surprisingly unexpected manner, the interfer-
ence between Majorana modes emerges as a powerful tool
for controlling the quantumness of the whole device. We
predict that the interference between Majorana modes dra-
matically influences fundamental uncertainties of quantum
measurements. Namely, it reduces the quantum uncertainties
of experimentally feasible spin measurements in quantum
dots.

Recent intensive studies of the Majorana fermions explored
a variety of platforms, mostly one- and two-dimensional mag-
netic samples in contact with bulk superconductors [15–21].
Moreover, the investigations have encompassed, among
others, Majorana quasiparticles in the presence of dissipa-
tion by environmental modes [22], using the Born-Markov
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FIG. 1. The tripartite system, consisting of two quantum dots,
QD1=Alice and QD2=Bob, and a topological supercond-
uctor=Charlie, hosting the Majorana modes. The two noncommuting
operators from QD1, σ̂x and σ̂z, are measured. According to the
improved EUR, the lower bound of the uncertainty of those
measurements depends on the correlations between subsystems:
[Alice, Charlie] and [Alice, Bob].

approximation and Lindblad formalism [23]. There have also
been studies on finite temperature effects and thermoelec-
tric fluctuations of interfering Majorana bound states [24].
Nonequilibrium quantum noise has been considered as a
possible tool for probing the Majorana bound states via
fluctuation fingerprints [25]. Furthermore, shot noise and
conductance have been investigated in the context of nonequi-
librium states [26]. The Majorana modes have been studied in
the field of quantum thermodynamics as well, considering a
two-terminal quantum spin-Hall heat engine and refrigerator
with embedded Majorana bound states [27]. In fact, there are
plenty of other interesting physical aspects connected with
Majorana physics, such as the Aharonov-Bohm oscillations
[28], Majorana ensembles with fractional entropy, and entropy
revival via tunneling phases [29,30], to name a few. In what
follows, we focus on a different yet equally interesting aspect
of such hybrid systems. In particular, we analyze tripartite
quantum entanglement of quantum dots attached to the topo-
logical superconductor with the Majorana boundary modes.

II. QUANTUM-MEMORY-ASSISTED ENTROPIC
UNCERTAINTIES

The original quantum-memory-assisted EUR was formu-
lated for the bipartite quantum system �̂AB shared between
Alice A and Bob B [2,31,32]. Alice performs two posi-
tive operator-valued measurements (POVMs) on the A qubit
at her hand. Alice uses projectors �zA

1,2 = |ψ1,2〉 〈ψ1,2| and
�xA

1,2 = |φ1,2〉 〈φ1,2|, where |ψ1,2〉 ≡ |0〉A , |1〉A and |φ1,2〉 =
1√
2
(|0〉A ± |1〉A) are eigenfunctions of z and x components of

the qubit A. Then the EUR for the bipartite system is given by

S(X |B) + S(Z|B) � log2
1

c
+ S(A|B), (2)

where c = max{| 〈ψi| |φ j〉 |2} is a measure of complemen-
tarity and S(X |B) = S(ρ̂X

AB) − S(ρ̂B) and S(Z|B) = S(ρ̂Z
AB) −

S(ρ̂B), with S(�̂) = −�̂ log2 �̂ being conditional quantum en-
tropies of the states [31]

ρ̂Z
AB =

∑
n=1,2

�z
n ⊗ TrA

{(
�z

n ⊗ ÎB
)
ρ̂AB

}
, (3)

ρ̂X
AB =

∑
n=1,2

�x
n ⊗ TrA

{(
�x

n ⊗ ÎB
)
ρ̂AB

}
. (4)

We note that the left-hand side of Eq. (2) defines the uncer-
tainty about measurement results (two measurements done on
the x and z spin components of the system A). The right-hand

side of Eq. (2) defines the lower bound of this uncertainty. The
first term on the right-hand side log2(1/c) is positive. How-
ever, conditional quantum entropy S(A|B) can be negative for
entangled states, and when it is negative, it reduces the lower
bound of uncertainty. Negative conditional quantum entropy
S(A|B) means that the state �̂AB for sure is entangled, but the
converse is not always true. The quantum memory defines the
bound of minimal theoretically possible uncertainty given by
max{| 〈ψi| |φ j〉 |2}.

III. THE SETUP

The system of our interest here is not bipartite but tripartite
(Fig. 1). Specifically, we consider two quantum dots (QD1 and
QD2) indirectly contacted via the Majorana modes, existing
at boundaries of the topologically nontrivial superconduct-
ing nanowire [33]. Majorana quasiparticles do always exist
in pairs and obey non-Abelian statistical rules, that would
be appealing for implementation of quantum computations
[34,35]. However, despite extensive studies [15–20], it is not
yet clear whether they are cross correlated or not [36,37].
Suitable platforms to address this issue are hybrid structures
with side-attached quantum dots [38–41], where QDi can be
regarded as detectors of nonlocal correlations [42]. The low-
energy model of our hybrid structure can be described by the
following Hamiltonian:

Ĥ =
∑
i=1,2

ĤQD
i + V̂ . (5)

Quantum dots are treated as the Anderson type impurities
ĤQD

i = ∑
σ εiσ d†

iσ diσ + Un̂i↑n̂i↓, where d†
iσ and diσ are cre-

ation and annihilation operators of the electrons with spin
σ = ↑,↓ and energy εiσ , and U denotes the strength of the
Coulomb repulsion between opposite spin electrons, while
n̂iσ = d†

iσ diσ . QDs are hybridized with the Majorana quasi-
particles via

V̂ = λ1(d†
1↑ − d1↑)γ̂1 + iλ2γ̂2(d†

2↑ + d2↑) + iεM γ̂1γ̂2.

We assume that only ↑-spin electrons of the quantum dots are
coupled to these Majorana boundary modes with the coupling
strength λi. The overlap εM between the Majorana modes
is finite when the topological superconducting nanowire is
shorter than the superconducting coherence length. Operators
γ̂i and γ̂

†
i are self-Hermitian, γ̂

†
i = γ̂i. It is convenient to ex-

press them in terms of conventional fermion operators defined
by γ̂1 = ( f̂ † + f̂ )/

√
2, γ̂2 = i( f̂ † − f̂ )/

√
2. We introduce

the occupancy representation |n f , nd1
, nd2

〉, enumerating the
basis vectors as follows: |ϕ1〉 = |0, 0, 0〉, |ϕ2〉 = |1, 0, 0〉,
|ϕ3〉 = |0, 1, 0〉, |ϕ4〉 = |1, 1, 0〉, |ϕ5〉 = |0, 0, 1〉, |ϕ6〉 =
|1, 0, 1〉, |ϕ7〉 = |0, 1, 1〉, |ϕ8〉 = |1, 1, 1〉. Technical details
can be found in Ref. [14]. For the sake of analytic study
we consider the parameter set ε1↑,↓ = 0, ε2↑,↓ = 0, U = 0,

εM = 2ω, λ1 = −λ2 = √
2λ. Then, the energy eigenbasis of

the system is given by |e1〉 = −η+ |1 f 〉 ⊗ |�−
d 〉 + ξ+ |0 f 〉 ⊗

|�+
d 〉, |e2〉 = η− |1 f 〉 ⊗ |�−

d 〉 + ξ− |0 f 〉 ⊗ |�+
d 〉, E1 =

−√
ω2 + 4λ2 = −�, � = √

ω2 + 4λ2, |e3〉 = − |0 f 〉 ⊗
|�−

d 〉, |e4〉 = − |0 f 〉 ⊗ |�−
d 〉, E2 = −ω; |e5〉 = |1 f 〉 ⊗ |�+

d 〉,
|e6〉 = |1 f 〉 ⊗ |�+

d 〉, E3 = ω; |e7〉 = −η− |1 f 〉 ⊗ |�−
d 〉 +

ξ− |0 f 〉 ⊗ |�+
d 〉, |e8〉 = η+ |0 f 〉 ⊗ |�+

d 〉 + ξ+ |1 f 〉 ⊗ |�−
d 〉,
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E4 = �, where we introduced the notation η± = 2λ√
4λ2+(ω±�)2

and ξ± = ω±�√
4λ2+(ω±�)2

, and |�±
d 〉 and |�±

d 〉 are Bell states of

the quantum dots.

IV. INDIRECT OBSERVATION OF MAJORANA MODES

Quantum entanglement of the hybrid setup displayed in
Fig. 1 has been a topic of recent interest [13,14] and its
empirical realization seems to be feasible. For example, the
density matrices of tri- and bipartite states of the hybrid
QD1–topological nanowire–QD2 system can be constructed
by the quantum state tomography method [43]. Regard-
ing a finite overlap between the Majorana modes, εM �= 0,
such a situation could be encountered, e.g., in short-length
nanowires deposited on superconducting substrates [20] or in
the minimal Kitaev chain, consisting of a few semiconducting
quantum dots interconnected through the conventional super-
conductor [44]. A single-shot measurement scheme would be
capable to selectively access the singlet or triplet pairing states
induced in the quantum dots and could mimic the POVMs
discussed above [45].

Before addressing the quantum uncertainty, we would like
to emphasize that indirect information about the Majorana
modes can be inferred from the following measurement pro-
tocol: (a) by first measuring the spin of the first QD and then
the spin of the second QD and (b) by measuring the spin
of the second QD directly. Our focus here is the quantum
witnesses (QWs), which quantify the invasiveness of quantum
measurements [12,46–49]. Due to the coupling between QDs
through the Majorana modes, the results of measurements of
the second spin in the two cases (a) and (b) should be different.
Such difference in the measurement results could hence pro-
vide evidence for an indirect observation of Majorana modes.

We consider the most general case and assume that the
quantum system between measurements evolves through the
trace-preserving map F̂ , which is not necessarily a unitary
operation. The projector measurement operators for qubits
read �s

jα = |α〉〈α|. Here, the index j defines the subsystems
of QDs j = A, B and α = 0, 1 refers to the ground and excited
spin states. The direct measurement probability is given by
P jα

�̂ = Tr{�s
jαF̂[�̂]}. On the other hand, the indirect measure-

ment probability reads Q jα
�̂ = Tr{�s

jαF̂[�̂post]}, where �̂post is
the postmeasurement state formed after the measurement in
the indirect measurement scheme. States evolved through the
trace-preserving maps are given by F̂[�̂] = ∑

α L̂α�̂L̂†
α and

F̂[�̂post] = ∑
α L̂α�̂postL̂†

α , respectively. The trace-preserving
maps are described through the Kraus operators L̂α , L1 =√

μ1|1〉〈0|1 ⊗ |0〉〈1|2 and L2 = √
μ2|0〉〈1|1 ⊗ |1〉〈0|2, with

coefficients preserving the normalization condition μ1 +
μ2 = 1. We define the QW as follows:

W�̂( j, α) = ∣∣P jα
�̂ − Q jα

�̂

∣∣. (6)

Here, P jα
�̂ corresponds to the direct and Q jα

�̂ to the indirect
measurement, respectively. After tracing out the Majorana
states, the reduced density matrix of QDs in the ground state

and postmeasurement density matrix read

�̂ = η2
+ |�−

d 〉 〈�−
d | + ξ 2

+ |�−
d 〉 〈�−

d | ,

�̂post = (|0〉 〈0|1 ⊗ I2)�̂(|0〉 〈0|1 ⊗ I2)

Tr[(|0〉 〈0|1 ⊗ I2)�̂(|0〉 〈0|1 ⊗ I2)]
, (7)

where I2 is the identity operator acting in the spin subspace
of the second QD. Taking into account Eqs. (6) and (7),
and symmetric map μ1 = μ2 = 1/2 we obtain after lengthy
calculations

W�̂( j, α) = 1

4
× (ω + �)2

4λ2 + (ω + �)2
. (8)

From Eq. (8), we see that in the strong overlap case
εM = 2ω 
 λ, the results of measurements in the cases (a)
and (b) for the second spin may differ up to W�̂( j, α) = 1/4.

V. UNCERTAINTY IN A TRIPARTITE SYSTEM

When quantum memory consists of two quantum systems,
the lower bound of measurement uncertainties is given by
the tripartite quantum-memory-assisted entropic uncertainty
relation. It is precisely our case. Therefore, to analyze the
quantum memory of Majorana quasiparticles, we exploit the
quantum memory-assisted improved EUR for the tripartite
system [4,5,50].

Our tripartite system consists of two QDs shared by Alice
(A) and Bob (B) and Majorana fermions owned by Charlie
(C): ρ̂ABC . Alice measures Z and X components of the spin
of the first QD. Bob’s task is to minimize uncertainty of the
measurement of X . Charlie tries to minimize the uncertainty
of Z . The quantum memory assisted EUR reads [5]

S(X |B) + S(Z|C) � log2
1

c
+ max{0, δ} + S(A|B) + S(A|C)

2
.

(9)

Here, the measure of complementarity is log2(1/c) = 1,
and ρ̂AB = TrC (ρ̂ABC ), ρ̂AC = TrB(ρ̂ABC ), S(X |B) = S(ρ̂X

AB) −
S(ρ̂X

B ), S(Z|C) = S(ρ̂Z
AC ) − S(ρ̂Z

C ), S(A|B) = S(ρ̂AB) − S(ρ̂B),
and S(A|C) = S(ρ̂AC ) − S(ρ̂C ) are conditional quantum en-
tropies of the states:

ρ̂Z
AC =

∑
n=1,2

�zA
n ⊗ TrA

{(
�zA

n ⊗ ÎC
)
TrB(ρ̂ABC )

}
, (10)

ρ̂X
AB =

∑
n=1,2

�xA
n ⊗ TrA

{(
�xA

n ⊗ ÎB
)
TrC (ρ̂ABC )

}
. (11)

The second term in Eq. (9) has the form

δ = I (A : B) + I (A : C)

2
− [H (X : B) + H (Z : C)]. (12)

The first two terms in Eq. (12) correspond to mutual quantum
information

I (A : B) = S(ρ̂A) + S(ρ̂B) − S(ρ̂AB), (13)

I (A : C) = S(ρ̂A) + S(ρ̂C ) − S(ρ̂AC ), (14)

and the second term quantifies the so-called Holevo quantity,
that is the upper bound of the information accessible to Bob
about the outcomes of Alice’s measurements:

H (X : B) = S(ρ̂B) −
∑
i=1,2

px
i S(ρ̂B|i ), (15)
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where

px
i = TrAB

(
�xA

i ρ̂AB�xA
i

)
,

ρ̂B|i = TrA
(
�xA

i ρ̂AB�xA
i

)
px

i

, (16)

and

H (Z : C) = S(ρ̂C ) −
∑
i=1,2

pz
i S(ρ̂C|i ), (17)

where

pz
i = TrAC

(
�zA

i ρ̂AC�zA
i

)
,

ρ̂C|i = TrA
(
�zA

i ρ̂AC�zA
i

)
pz

i

. (18)

Taking into account that ρ̂ABC = |e1〉 〈e1| after cumbersome
calculations, we deduce the expressions of the marginal en-
tropies:

ρ̂AB = η2
+
2

(|0〉 〈0|A ⊗ |0〉 〈0|B + |1〉 〈1|A ⊗ |1〉 〈1|B
− |1〉 〈0|A ⊗ |1〉 〈0|B − |0〉 〈1|A ⊗ |0〉 〈1|B)

+ ξ 2
+
2

(|0〉 〈0|A ⊗ |1〉 〈1|B + |1〉 〈1|A ⊗ |0〉 〈0|B
+ |0〉 〈1|A ⊗ |1〉 〈0|B + |1〉 〈0|A ⊗ |0〉 〈1|B), (19)

and

ρ̂AC = η2
+
2

|1〉 〈1|C ⊗ ÎA + ξ 2
+
2

|0〉 〈0|C ⊗ ÎA

+ η+ξ+
2

(|0〉 〈1|A − |1〉 〈0|A) ⊗ (|0〉 〈1|C − |1〉 〈0|C ).

(20)

Consequently,

ρ̂C = η2
+ |1〉 〈1|C + ξ 2

+ |0〉 〈0|C ,

ρ̂A = 1
2 ÎA, ρ̂B = 1

2 ÎB, (21)

where Î are identity matrices in the corresponding subspaces.
We proceed with the postmeasurement states, obtaining

ρ̂Z
AC = 1

2 (η2
+ |1〉 〈1|C + ξ 2

+ |0〉 〈0|C ) ⊗ IA, (22)

and

ρ̂X
AB = 1

4
IAIB + ξ 2

+ − η2
+

4
(|0〉 〈1|A ⊗ |1〉 〈0|B

+ |0〉 〈1|A ⊗ |0〉 〈1|B + |1〉 〈0|A ⊗ |1〉 〈0|B
+ |1〉 〈0|A ⊗ |0〉 〈1|B). (23)

On the other hand, for Holevo’s entropies, we obtain

ρ̂C|1 = ρ̂C|2 = η2
+ |1〉 〈1|C + ξ 2

+ |1〉 〈1|C ,

pz
1 = pz

2 = 1
2 , (24)

and

ρ̂B|1,2 = 1

2
IB ± ξ 2

+ − η2
+

2
(|0〉 〈1|B + |1〉 〈0|B),

px
1 = px

2 = 1

2
. (25)

Taking into account Eqs. (10)–(25), we deduce the entropy of
the state ρ̂X

AB:

S
(
ρ̂X

AB

) = −
(

1 − |ξ 2
+ − η2

+|
2

)
log2

(
1 − |ξ 2

+ − η2
+|

4

)

−
(

1 + |ξ 2
+ − η2

+|
2

)
log2

(
1 + |ξ 2

+ − η2
+|

4

)
.

(26)

The entropy S(ρ̂X
AB) approaches a universal upper bound for

λ/εM 
 1:

S
(
ρ̂X

AB

) → 2, (27)

FIG. 2. Entropy S(ρ̂X
AB) of the state ρ̂X

AB defined in Eq. (26).
The coefficients η± and ξ± that enter in ρ̂X

AB are defined at the end
of Sec. III. Top: As a function of the coupling strength λ for fixed
overlap between Majorana modes ω (from above ω = 10−3, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6). Bottom: As a function of ω for fixed λ (from
above 1, 0.1, 8 × 10−2, 4 × 10−2, 10−2, 10−3, 10−4). The entropy
approaches the maximal value, as one of the limits of Eq. (27) is
approached.
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FIG. 3. Holevo quantity H (X : B) from Eq. (37) calculated for the same parameter sets as in Fig. 2. Left: As a function of the coupling
strength λ for fixed overlap between Majorana modes ω (from above ω = 10−3, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6). Right: As a function of ω for fixed
λ (from above 1, 0.1, 8 × 10−2, 4 × 10−2, 10−2, 10−3, 10−4).

which is the entropy of the maximally entangled state on
the space of Hermitian 4 × 4 matrices. We plot the function
S(ρ̂X

AB) for different cases in Fig. 2. The conditional quantum
entropy corresponding to the state ρ̂X

AB is

S(X |B) = S
(
ρ̂X

AB

) − 1. (28)

In a similar way, we deduce

S
(
ρ̂Z

AC

) = −ξ 2
+ log2

ξ 2
+
2

− η2
+ log2

η2
+
2

, (29)

S(Z|C) = −ξ 2
+ log2

ξ 2
+
2

− η2
+ log2

η2
+
2

+ ξ 2
+ log2 ξ 2

+ + η2
+ log2 η2

+ = 1, (30)

S(A|B) = −ξ 2
+ log2 ξ 2

+ − η2
+ log2 η2

+ − 1, (31)

and

S(ρ̂AC ) = 1, (32)

while

S(ρ̂AB) = −ξ 2
+ log2 ξ 2

+ − η2
+ log2 η2

+, (33)

S(A|C) = 1 + ξ 2
+ log2 ξ 2

+ + η2
+ log2 η2

+. (34)

In the limit of λ/εM 
 1, the entropy approaches the bound
S(ρ̂AB) → 1, which is exactly half the value of S(ρ̂X

AB). Except
this different normalization, the overall shape of both quanti-
ties is very similar. For Holevo’s terms we deduce the mutual
quantum entropies

I (A : B) = 2 + ξ 2
+ log2 ξ 2

+ + η2
+ log2 η2

+, (35)

I (A : C) = −ξ 2
+ log2 ξ 2

+ − η2
+ log2 η2

+, (36)

as well as the Holevo quantity itself:

H (X : B) = 1 + 1 − ξ 2
+ + η2

+
2

log2

(
1 − ξ 2

+ + η2
+

2

)

+ 1 + ξ 2
+ − η2

+
2

log2

(
1 + ξ 2

+ − η2
+

2

)
, (37)

H(Z : C) = 0. (38)

We plot the function H (X : B) in Fig. 3. Thus, we finally
obtain

1 + max(0, δ) � −
(

1 − |A|
2

)
log2

(
1 − |A|

4

)

−
(

1 + |A|
2

)
log2

(
1 + |A|

4

)
, (39)

where

δ = −1 − A
2

log2

(
1 − A

2

)
− 1 + A

2
log2

(
1 + A

2

)
,

(40)

and A = ξ 2
+ − η2

+. Notice that for any A, Eq. (39) converts
into equality log2 2 = 1, corresponding to the minimal values
of measurement uncertainties. We thus proved that the topo-
logical Majorana quasiparticles enabled the uncertainties to
reach their minimal lower bound value. This analytical result
is universal and holds for arbitrary coupling strength and any
finite overlap between the Majorana boundary modes.

VI. SUMMARY AND OUTLOOK

In this article we have investigated the uncertainties
of POVMs performed on two quantum dots (QD1 and
QD2) interconnected through the topological superconduct-
ing nanowire, hosting the Majorana boundary modes. We
determined the quantitative measures of the quantum dot
entanglement in this tripartite system, implementing the im-
proved EUR. Moreover, we analyzed the role of mutual
quantum correlations between QDs transmitted through the
Majorana modes, focusing on measurements done on QD1.
We derived analytical expressions for the particular values
of QD energies, ε1σ = 0 = ε2σ , and the couplings with Ma-
jorana modes, λ1 = −λ2 = √

2λ. Under such conditions, we
have predicted that the uncertainties of measurements allowed
by the EUR are minimal. This result is valid for arbitrary
strength of the coupling λ and for any overlap between the
Majorana modes, εM �= 0. We have also observed that quan-
tum entropies of the reduced density matrices, Eqs. (26) and
(33), tend to higher values for weaker overlaps between the
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Majorana modes εM and stronger coupling with QDs λ. This
remarkable behavior is shown in Fig. 2. According to this sce-
nario, the interference between the Majorana modes reduces
the quantum correlation between quantum dots, as respective
quantum entropies are always at their maxima for εM/λ → 0.
This is even more surprising, since the Majorana quasiparti-
cles themselves represent ultraquantum fermionic excitations.
The uncertainty of measurements always coincides with the
lower bound of the EUR. However, its minimal value is
achieved for A → 1, εM 
 λ and scales as

≈1 + 1

4 ln(2)

λ2

ε2
M

(
1 + ln

[
4ε2

M

λ2

])
, (41)

while the maximal value of uncertainty

≈2 − 1

32 ln(2)

ε2
M

λ2
(42)

corresponds to the case A → 0, εM 
 λ. It is a surprising and
important finding since, after rigorous mathematical discus-
sion, the main result is expressed in terms of two fundamental
parameters, such as the overlap of Majorana modes εM and
the coupling strength with QDs λ.

We note that of vital importance for the obtained results
are the eigenstates of the system. Since we are interested in
perspectives of a long-distance entanglement, the Majorana
modes would be essential for entangling the two quan-
tum dots communicating via a topological superconductor.
Coupling QDs through the Majorana modes allows for the
minimization of environmental effects, reducing decoherence
in long-distance communication.

Empirical verification of the multipartite entanglement
in bulk materials is usually done using neutron scattering

[51,52]. These techniques have been successfully adopted
for probing quantum entanglement in quantum magnets [53],
strongly correlated fermions [54,55], electronic orbitals [56],
and numerous other systems [57–59]. Such techniques, how-
ever, would be hard to use for the setup with quantum dots
because the quasiparticle states are too fragile for probing via
crystal spectroscopy. Implementation of these techniques for
the present setup might be also problematic due to detrimental
effects on electron pairing. A more promising method can rely
on time-resolved charge transport measurements, where the
crossed Andreev reflections could detect mutual correlations
between the quantum dots [36,37,42].

Further extension of our study could explore correlations,
originating from the Coulomb repulsion between opposite-
spin electrons at each quantum dot. Determination of the
quantum entanglement of the strongly correlated dimers cou-
pled even to a nontopological environment would require,
however, sophisticated numerical tools [60]. Analytical results
would be hardly feasible for such a setup, hence we leave this
topic for further studies.
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[40] M.-T. Deng, S. Vaitiekėnas, E. Prada, P. San-Jose, J. Nygård,
P. Krogstrup, R. Aguado, and C. M. Marcus, Nonlocality of
Majorana modes in hybrid nanowires, Phys. Rev. B 98, 085125
(2018).
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