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Entanglement between quantum dots transmitted via a Majorana wire: Insights
from the fermionic negativity, concurrence, and quantum mutual information
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We study quantum entanglement in a system comprising two quantum dots interconnected through the
short topological superconducting nanowire, which hosts overlapping boundary Majorana modes. Inspecting
the fermionic negativity, we analyze the variation of entanglement against the position of the energy levels of
quantum dots and their hybridization with the topological superconducting nanowire. In the absence of electron
correlations, the optimal entanglement occurs when the energy levels coincide with the zero-energy Majorana
modes, whereas upon increasing the hybridizations, the entanglement is gradually suppressed. Such monotonous
behavior is no longer valid when the quantum dot levels are detuned from the zero-energy. Under these
circumstances, the quantum dots become maximally entangled for a certain optimal hybridization. Moreover, we
study the thermal concurrence to explore the entanglement properties at finite temperatures. We also compute
the quantum mutual information and propose recipes for robust finite-temperature entanglement transmission via
Majorana modes.
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I. INTRODUCTION

Quantum entanglement is an imaginary physical quantity
that characterizes the degree of quantumness of a physical sys-
tem, and it has been widely studied over the last three decades
[1–6]. For practical reasons, the entanglement is interesting
because of several unique properties and facets that it exhibits.
Its analysis provides us with a deeper understanding of the
nature of quantum states [7–9], and besides that, the entangled
states can be viewed as a repository of quantum information.
For instance, in resource theory, the coherence of entangled
states is regarded as means for performing operations on gates,
that would not be available in the classical case [10]. Since
very recently, research has focused on the entanglement be-
tween fermionic degrees of freedom [11,12]. In particular, it
was discovered that the fermionic entanglement may exceed
the bosonic one. In addition, the fermionic entanglement is
stronger. In contrast to the bosonic case, the fermionic nega-
tivity decays as a power law [13–15].

The problem of the quantum entanglement quantification
has engaged the physicists ever since its introduction in the
early days of quantum mechanics [16,17]. In this article
we in particular investigate the key entities of the quantum
information science, including the fermionic logarithmic en-
tanglement negativity (or simply the logarithmic negativity),
quantum concurrences, and mutual information, in order to
shed light on the properties of superimposed quantum states
dwelling in a topological superconducting nanowire. We es-
pecially focus on the regime where the Majorana modes,
i.e., the zero-energy quasiparticles appearing at the edges
of topologically nontrivial superconducting systems, emerge

[18–22]. Such quasiparticles do always exist in pairs, but it is
not obvious to what extent are they mutually cross-correlated.
This issue is particularly relevant for recent realizations of a
minimal Kitaev chain, using two [23] and three [24] quan-
tum dots contacted by superconductor where Majorana modes
might partly overlap with one another. To inspect their entan-
glement, we study a hybrid system, consisting of two quantum
dots (QDs) interconnected through Majorana quasiparticles
[25–27]. A particular configuration of such a system is shown
schematically in Fig. 1. In what follows, we investigate the
long-range entanglement between these quantum dots trans-
mitted solely by the Majorana modes [28]. In practical terms,
our setup represents a tripartite system with the correspond-
ing collective density matrix ρ̂d1d2 f , where the indices d1, d2

refer to both quantum dots, respectively, which communicate
with each other indirectly through the Majorana fermions that
are described by the third part f . We consider the partial
transpose of the reduced density matrix of quantum dots and
use the measure of logarithmic negativity to quantify the en-
tanglement in the system. Each fermionic species lives on a
two-dimensional Fock space, which reflects the only empty
and filled state allowed by the fermionic statistics. Hence, we
essentially deal with a three-qubit system, on general proper-
ties of which only a patchwork knowledge exists. For instance,
the separability properties of a generic three-qubit density ma-
trix have been investigated rigorously in Ref. [29]. Crucially,
because of the fermionic anticommuting algebra, the partial
transpose for the fermionic case is less trivial as compared to
the bosonic one [30]. Here, we follow the partial time-reversal
transformation method developed in Ref. [31], which allows
for capturing all essential topological features of Majorana
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FIG. 1. The schematic of the investigated setup with symmetric
coupling λ between the quantum dots (QDs) and topological super-
conducting nanowire, with Majorana modes located at its ends.

fermions from studies of the logarithmic negativity. A con-
siderable progress has been achieved recently with regard to
the nonlocal entanglement properties of the Majorana-bound
states. For instance, in Ref. [32] the authors studied for the
first time two specific entanglement measures for zero on-site
energies of the QDs, namely the concurrence and quantum
discord. In the present work, we explore fermionic negativity
for arbitrary energies of QDs and analyze entanglement at
finite temperatures via the thermal concurrence and quantum
mutual information.

II. MODEL AND EFFECTIVE HAMILTONIAN

The low-energy physics of the system comprising two
quantum dots connected by a short nanowire composed of a
topological superconducting material (cf. Fig. 1) is captured
by the following effective Hamiltonian:

Ĥ =
∑
i=1,2

ĤQD
i + V̂ . (1)

The QDs are treated as single level spinless impurities

ĤQD
i = εid̂

†
i d̂i, (2)

where d̂†
i , d̂i are the creation and annihilation operators of the

electrons of energy εi in the i-th quantum dot. The quantum
dots are hybridized with the Majorana quasiparticles via

V̂ = iεM γ̂1γ̂2 + λ1(d̂
†
1 − d̂1)γ̂1 + iλ2γ̂2(d̂†

2 + d̂2). (3)

We assume that the electrons of the quantum dots are coupled
to these Majorana boundary modes with the coupling strength
λi, respectively. The overlap εM between the Majorana modes
is finite when the topological superconducting nanowire is
shorter than the superconducting coherence length. On the
other hand, the self-hermitian operators γ̂i = γ̂

†
i can be ex-

pressed in terms of conventional fermionic operators f̂ † and
f̂ , which obey the standard anticommutation rules, as their
superpositions

γ̂1 = 1√
2

( f̂ † + f̂ ), γ̂2 = i√
2

( f̂ † − f̂ ). (4)

We note that the above Hamiltonian describes the system
at low energies, assuming large Coulomb correlations and
magnetic field, which is needed to induce the topological
superconductivity. This effectively implies that only one spin
species, which couples to the Majorana quasiparticles, is rele-
vant in the quantum dots [26,27].

To start our discussion of negativity, we consider the fol-
lowing occupation number basis |n f , nd1

, nd2
〉, enumerating

the basis vectors as

|ϕ1〉 = |1, 0, 0〉 , |ϕ2〉 = |0, 0, 1〉 ,

|ϕ3〉 = |0, 1, 0〉 , |ϕ4〉 = |1, 1, 1〉 ,

|ϕ5〉 = |0, 0, 0〉 , |ϕ6〉 = |1, 0, 1〉 ,

|ϕ7〉 = |1, 1, 0〉 , |ϕ8〉 = |0, 1, 1〉 .

Then using the algebra of fermionic operators

|1, 1, 1〉 = f̂ †d̂†
1 d̂†

2 |0, 0, 0〉, (5a)

|0, 0, 0〉 = d̂2d̂1 f̂ |1, 1, 1〉 = d̂2d̂1 f̂ f̂ †d̂†
1 d̂†

2 |0, 0, 0〉, (5b)

as well as the explicit form of the interaction term

V̂ = εM

2
( f̂ † f̂ − f̂ f̂ †)

− λ1√
2

( f̂ †d̂†
1 + f̂ d̂†

1 + d̂1 f̂ † + d̂1 f̂ )

− λ2√
2

( f̂ †d̂†
2 − f̂ d̂†

2 − d̂2 f̂ † + d̂2 f̂ ), (6)

we construct the Hamiltonian matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εM
2 − λ2√

2

λ1√
2

0 0 0 0 0

− λ2√
2

H55 0 − λ1√
2

0 0 0 0
λ1√

2
0 H33

λ2√
2

0 0 0 0

0 − λ1√
2

λ2√
2

H88 0 0 0 0

0 0 0 0 − εM
2 − λ2√

2
− λ1√

2
0

0 0 0 0 − λ2√
2

H66 0 λ1√
2

0 0 0 0 − λ1√
2

0 H44
λ2√

2

0 0 0 0 0 λ1√
2

λ2√
2

H77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7)

which has a block-diagonal structure due to different parities.
Here, the basis vectors are arranged according to the charge
parity as follows:

|ϕ1〉 , |ϕ2〉 , |ϕ3〉 , |ϕ4〉︸ ︷︷ ︸
odd parity

, |ϕ5〉 , |ϕ6〉 , |ϕ7〉 , |ϕ8〉︸ ︷︷ ︸
even parity

. (8)

In Eq. (7) we use the following shorthand notation:

H33 = ε1 − εM

2
, H44 = ε1 + εM

2
,

H55 = ε2 − εM

2
, H66 = ε2 + εM

2
,

H77 = ε1 + ε2 − εM

2
, H88 = ε1 + ε2 + εM

2
.

We also note that treating the Coulomb repulsion, appearing
in the form of an additional Hubbard interaction term, in a
mean-field fashion, would merely rescale the QDs energies in
the above formulas. We address this issue in more detail in
Appendix.
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III. REDUCED MATRIX ELEMENTS

We diagonalize the Hamiltonian (7) numerically and find
the eigenstates

|Gm〉 =
8∑

n=1

Cmn |ϕn〉 . (9)

The decomposition coefficients Cmn[εM, ε1, ε2, λ1, λ2] are
functions of several parameters. At zero temperature, the den-
sity matrix of the total system is a pure state and has the form
ρ̂ = |G〉 〈G|, where |G〉 is one from the eigenstates (hereafter
we omit the second index m). After tracing the Majorana states
|n f 〉, we obtain the reduced density matrix ρ̂R

ρ̂R =

⎡
⎢⎢⎣

ρ11 ρ12 ρ13 ρ14

ρ21 ρ22 ρ23 ρ24

ρ31 ρ32 ρ33 ρ34

ρ41 ρ42 ρ43 ρ44

⎤
⎥⎥⎦. (10)

The elements of the reduced matrix are given by the following
equations:

ρ12 = ρ∗
21 = C1C

∗
7 + C5C

∗
3 , ρ13 = ρ∗

31 = C1C
∗
6 + C5C

∗
2 ,

ρ14 = ρ∗
41 = C1C

∗
4 + C5C

∗
8 , ρ23 = ρ∗

32 = C3C
∗
2 + C7C

∗
6 ,

ρ24 = ρ∗
42 = C3C

∗
8 + C7C

∗
4 , ρ34 = ρ∗

43 = C2C
∗
8 + C6C

∗
4 ,

ρ11 = |C1|2 + |C5|2, ρ22 = |C3|2 + |C7|2,
ρ33 = |C2|2 + |C6|2, ρ44 = |C4|2 + |C8|2,

with the sum of diagonal elements fixed to the unity. The
corresponding basis of vectors |nd1 , nd2〉 is defined as

|ψ1〉 = |0〉1 |0〉2 , |ψ2〉 = |1〉1 |0〉2 ,

|ψ3〉 = |0〉1 |1〉2 , |ψ4〉 = |1〉1 |1〉2 .

IV. ENTANGLEMENT NEGATIVITY

Below, we employ the fermionic version of the density
matrix partial transpose. In particular, we transpose the states
of the first QD (nd1 , n′

d1
) and refer to this operation as T f

nd1
.

The logarithmic negativity of a partially transposed density
matrix, which is defined in analogy to the separability crite-
rion based on the negative eigenvalues of partial transpose, is
generally considered as the most practical method to capture
the entanglement in a composite quantum system comprising
more than two subsystems, cf. Refs. [31,33] and references
therein. In particular, the logarithmic negativity provides an
upper bound on the amount of distillable entanglement in
multipartite systems [14]. We calculate the entanglement neg-
ativity following Refs. [14,31]. Using the formula(∣∣n′

d1
, n′

d2

〉 〈
nd1 , nd2

∣∣)T f
nd1 = (−1)α

∣∣nd1 , n′
d2

〉 〈
n′

d1
, nd2

∣∣ , (11)

with the exponent defined as

α = nd2 n′
d2

+ n′
d1

n′
d2

+ nd1 nd2 + (
nd1 + nd2

)(
n′

d1
+ n′

d2

)
+n′

d1

(
n′

d1
+ 2

)
2

+ nd1

(
nd1 + 2

)
2

, (12)

we obtain the partially transposed reduced density matrix

ρ̂
T f

nd1
R =

⎡
⎢⎢⎣

ρ11 −iρ21 ρ13 iρ23

−iρ12 ρ22 iρ14 ρ24

ρ31 iρ41 ρ33 −iρ43

iρ32 ρ42 −iρ34 ρ44

⎤
⎥⎥⎦. (13)

The logarithmic entanglement negativity is given by

N = ln

⎛
⎝Tr

√
ρ̂

T f
nd1

R

(
ρ̂

T f
nd1

R

)†
⎞
⎠. (14)

Our aim is to find the parameters εM , ε1, ε2, λ1, λ2 for which
the negativity is nonzero. When it concerns not a general but
a ground state, the Cn coefficients split into two subsets:

C− = (C1,C2,C3,C4, 0, 0, 0, 0) (15a)

for ε1↑, ε2↑ < 0, and correspondingly,

C+ = (0, 0, 0, 0,C5,C6,C7,C8) (15b)

otherwise. For example, the nonzero matrix elements of the
reduced density matrix for C+ read:

ρ11 = |C5|2, ρ22 = |C7|2, ρ33 = |C6|2, ρ44 = |C8|2,
ρ14 = ρ∗

41 = C5C
∗
8 , ρ23 = ρ∗

32 = C7C
∗
6 ,

those of C− are found analogously. Then, we deduce

ρ̂
T f

nd1
R

(
ρ̂

T f
nd1

R

)†

±
=

⎡
⎢⎢⎣

α 0 0 −iv
0 β −iμ 0
0 iμ γ0 0
iv 0 0 δ

⎤
⎥⎥⎦, (16)

where we have introduced the notations

α = a2 + e2, β = b2 + f 2, γ0 = c2 + f 2,

δ = e2 + d2, μ = (b − c) f , v = (a − d )e.

For the case (+) the Latin symbols are

a = |C5|2, b = |C7|2, c = |C6|2,
d = |C8|2, e = C6C7, f = C5C8,

while for the case (−) they are

a = |C1|2, b = |C3|2, c = |C2|2,
d = |C4|2, e = C2C3, f = C1C4.

The eigenvalues of the matrix Eq. (16)

r1,2 = 1
2 (β + γ0 ±

√
(β − γ0)2 + 4μ2), (17a)

r3,4 = 1
2 (α + δ ±

√
(α − δ)2 + 4ν2), (17b)

are evaluated for dimensionless units, assuming the overlap
between Majorana modes ω = εM/2 = 1. Then, the model’s
set of independent parameters is reduced to ε1, ε2 and λ1, λ2.

V. OPTIMAL ENTANGLEMENT

In the left (middle) panel of Fig. 2 we present the opti-
mal value for the coupling λ1(opt) [λ2(opt )] between the first
(second) quantum dot and the respective Majorana mode,
corresponding to the maximal negativity, as a function of
quantum dot energies ε1 and ε2. As one can see, the optimal
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FIG. 2. Left and middle: The optimal couplings λi(opt) for the first and second quantum dot, respectively, as functions of QDs energies
ε1 and ε2, corresponding to the maximum negativity. Right: The maximal negativity Nmax as a function of quantum dot energies ε1 and ε2

determined at the optimal couplings λi(opt). Parameters are in units of εM = 1.

coupling parameters increase with QDs energies, indicating
that a stronger coupling is needed to reach a sensible entan-
glement. Hence, the entanglement is mostly pronounced at
lower energies, compared to the overlap energy of the Ma-
jorana mode ω = εM/2. An interesting observation is that the
entanglement degree does not depend on the QDs energies ε1

and ε2 separately, but rather on their sum ε1 + ε2. Therefore,
the counter-lines of the same negativity form the isosceles
right triangles, as can be seen in the right panel of Fig. 2.

In Fig. 3, the optimal entanglement is depicted as
maxima of the logarithmic negativity for fixed symmetric
QDs-Majorana coupling strength λ1 = λ2 but changing the
quantum dots energies ε1 and ε2. These dependencies rep-
resent a family of concentric circle-like curves, while the
curvature is stronger for smaller QDs energies ε1, ε2 and
evolves to almost straight lines at larger ones. Moreover, the
curvature strongly depends on the strength of coupling be-
tween the quantum dots and Majorana modes. As can be seen,
the stronger the coupling, the larger curvature is observed, cf.,
e.g., the right panel in Fig. 3.

Additionally, in Fig. 4 we present the optimal logarithmic
negativity for symmetric couplings between quantum dots
and Majorana modes λ1 = λ2 as function of the QDs ener-
gies, together with the corresponding optimal coupling λ(opt).

Similarly as before, one can clearly observe that considerable
maximal negativity develops for small detunings of the quan-
tum dot energy levels from resonance. Since the limit of small
energies corresponds to the maximal negativity, let us inspect
this parameter space in more detail.

In Fig. 5, we plot the dependence of the negativity in the
regime of small QDs energies, as indicated in the legends, for
equal [Figs. 5(a) and 5(c)], and unequal [Fig. 5(b)] coupling
strengths λ1 and λ2. While Figs. 5(a) and 5(b) show the case
when ε1 = ε2, Fig. 5(c) corresponds to the case when ε1 is
changed, while ε2 is fixed. The red dotted line defines the max-
imal asymptotic limit that the negativity value never crosses.
It is clearly seen, that the dependence of the negativity on
the coupling strength is not monotonic, but exhibits a particu-
lar maximum that moves to larger coupling with increasing
energies of the quantum dots. The blue line in Fig. 5(d)
shows the decay of negativity with increasing DQ energies
(ε = ε1 = ε2), while the red line describes the corresponding
optimal value of the coupling strength.

The same negativity, although now plotted as a function of
the QD energies ε1 = ε2 at fixed coupling strengths λ1 = λ2,
is shown in the left panel of Fig. 6. Here we observe the
entanglement suppression, if one of the parameters increases
beyond the optimal value. Negativity takes the maximum

FIG. 3. The optimal entanglement determined by the position of the logarithmic negativity maximum taken at fixed values of λ1 = λ2

within the plane spanned by the quantum dots’ energies {ε1, ε2}. All quantities are in units of the Majorana overlap ω = εM/2.
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FIG. 4. Left: The optimal logarithmic negativity calculated for the equal coupling strengths λ1 = λ2 as a function of quantum dot energies.
Right: The corresponding optimal coupling λ(opt) (λ1 = λ2) as a function of quantum dot energies ε1 and ε2.

FIG. 5. (a)–(c) The negativity as a function of the coupling strength λ1 = λ2 in the limit of small QDs energies ε1 and ε2, as indicated in
the legends. In (a) and (b) ε1 = ε2, whereas ε2 = 0.005 in (c), while ε1 is tuned. The blue line in (d) shows the negativity decay with increasing
energies of the dots (ε1 = ε2), while the red line describes the corresponding optimal value of the coupling strength. All energies are scaled in
energy units of the Majorana overlap energy ω.
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FIG. 6. Left: The negativity as a function of the quantum dots energies ε1 = ε2 (symmetric case) for different values of the coupling
parameters λ1 = λ2 with the Majorana fermions, as indicated. The negativity is suppressed with increasing the coupling strength λ1 = λ2.
Middle and right: The quantum mutual information as a function of the coupling strength λ = λ1 = λ2 between the Majorana fermions and
electrons and the overlap between the Majorana modes εM = 2ω. The results are shown for the dimensionless temperature (middle) T = 1 and
(right) T = 10. The quantum mutual information between the dots increases with increasing the overlap energy between the Majorana modes
ω = εM and decreases with the growing ratio of λ/ω.

value for ε1 = ε2 = 0, which decreases with increasing en-
ergies of the quantum dots and/or the strength of coupling to
Majorana mode.

VI. CONCURRENCE

A pure state |ψ〉 of any bipartite quantum system can be
written in a “magic basis”, constructed from the Bell states
with extra prefactors |ψ〉 = αi |bi〉, where |b1〉 = 1/

√
2 |+〉,

|b2〉 = i/
√

2 |−〉, |b3〉 = i/
√

2 |�+〉, |b4〉 = 1/
√

2 |�−〉 in
standard notation for the Bell states of a generic bipartite
system, cf. Ref. [34]. Then, the entanglement of a pure state
can be quantified via the measure known as the concurrence
C(|ψ〉) = |∑ α2

i |. The concurrence can also be generalized
for mixed (e.g., thermal) states [35]. To explore the tempera-
ture dependence of the entanglement, we consider the thermal
concurrence. Particularly, we choose the parameter set similar
to that employed in Ref. [32]: εM = 2ω, ε1 = ε2 = 0, λ1 =
−λ2 = √

2λ. Then, the energy eigenbasis of the system reads:

|e1〉 = −η+ |1 f 〉 ⊗ |−
d 〉 + ζ+ |0 f 〉 ⊗ |�+

d 〉 , (18a)

|e2〉 = η− |1 f 〉 ⊗ |−
d 〉 + ζ− |0 f 〉 ⊗ |�+

d 〉 , (18b)

for the eigenvalue E1 = −√
ω2 + 4λ2;

|e3〉 = − |0 f 〉 ⊗ |�−
d 〉 , (18c)

|e4〉 = − |0 f 〉 ⊗ |−
d 〉 , (18d)

for the eigenvalue E2 = −ω;

|e5〉 = |1 f 〉 ⊗ |+
d 〉 , (18e)

|e6〉 = |1 f 〉 ⊗ |�+
d 〉 , (18f)

for the eigenvalue E3 = ω; and finally

|e7〉 = −η− |1 f 〉 ⊗ |−
d 〉 + ζ− |0 f 〉 ⊗ |�+

d 〉 , (18g)

|e8〉 = η+ |0 f 〉 ⊗ |+
d 〉 + ζ+ |1 f 〉 ⊗ |�−

d 〉 , (18h)

for the eigenvalue E4 = √
ω2 + 4λ2. Here |�+

d 〉, |−
d 〉 are the

Bell states of the quantum dots and the shorthands:

η± = 2λ√
4λ2 + (ω ± �)2

, (19a)

ζ± = ω ± �√
4λ2 + (ω ± �)2

, (19b)

with � = √
ω2 + 4λ2.

The reduced density matrix of the quantum dot subsystem
reads:

ρ̂d = Z−1(+(T ) |+
d 〉 〈+

d | + −(T ) |−
d 〉 〈−

d |
+�+(T ) |�+

d 〉 〈�+
d | + �−(T ) |�−

d 〉 〈�−
d |), (20)

where

Z = 2
4∑

n=1

e−En/T , (21)

and

−(T ) = (η2
+ + η2

−)e−E1/T + e−E2/T + η2
−e−E4/T , (22a)

�+(T ) = (ζ 2
+ + ζ 2

−)e−E1/T + e−E3/T + ζ 2
−e−E4/T , (22b)

+(T ) = e−E3/T + η2
+e−E4/T , (22c)

�−(T ) = e−E2/T + ζ 2
+e−E4/T . (22d)

Then, following Ref. [35], the thermal concurrence of
the state ρ̂d should be calculated in the computational
basis |00〉 , |01〉 , |10〉 , |11〉 through the following formula
C = max{λ1 − λ2 − λ3 − λ4, 0}, where λn are the square
roots of the eigenvalues of the matrix

R = ρd (σ̂y ⊗ σ̂y)ρ∗
d (σ̂y ⊗ σ̂y) (23)

in decreasing order. Taking into account Eq. (20), we obtain
four eigenvalues

1

4Z2
{2

±(T ), �2
±(T )}. (24)
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To calculate the concurrence, we need to order these eigen-
values in decreasing order. The concurrence is a function of
{ω, λ, T }. We are particularly interested in low temperature
and strong coupling limit T < ω, λ1, λ2, when the dominant
exponent in Eq. (22a) is e−E1/T . Then, the expression for the
density matrix simplifies to

ρ̂d = 1
2 (η2

+ + η2
−) |−

d 〉 〈−
d | + (ζ 2

+ + ζ 2
−) |�+

d 〉 〈�+
d | , (25)

and for the concurrence we deduce analytic result

C = |1 − η2
+ − η2

−|. (26)

From Eq. (26), it is easy to see that the concurrence is maximal
for ω > λ > T , C = 1 − O(λ2/ω2) and approaches zero if
λ > ω. In the high temperature limit, the concurrence is zero
as it is confirmed by numerical calculations.

One more remark is in order here: For finite temperatures
and strong couplings, deviations of εi=1,2 from zero can lead
to the hybridization of quantum dots with quasiparticles in
the superconductor above the gap in the quantum nanowire.
To avoid the measurement pollution due to this hybridization
one has to be careful with the variation range of the temper-
ature. The superconducting gap provides a natural effective
temperature threshold. Measurements at temperatures below
this threshold should capture the properties of individual parts
of the studied system, while at temperatures above the thresh-
old the hybridization effects might become non-negligible and
ultimately lead to the destruction of the superconducting state.

VII. QUANTUM MUTUAL INFORMATION

Entropic measures of quantum correlations witness a rad-
ical departure from the conditions of the classical physics:
While the classical entropy is an additive and extensive quan-
tity, the quantum entropy of a bipartite pure state ρ̂AB is zero
S(ρ̂AB) = −Tr(ρ̂AB log ρ̂AB) = 0, and the entropy of its sub-
system ρ̂A = TrB(ρ̂AB) is nonzero S(ρ̂A) = −Tr(ρ̂A log ρ̂A) 	=
0 if the state ρ̂AB is entangled. The quantum mutual in-
formation of a general bipartite system ρ̂AB is defined as
follows [36,37]:

I (ρ̂AB) = S(ρ̂A) + S(ρ̂B) − S(ρ̂AB). (27)

In order to get further insights into the entanglement prop-
erties, we calculate the quantum mutual information for the
reduced density matrix of QDs ρ̂R:

I (ρ̂R) = S
(
ρ̂

d1
R

) + S
(
ρ̂

d2
R

) +
4∑

n=1

ρR,nn log(ρR,nn), (28)

where the eigenvalues of the matrix ρR,nn are given by

ρR,11 = 1

2Z
(+ + − + |+ − −|), (29a)

ρR,22 = 1

2Z
(�+ + �− + |�+ − �−|), (29b)

ρR,33 = 1

2Z
(+ + − − |+ − −|), (29c)

ρR,44 = 1

2Z
(�+ + �− − |�+ − �−|), (29d)

and entropies of the marginal states ρ̂
d1
R = Trd2 (ρ̂R), ρ̂

d2
R =

Trd1 (ρ̂R) in our case read:

S
(
ρ̂

d1
R

) = − (ρR,11 + ρR,22) log2(ρR,11 + ρR,22)

− (ρR,33 + ρR,44) log2(ρR,33 + ρR,44), (30a)

S
(
ρ̂

d2
R

) = − (ρR,11 + ρR,33) log2(ρR,11 + ρR,33)

− (ρR,22 + ρR,44) log2(ρR,22 + ρR,44). (30b)

In Fig. 6 we plot the quantum mutual information as func-
tion of the coupling strength λ between Majorana fermions
and electrons and overlap between Majorana modes εM = 2ω

for the dimensionless temperatures T = 1 and T = 10, re-
spectively. As can be seen, the quantum mutual information
between QDs increases monotonously with growing the over-
lap between Majorana modes ω, but simultaneously decreases
with the growing ratio of λ/ω.

VIII. SUMMARY AND CONCLUSIONS

In this article we have performed detailed studies of non-
local entanglement between the two quantum dots intercon-
nected through the topological nanowire, hosting Majorana
zero-energy modes. In particular, we have considered and
evaluated three key quantities, which are customarily used
for the entanglement quantification: the logarithmic entangle-
ment negativity, the quantum concurrences, and the mutual
information between QDs. Using the logarithmic negativity
criterion, we have found that the optimal entanglement, i.e.,
the maximal negativity value under given circumstances, oc-
curs when quantum dots energy levels are around the overlap
energies of Majorana modes leaking onto these quantum dots.
Moreover, we considered thermal concurrence and quantum
mutual information to analyze the entanglement properties at
finite temperatures. Both quantities exhibit similar behaviors.
The quantum mutual information and concurrence between
QDs increase as function of the overlap between Majorana
modes ω. On the other hand, they decrease with the ratio λ/ω.
The reason for such behavior is obvious: When the interac-
tion strength between Majorana modes and individual QDs
exceeds by far the Majorana overlap energy, i.e., λ/ω 
 1,
the Majorana modes cannot entangle two independent QDs,
the QDs disentangle and we effectively have a product of two
separable states of each quantum dot |�d1,γ1

〉 ⊗ |�d2,γ2
〉.

From the experimental point of view, the effects described
in this article might well lie within the reach of the currently
available techniques, routinely employed by the experimen-
talists working in the field. In principle, the density matrices
of tri- and bipartite states of the QD-nanowire-QD system can
be reconstructed by the quantum state tomography method de-
veloped by Steffen et al. in Ref. [38]. From the reconstructed
states obtained in this way, one can at least in principle extract
the entanglement measures. Recent experimental progress in
the realization of the minimal Kitaev chain in systems of two
QDs and a superconducting nanowire reported in Ref. [23]
offers a perfect application platform for that technique.
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APPENDIX: DISCUSSION OF THE CORRELATION
EFFECTS

Our analytical methods for evaluating the mutual entan-
glement between the dots become rather hardly feasible in
the presence of the on-site Coulomb interaction Un̂i↑n̂i↓,
where n̂iσ = d̂†

iσ d̂iσ is a number operator of spin-σ electrons
on i-th quantum dot. To capture the correlation effects, we
briefly discuss general expectations, which can be inferred
from studying the quasiparticle spectra of hybrid structures
analogous to our setup.

Most of the studies of Coulomb repulsion have so far
addressed the single Anderson-type impurity attached to the
topological superconductor wire. In particular, the lowest-
order mean field approximation predicted the emergence of
bowtie or diamond shapes, depending on the ratio between
the overlap εM and the hybridization strength λi [39]. The
more accurate Hubbard-I approximation indicated that op-
timal conditions for the leakage of Majorana mode onto
the correlated quantum dot takes place when tuning the
energy εiσ or εiσ + U by the gate potential to the Fermi

level [40]. Since in practical realizations of superconducting
hybrid structures the Coulomb potential is by far larger than
the pairing gap, we can expect the Majorana mode to leak
onto the i-th quantum dot of our setup when either the en-
ergy levels εiσ (with the spectral weight 1 − 〈ni,−σ 〉) or the
Coulomb satellites εiσ + U (with probability 〈ni,−σ 〉) coincide
with the Fermi energy. Additional effects might arise from the
influence of external lead electrons through exchange interac-
tions, which can induce the Kondo effect at low temperatures
[41–44]. This issue, however, is outside the scope of our
present study.

As concerns the hybrid structures consisting of two quan-
tum dots interconnected through the short-length topological
superconductor, the nonlocal cross-correlations can arise due
to formation of the molecular structure (i.e., mutual quasi-
particle states appearing with specific spectral weights in the
given spin sector of each QD) [45]. Their manifestation shall
be observable under nonequilibrium conditions through the
crossed Andreev reflections [23,24,46] and/or time-resolved
measurements [47,48]. Such methods might verify interdot
feedback effects transmitted through the short topological
nanowire, but experimental evidence is missing, and there-
fore further understanding of the nonlocal cross-correlation
phenomena is desirable. Our present evaluation of quantum
entanglement between the quantum dots can be a useful start-
ing point towards such studies.
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