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We investigate the properties of a Fibonacci quasicrystal (QC) arrangement of a one-dimensional topological
superconductor, such as a magnetic atom chain deposited on a superconducting surface. We uncover a general
mutually exclusive competition between the QC properties and the topological superconducting phase with
Majorana bound states (MBS): there are no MBS inside the QC gaps and the MBS never behave as QC subgap
states and, likewise, no critical or winding QC subgap states exist inside the topological superconducting gaps.
Surprisingly, despite this competition, we find that the QC is still highly beneficial for realizing topological
superconductivity with MBS. It both leads to additional large nontrivial regions with MBS in parameter space,
that are topologically trivial in crystalline systems, and increases the topological gap protecting the MBS. We also
find that shorter approximants of the Fibonacci QC display the largest benefits. As a consequence, our results
promote QCs, and especially their short approximants, as an appealing platform for improved experimental
possibilities to realize MBS as well as generally highlight the fundamental interplay between different topologies.
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I. INTRODUCTION

Topological superconductivity is a captivating phe-
nomenon, including allowing for the existence of topologi-
cally protected zero-energy subgap states at the system edges.
These states become Majorana bound states (MBS) in effec-
tive spinless p-wave superconductors, for example, generated
by a combination of spin-orbit coupling (SOC), magnetism,
and conventional s-wave superconductivity [1–6]. Beyond an
intrinsic fascination with MBS, the current high interest in
topological superconductors also stems from their possible
application in quantum computation, as MBS are protected
from external disturbances by their nonlocality as long as the
topological gap is not closed and can, thus, in principle, retain
quantum information indefinitely [7–12].

MBS have already been theoretically studied in a
wide class of configurations, including in semiconducting-
superconducting hybrid nanostructures [13–16], quantum
Hall systems [17,18], Josephson junctions [19–24], chains of
magnetic atoms or Yu-Shiba-Rusinov states [25–37], and as
corner states in higher-dimensional topological superconduc-
tors [38,39] or in systems with antiferromagnetic [40,41] or
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skyrmion order [42–47]. Possible signatures of MBS have
been experimentally identified in various setups [48–74], but
it has also become clear that trivial electronic states, especially
Andreev bound states appearing accidentally around zero en-
ergy, can give rise to similar effects [75–82].

The search for suitable materials and setups for the creation
and manipulation of MBS is still ongoing, with their emer-
gent nature allowing for a combination of various approaches
in order to reach the goal of stability. Taking advantage of
recent developments in experimental fabrication of chains
of magnetic atoms deposited on a superconducting surface,
clearly allowing for atomic manipulations [32,34,64–67,69–
73,83–85], we propose a setup with a chain of magnetic
atoms arranged according to a one-dimensional (1D) Fi-
bonacci quasicrystal [86]. Quasicrystals (QCs) [87–91] have
already been shown to host ordered states of matter including
superconductivity [92–98], while engineered quasiperiodic-
ity [99] has theoretically been predicted to enhance features
such as superconducting proximity effect [100,101], su-
perconducting transition temperature and pairing amplitude
[102–105], as well as the Josephson effect [106]. In this work,
we demonstrate how utilizing quasiperiodicity in an exper-
imentally accessible setup generates an intriguing interplay
between quasiperiodicity and topological superconductivity
with MBS, leading to a substantially enlarged topological
superconducting domain with increased stability of the MBS.

The defining feature of QCs is their lack of transla-
tional invariance, while still exhibiting long-range order
through discrete scale invariance [107], which together with
a noncrystallographic rotation symmetry yields well-defined
diffraction peaks [108–110]. This peculiar combination leads
to fascinating properties, such as omnipresent criticality
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and multifractality [111–113], as well as multiple topolog-
ical invariants [114] that are otherwise only available in
higher-dimensional periodic systems [115–122]. Significant
advances in material control and fabrication have recently
also led to improved measurement and growth techniques for
QCs [123,124], as well as to artificially engineered quasiper-
odic structures in reduced dimensions [125–142]. Motivated
by these advances, we consider the 1D Fibonacci chain
(FC) [86], as it is one of the most theoretically studied
[143–152] and experimentally realized [153–163] quasiperi-
odic systems, known to host topological QC gaps with subgap
winding states [155–158,164–166] associated with a gap la-
beling theorem [167–169]. Additionally, signatures of higher-
order topology in Fibonacci quasicrystals were recently
reported [170].

We note that some limited studies of MBS in quasiperiodic
systems already exist in the context of the idealized spinless
p-wave superconductivity in the Kitaev chain [171,172] or
in the Aubry-André-Harper (AAH) model [173], as well as
in non-Hermitian systems [174] and in two dimensions (2D)
[175–177]. For example, in the Kitaev model, Ref. [171] has
found an onsite quasiperiodic modulation yielding a fractal
structure on the boundary of the topological phase diagram,
while Ref. [172] has found that the MBS may become more
robust when the superconductor is quasiperiodic. Here, we
both target an experimentally accessible setup and explicitly
uncover the interplay of MBS and quasiperiodicity, with a
resulting large impact on the overall phase diagram.

In particular, in this work we study an experimentally real-
izable arrangement of magnetic atoms in a chain following the
1D Fibonacci sequence and deposited on a superconducting
substrate with intrinsic SOC. We find a substantially increased
region of topological superconductivity with MBS in param-
eter space, while we at the same time uncover an intricate
interplay between topological superconductivity hosting MBS
and the topological properties of the QC. Overall, we find a
staunch competition between a topological phase transition
into the topological phase with MBS in the gap versus into
a QC gapped phase, where only one of the two phenomena
survives beyond the transition. As a consequence, we find that
the phase with MBS shows no sign of criticality or subgap
winding otherwise found in QCs, and likewise, we find no
MBS inside the QC gaps. By investigating the behavior of the
system as a function of magnetic field strength, chemical po-
tential, and the quasiperiodic degrees of freedom, we are able
to directly quantify this competition, both in the parameters
influencing the MBS formation and the quasiperiodic degrees
of freedom. Despite the high degree of possibilities, we find
in the end a simple and general criterion for which phase is
realized, based only on the energy gap size. Although this
competition may seem unfavorable for MBS, we surprisingly
find that the presence of quasiperiodicity is actually favorable
for MBS realization. This is because each QC gap closing (of
which there are many) can lead to additional topological MBS
phases, in what are otherwise trivial regions in the crystalline
limit. We also find that the topological gap that protects the
MBS can be increased by quasiperiodicity. Thus, MBS can
both easily form in entirely new physical parameter regimes
of the underlying crystalline system and be more stable, which
allows for a much broader use of materials. Moreover, we

FIG. 1. Schematic picture of the studied system showing a mag-
netic atomic chain of the C6 Fibonacci approximant (blue) deposited
on a superconducting surface (gray). Green and violet links represent
the tA and tB hopping parameters, respectively. Teal-colored flares
represent the MBS induced at the ends of the atomic chain in the
topological phase.

find that shorter QC realizations, the so-called approximants
[109], are more favorable for MBS formation, which are
also beneficial for experimental realization. Altogether, our
results establish quasiperiodic systems as a very appealing
platform for creating MBS and, more generally, for studying
the fundamental interplay between quasiperiodicity and other
topological phases or phase-coherent states of matter.

The rest of this work is organized as follows. First, we
describe the model in Sec. II, as well as review the key
concepts of the FC and topological superconductivity with
MBS. We then demonstrate the fundamental interplay and
competition between topological superconductivity with MBS
and quasiperiodicity in Sec. III. In Sec. IV we compute
and interpret the resulting topological phase diagrams, along
with analyzing spectral features. In Sec. V we analyze the
additional effects due to a quasiperiodic SOC. Finally, we
conclude our findings in Sec. VI.

II. MODEL AND BACKGROUND

We start by specifying our theoretical model to study
the interplay between topological superconductivity hosting
MBS and quasiperiodicity. In particular, we consider the
tight-binding Hamiltonian H describing a 1D atomic chain
(schematically shown in Fig. 1):

H = HFC + HR + H�. (1)

Below we first focus on the term HFC, which models a
FC consisting of magnetic atoms and review its properties,
especially focusing on the important QC gaps and their
topological properties. Then, in order to generate topologi-
cal superconductivity, the chain is assumed to be deposited
on a superconducting substrate with SOC, which adds the
proximity-induced Rasbha SOC HR and superconductivity H�

into the chain. We introduce these terms and review how to
quantify the topological superconducting state and its MBS.

A. Fibonacci chain

Motivated by the experimental developments in scanning
tunneling microscopy (STM) techniques fabricating atomic
chains on substrates [178], we define a 1D structure of mag-
netic atoms following the Fibonacci sequence. The first term
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in H , Eq. (1), thus describes itinerant electrons of a magnetic
chain as

HFC =
∑
i,s,σ

(
μ + VZσ z

σσ

)
c†

isσ cisσ

+
( ∑

i,〈ss′〉,σ
t〈ss′〉c†

isσ cis′σ + t〈ss′〉c†
isσ ci+1s′σ + H.c.

)
,

(2)

where the operator c†
isσ creates an electron of spin σ on site

s of unit cell i of the atomic chain. Here μ is the overall
chemical potential, VZ models the (classical) magnetic mo-
ment of each atom through an effective Zeeman splitting, and
t〈ss′〉 is the hopping between nearest-neighbor atoms (equiv-
alently sites), with 〈. . . 〉 only selecting for nearest-neighbor
terms. In order to study QC-like structures, we consider a
magnetic atomic chain composed of Fibonacci approximants
Cn, which redesign the usual crystalline hopping structure by
denoting them with indices s ∈ [1, Fn], where Fn is the nth
Fibonacci number. In order to form longer chains, the approx-
imant, viewed as the QC unit cell, is then repeated such that
i ∈ [1, R], to guarantee a sufficiently long chain capable of
hosting well-isolated MBS as its topological boundary states.
The full length of the chain is then given by � = R × Fn + 1,
with the extra site added to avoid dangling bonds.

Within each Fibonacci approximant, we use the Fibonacci
hopping model [86] where the nearest-neighbor hopping pa-
rameter takes one of two values, t〈ss′〉 ∈ {tA, tB}. This connects
the sites through two different bond types (sometimes referred
to as atomic and molecular bonds depending on their relative
strengths), which are determined according to a Fibonacci
sequence. Specifically, the construction of the nth Fibonacci
approximant Cn can be obtained by concatenation (⊕) via the
recursion relation

C1 = tB, C2 = tA, C3 = tAtB, C4 = tAtBtA, etc.,

Cn = Cn−1 ⊕ Cn−2 (n > 2), (3)

Fn = length[Cn] = length[Cn−1] + length[Cn−2].

Thus, systems with the unit cell described by C1 or C2 corre-
spond to a periodic chain with hopping parameters tB or tA,
respectively, while a unit cell described by C3 corresponds to
a dimerized model of repeating tAtB couplings, i.e., akin to the
Su-Schrieffer-Heeger (SSH) model [179–183]. It is, however,
important to note that there is a qualitative difference between
the typical SSH model and the C3 approximant. While C3 is
repeated to form a commensurate Fibonacci chain it differs
from the SSH chain by the last type of hopping: the SSH chain
ends on the tA hopping, while the C3 chain ends with tB hop-
ping. This small change affects the energy of subgap states and
creates quasicrystal behavior for the C3 approximant. Larger n
give rise to increasing sizes of the approximants (see Table I),
which provides the details on the system sizes considered in
this work. We choose the number of repetitions R such that the
full size of the system � is as close to 300 sites as possible for
all studied FCs. This ensures that the nanowire is sufficiently
long to observe isolated MBS behavior.

We note that a more generalized Fibonacci approximant
can be obtained by instead assigning the nearest-neighbor

TABLE I. Fibonacci approximants Cn with the number of bonds
given by the corresponding Fibonacci number Fn, while R corre-
sponds to the number of repetitions of Cn (i.e., for R > 1, Cn gives
the unit-cell structure). The total number of sites in the chain is
� = R × Fn + 1.

Cn C2 C3 C4 C5 C6 C8 C11 C13

Fn 1 2 3 5 8 21 89 233
R 300 150 100 60 38 14 3 1

hopping parameters via the characteristic function [164]

〈ss′〉 = sgn

[
cos

(
2(s + 1)π

τ
− π

τ
+ φ

)
− cos

(
π

τ

)]
, (4)

where a positive (negative) value is substituted with the hop-
ping tA (tB), and where τ = (1 + √

5)/2 is the golden ratio,
while the phase factor φ ∈ [0, 2π ) is called the phason angle.
Varying the phason angle thus flips certain hoppings in a spe-
cific manner, creating a family of Fn + 1 unique realizations of
the Cn Fibonacci approximant [86]. From now on, we express
all energies in units of tA and introduce the hopping ratio
ρ ≡ tB/tA, such that ρ = 1 and ρ 	= 1 describe crystalline and
quasiperiodic systems, respectively.

B. Quasicrystal gap labeling

In order to properly understand the possible emergence
of topological superconductivity in the FC, we first need to
take into account the already inherent QC gaps. Below, we
review the existence of these QC gaps and their gap labeling
theorem in the FC, as well as the related subgap states and
their winding across the gaps with the phason angle.

In the FC, ρ 	= 1 leads to the opening of a multitude of
energy gaps in the spectrum, which are quantified by a gap
label q [167–169] (see Fig. 2). Within each gap there are also
subgap states that typically have a critical and multifractal
behavior [86]. It was recently proposed that the 1D FC is
topologically equivalent to both the 2D quantum Hall and
the 1D AAH models [116,117,164], and therefore the gap
label q can be identified as a Chern number. However, this
interpretation has been disputed [184]. Regardless, the gap
label describes the winding of the subgap states across the gap
[155]. However, instead of winding in the traditional sense
(i.e., in momentum space), the states wind |q| times across the
gap with direction sgn(q) as a function of the phason angle
φ, as illustrated in Fig. 2(b). Interestingly, the number of gaps
and the value of q for approximant Cn follow a gap labeling
theorem [167–169]

NE

4�
= mod

(
qFn−1

Fn
, 1

)
, (5)

where NE is the number of bands below energy E . Thus,
by calculating NE , the gap labeling theorem can be used to
extract the gap label q.

It has recently been shown that the gap labeling theorem
also provides additional information for approximants Cn,
specifically the existence of stable (transient) gaps that remain
(disappear) for infinitely long QCs [169]. Here, the largest
gaps are generally stable and also associated with the smallest
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FIG. 2. (a) QC energy spectrum versus hopping ratio ρ in a Fibonacci atomic chain with C8 (21 bonds) repeated R = 14 times (� = 295
sites), using μ = VZ = � = α = 0 and φ = 0. (b) QC energy spectrum for the same approximant but as a function of the phason angle φ at
fixed ρ = 1.6 [red line in (a)], illustrating that each QC gap has a topologically protected subgap state winding across the gap as a function of
φ according to the gap label q provided by Eq. (5).

q, which also turn out to be the most relevant gaps for our
work. In terms of the subgap states, they do not only wind
across the energy gap |q| times as a function of the phason
angle, but also their real-space position varies along the FC
|q| times [86]. As a result, for certain phason angles and
thus certain realizations of the Fibonacci approximant, these
subgap states may also appear as (real-space) edge states.
Figure 2 further shows that multiple subgap states can also
exist in some gaps. Notably, all these properties of the FC
clearly go beyond the SSH chain, where only a single energy
gap opens with a single set of edge modes appearing in the
topological regime (ρ < 1) [179–183].

C. Superconducting surface

It is well known that a crystalline magnetic atom chain de-
posited on a superconducting surface with SOC, equivalently
described by Eq. (1), can host topological superconductivity
[3,4,27,64]. In order to investigate the impact of quasiperiod-
icity, we similarly define the terms describing the effect of
the superconducting substrate on the atomic magnetic chain.
Here, it is the combination of proximity-induced SOC HR and
superconductivity H� in Eq. (1) into the chain that is crucial
for topological superconductivity with MBS.

The SOC, modeled by HR, describes an effective Rashba
SOC, which can be strong either in heavy elemental super-
conductors, such as Pb [64], or alternatively arise from a
noncollinear magnetic ordering of the atoms in the chain, such
as for an Fe chain on a Re surface [67]) and is given by

HR =
∑

i,〈ss′〉,σ,σ ′
c†

isσ

[
ασ

y
σσ ′

]
(cis′σ ′ + ci+1s′σ ′ ) + H.c. (6)

with α the SOC strength and σ ν
σσ ′ denoting the Pauli matrices

ν ∈ {x, y, z}. We model the superconducting pairing induced
into the atomic chain through

H� =
∑
i,s

�c†
is↑c†

is↓ + H.c., (7)

where � is the effective superconducting order parameter,
here chosen to be a real value without loss of generality. We
here assume conventional s-wave spin-singlet superconduc-
tivity, which is also constant along the whole chain, modeling

a large substrate with small effect of the magnetic atoms.
Additionally, to take into account weak local interaction that
may still be present despite the substrate superconductor, we
briefly discuss the potential impact of a local Hubbard inter-
action U in Appendix A.

We diagonalize the resulting Hamiltonian H in Eq. (1) us-
ing the Bogoliubov–de Gennes formalism at zero temperature,
using open boundary conditions. We vary most of the physical
parameters in the model to capture the full interplay between
topological superconductivity and quasiperiodicity. For illus-
trative purposes, we often only vary one or two parameters
at a time, while keeping the others constant. Typical con-
stant values used are (unless otherwise specified) μ = −2tA,
� = 0.2tA, α = 0.2tA, VZ = 0.4tA, using tA as a unit of energy.
These choices generally ensure the emergence of MBS in a
typical crystalline atomic chain.

D. Topological classification

Having defined the model, we next elucidate how to
quantify its topological properties. We already discussed the
topological properties of the bare FC in Sec. II B, includ-
ing the gap labeling theorem and its associated winding of
the subgap states with phason angle. Adding superconduc-
tivity and SOC to the chain also generates the possibility
of a topological superconducting phase with MBS. A com-
mon and straightforward way of studying the emergence of
MBS is to compute the topological phase transition and an
appropriate topological invariant within its BDI topological
symmetry class [41,183,185,186]. Unfortunately, a quasiperi-
odic system cannot be described in reciprocal space as it lacks
spatial periodicity, similarly to amorphous materials and other
nonperiodic systems. As standard topological invariants are
defined in reciprocal space, such an approach is thus unavail-
able. Alternatively, a few real-space approaches have been
developed to describe topology in real-space systems, e.g.,
based on local Chern markers [116,187–191], the Bott index
[192], the Majorana polarization (MP) [193–195], or relying
on projections from a higher-dimensional periodic system
via hidden dimensions [86,114]. To be able to effectively
distinguish the different types of topologies, we here focus
on a hybrid approach, which we find suitable for large-scale
numerical screening of a large parameter space. It uses several
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FIG. 3. Energy spectra versus magnetic field VZ for the approximant C8 (R = 14 repetitions) at μ = −2tA. (a) Crystalline atomic chain
(ρ = 1) with MBS beyond the topological phase transition (� = 0.2tA, α = 0.2tA). (b) QC chain (ρ = 1.2) without MBS (� = α = 0). (c) QC
chain (ρ = 1.2) with MBS (� = 0.2tA, α = 0.2tA). Dotted arrows indicate QC gaps, blue arrowed gaps are “reflected” against the dominating
MBS gap and thus do not survive at zero energy, violet arrowed gap is larger than the MBS gap and instead overtakes the MBS gap at zero
energy. Labels denote trivial superconducting gap �SC, topologically nontrivial MBS gap �T, and QC energy gap �QC.

ingredients: the MP, the standard deviation of energy levels
with varying phason angle φ, and tracking the origins of the
energy gaps near zero energy. Furthermore, if we assume a
periodic repetition of a single approximant and use periodic
boundary conditions, we recuperate translational symmetry,
albeit with a large supercell of the size of the approximant.
This allows us to complement and check our results using the
Wilson loop method in momentum space for a bulk system
[196,197], as described in Appendix B. We additionally use
the momentum-space picture to analytically extract the bulk
gap closing points for the shortest approximants. Both of these
results excellently agree with our numerical results using open
boundary conditions for finite chains. This fully validates the
finding of topological superconductivity with MBS.

The MP quantifies to what degree zero-energy states pos-
sess MBS character and we base its form on [193,195]

MPd =
∑

i∈d uinv
∗
in + vniu∗

in∑
i∈d |uin|2 + |vin|2 , (8)

MP = MPLMPR, (9)

where ui and vi are Bogoliubov–de Gennes eigenvectors for
n = 2� and 2� + 1 (i.e., the states closest to zero energy),
while L and R denote the left and right halves of the FC.
A value of the MP sufficiently close to −1 signifies that the
system is capable of hosting MBS, while a positive value
informs that the system does not have MBS. The latter would
mean that the system either hosts the QC phase or a trivial
superconducting (SC) phase near zero energy. For regions in
phase space where the MP shows the existence of MBS, we
extract the size of the energy gap (from the eigenvalues of the
system) to obtain the size of the topological gap �T. This gap
determines the robustness of the topological phase as it is the
gap protecting the MBS from all other quasiparticles. It is also
valuable to note that this method can be experimentally vali-
dated using spin-polarized Andreev spectroscopy [198,199].
For ease of communication, we occasionally call the topolog-
ical phase with MBS simply the topological nontrivial phase,
and refer to the other phases then as topologically trivial,
although we note that these can still host QC topology [86].

To distinguish QC topology from the truly topologically
trivial superconducting state (SC), we use the existence of a

subgap state that winds with phason angle, which is a key
property of QC topology. In this context, it is important to vary
the phason angle to track the winding, as for certain values
(and thus a certain approximant) the QC subgap state might lie
at the edge of the gap, resulting in a false-positive indication
of a full trivial SC gap. Thus, in order to efficiently distinguish
the QC phase, we extract the standard deviation of the energy
levels E2�+1 (can be subgap state or MBS) and E2�+2 (can be
subgap or state at the band edge) when varying the phason an-
gle φ ∈ [0, 2π ). We find that a standard deviation larger than
10−3tA for any of these states is sufficiently large to clearly
indicate the existence of subgap states, thus marking the QC
phase. We henceforth refer to the gap within the QC topologi-
cal gap as �QC. We complement using the MP and the spread
in energy with phason angle to find the topological MBS and
topological QC phases, respectively, by also tracking their
energy gaps �T and �QC from regions in parameter space
where we already know the nature of the phase. We further
complement these results with using a Wilson loop real-space
method (see Appendix B). We find that all these methods show
excellent agreement. Finally, we refer to regions in parameter
space without MBS and no phason-angle winding of subgap
states, as a trivial superconducting (SC) phase, with gap �SC.

III. INTERPLAY BETWEEN TOPOLOGICAL
SUPERCONDUCTIVITY AND QUASIPERIODICITY

To start our study of topological superconductivity in a
QC system, we first explore the energy spectrum, aiming
to elucidate the gap structure of both topological supercon-
ductivity and quasiperiodicity. For pedagogical purposes, we
first consider these phenomena separately [Figs. 3(a) and
3(b), respectively], and then combine them to highlight their
interplay [Fig. 3(c)]. Finally, last in this section, we con-
firm the interpretations by also displaying the phason-angle
dependence.

Figure 3(a) shows the atomic chain without quasiperiodic-
ity (ρ = 1 or equivalently the C1 approximant), which exhibits
a topological phase transition with an accompanied bulk gap
closing when tuning Vz. The emergence of nontrivial topol-
ogy with MBS takes place for magnetic field V+ < VZ < V−
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given by

V C1± =
√

(μ ± 2tB)2 + �2. (10)

With our choice of parameters V+ = 0.2tA in Fig. 3(a) and
V− ≈ 4.0tA (not shown). The lower critical field corresponds
to the closing of the spin-singlet s-wave gap due to the Zeeman
spin splitting reaching the level of the gap itself above which
the SOC enables the opening of an effective spinless p-wave
superconducting gap.

Next, Fig. 3(b) shows a FC (ρ = 1.2) as a function of
magnetic field, but without superconductivity and SOC such
that there cannot be any MBS present. At VZ = 0 the spectrum
is spin degenerate with multiple QC gaps according to the gap
labeling theorem, Eq. (5), and, analogously to Fig. 2(a), here
with the largest gaps at energies E ≈ 0.45tA and E ≈ 1.2tA
(the latter is not shown at VZ = 0). As VZ increases, the energy
levels spin split linearly, such that these largest QC gaps occur
at zero energy at VZ ≈ 0.45tA and VZ ≈ 1.2tA, overall leading
to multiple QC gap openings at zero energy when tuning VZ

(see the dotted arrows indicating the evolution of gaps with
field). We note that varying the chemical potential μ instead
(as later in Sec. IV A) leads to an analogous scenario where
the QC gaps also occur at zero energy, i.e., the Fermi level is
tuned to the QC gaps.

Finally, Fig. 3(c) shows the combined influence of topo-
logical superconductivity and quasiperiodicity. Here we still
observe a topological phase transition into a phase with MBS,
but now for a slightly larger V+ ≈ 0.28tA. This is due to
the larger tB, not captured by Eq. (10). Later, in Sec. IV,
we demonstrate how the analytic expression for V± can be
generalized with the corresponding quasiperiodic structure,
yielding the same transition as in these numerical results. The
figure further shows that as VZ increases, multiple QC gaps
(�QC) move down toward zero energy (arrows), just as in
Fig. 3(b). However, we find that the smaller QC gaps never
reach zero energy, but they are instead “reflected” against the
MBS gap, back into the continuum (blue arrows). Each such
QC gap reflection leads to a small decrease of �T at the cor-
responding value of VZ. A cardinal, but opposite, example of
this antagonistic behavior is found around VZ = 1.2tA (violet
arrow). Here �QC > �T, resulting instead in the closing of the
topological gap and a QC gap is opened at zero energy, with
the consequence that the MBS disappears at a phase transition
into the QC phase, but then reappears again as �QC closes
at an even higher VZ. Explained from another perspective, we
find that superconductivity gaps out the spectrum, thus shift-
ing all energy levels and QC gaps to the continuum as long as
�QC < �T. However, when �QC > �T, there are no energy
levels below �SC to participate in the condensation, and the
QC gap survives. As a consequence, the MBS and QC gap
structures and topologies are competing for the Fermi-surface
instability of the system and are hence mutually exclusive of
each other.

A. Phason-angle dependence

In order to further cement the antagonistic behavior of the
MBS and QC phases found in Fig. 3, we next study their
behavior as a function of phason angle. This has the added
benefit of showing how using the variation in energies of

FIG. 4. Energy spectrum of the Fibonacci approximant C13 ver-
sus phason angle φ for (a) bare FC (μ = � = α = VZ = 0tA, ρ =
1.2) and (b) example of superconducting FC typically studied in this
work (μ = −2.2tA, � = 0.2tA, α = 0.2tA, VZ = 0.4tA, ρ = 1.2).

the subgap states with phason angle is an effective tool to
characterize the QC phase, as described in Sec. II D.

In total, we need to distinguish between three possible
different phases in the system: a topological phase capable
of hosting MBS, a QC phase, and a trivial gapped SC phase.
Here, both of the first two phases contain subgap states. For
the QC phase, the subgap state additionally winds around the
gap with the phason angle φ. However, at certain values of
φ, the winding state may reside at the gap edge and thus the
QC gap can easily mimic a fully gapped SC state at least for
some phason angles. Furthermore, it is a priori not clear if the
MBS subgap state in the topological phase will also display
phason-angle winding if the system is a QC. To clarify these
questions we vary the phason angle φ, which cycles through
all possible combinations of A- and B-type hopping, compos-
ing the full family of each Fibonacci approximant. Figure 4
shows a comparison between two prototype realizations of
the C13 Fibonacci approximant as a function of the phason
angle φ: (a) a bare FC (μ = � = α = VZ = 0tA) and (b) the
same FC but with typical parameters used in this work (μ =
−2tA,� = 0.2tA, α = 0.3tA,VZ = 0.3tA) to produce topolog-
ical superconductivity. For the bare FC [Fig. 4(a)], we find
a clear winding of the subgap states in each QC gap. As
such, extracting the standard deviation of the energy levels
when they vary through the phason angle clearly offers a nu-
merically robust characterization of the QC phase. However,
for the FC with superconductivity and SOC [Fig. 4(b)], the
existence of superconductivity entirely removes the winding
subgap states around zero energy and instead MBS appear at
zero energy, which are notably entirely unperturbed by the
change in phason angle. Further, the size of the topological
gap �T is also not varying with the phason angle. QC sub-
states at higher energies, outside the topological gap �T, still
wind, but across notably reduced QC gaps. Furthermore, we
do not find that the MBS exhibits any critical behavior typical
for quasiperiodic states (not shown). This demonstrates not
only that topological superconductivity with MBS and QC
topology with winding subgap states are antagonistic to each
other, but also that their defining characteristics are mutually
exclusive of each other.

For the case of the topological superconducting phase with
MBS, we further find that varying φ does not influence the
overall boundaries of the topological regions either. A minor
exception exists only for a single element of each Fibonacci
approximant family, e.g., tBtAtB for C4 or tBtAtBtAtAtBtAtB
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FIG. 5. Phase diagrams as a function of chemical potential μ and hopping ratio ρ obtained for C1, C3, and C4 (top row) and C5, C6, and
C13 (bottom row) approximants. (d), (h) Show the energy spectrum as a function of μ for C3 and C6 at the red lines in (b) and (f), respectively.
Parameters used: VZ = 0.4tA, � = 0.2tA, α = 0.2tA. (a), (d), (h) Have φ = 0, while the rest of the panels are generated for all relevant phason
angles φ that force the QC subgap state to wind around the gap.

for C6, where bold letters signify the hopping opposite from
the one expected in the typical corresponding approximant,
i.e., at phason angle φ = 0. This exception arises due to the
Fibonacci approximant gaining mirror symmetry, which can
have a minor effect on the overall outline of the different
phases. In the following, we avoid this special fine-tuned
mirror-symmetric situation and at the same time always check
the results for a multitude of phason angles, e.g., using seven
separate values for C13, as we find that a further increase does
not change the results quantitatively.

IV. TOPOLOGICAL PHASE DIAGRAMS

The results in Figs. 3 and 4 highlight the fundamental
and also mutually exclusive interplay between the energy and
topology of the MBS and QC phases, which at a first glance
seemingly suggests that the formation of a QC atomic chain
is unfavorable to generate topological superconductivity with
MBS. However, these results display only a single slice of
a much richer topological phase diagram. In this section,
we quantify the interplay between the QC gap structure and
MBS topology by calculating the full topological phase dia-
grams. Surprisingly, we find additional and large topological
regions with MBS in the phase diagram that cannot be ob-
tained for a typical crystalline atomic chain. In order to show
the full picture, we first compute the topological phase dia-
grams as a function of the quasiperiodic degrees of freedom
and chemical potential, and then also as a function of the
magnetic field.

A. Hopping ratio ρ dependence

We start by studying the topological phase diagram as a
function of the hopping ratio ρ and the chemical potential μ

for different Fibonacci approximants Cn in Fig. 5. Here we
display regions with MBS with its corresponding gap size in
color. To avoid confusion, we refrain from showing the size of
the QC (gray) and SC (black) gaps, hence the discrete scale for
these phases. In Fig. 5(a) we plot the simplest approximant C1,
a chain composed only of tB hoppings, thus fully crystalline.
Increasing ρ in this case only makes the chain squeezed along
its axis in real space. The nontrivial topological phase emerg-
ing in the phase diagram thus shows the linear dependence
between μ and tB, as expressed by Eq. (10). Moreover, the
largest topological gap, protecting the MBS, is observed in
the region of a small hopping ratio and |μ| ≈ tB ≈ � (violet).
The next approximant, C2, consists of only tA hoppings and is
thus also crystalline, and we therefore refrain from showing
any C2 results.

In Fig. 5(b) we plot the topological phase diagram for the
C3 approximant. Here, the inclination of the main topological
phase changes, but it still remains linear. Most interestingly,
a new set of satellite topological phases appears, except near
ρ ≈ 1 where the system is close to the crystalline chain. These
satellite topological phases are regions in parameter space,
where quasiperiodicity allows for topological superconductiv-
ity with MBS outside of parameter regions available for the
crystalline chain. Interestingly, the topological phase emerg-
ing in the high-ρ region possesses the largest topological gap,
showing enhanced robustness of the topological phase. As
the C3 chain is similar to the SSH model, we infer that the
emergence of satellite topological phases can be seen as the
result of the odd number of parity inversions of the negative
energy bands [183]. In Fig. 5(d) we plot the energy spectrum
along the red line in Fig. 5(b). Here, the MBS in both the orig-
inal and satellite regions are clearly visible. In-between these,
two bulk gap closings near μ ≈ −2.2tA and −1.0tA mark
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transitions between the MBS and QC phases, where in the QC
phase a clear subgap state is present, which also changes its
energy if the phason angle is varied (not shown). This phason-
angle winding clearly highlights the quasicrystal behavior for
even the shortest of quasicrystal chains. Notably, even this
short approximant displays clear QC behavior, which fills
essentially the same overall part of the phase diagram as for all
noncrystalline approximants (beyond new satellite topological
MBS regions).

Interestingly, in the close vicinity of the topological regions
we usually find small slivers of a trivial SC gap (black) for all
approximants repeated sufficiently to create long chains. This
creates a buffer zone between the MBS and QC phases, where
first the bulk gap closes, marking the end point of the MBS
phase (color), but with QC subgap states (gray) only appearing
once a sufficient bulk gap is formed. This also implies that
smaller Fibonacci approximants must be adequately repeated
(R > 1) to be useful for MBS formation or no topological
phase with a sufficiently large energy gap can emerge, equiva-
lently to standard crystalline chains where sufficient length is
required to separate the two MBS at the chain end points. In
Appendix C we provide additional data on the R dependence
and conclude that for sufficiently long chains the outline of the
topological phase is independent of the number of repetitions
of the Fibonacci QC.

We next consider C4 in Fig. 5(c), which contains an ad-
ditional bond compared to C3, and we also find richer QC
features. In this case, the original topological phase bends
somewhat, losing its simple linear dependence of its bound-
aries. Additional satellite nontrivial MBS phases also appear,
overall covering a further increasing region in parameter space
compared to the crystalline chain. Similarly to C3, the satellite
MBS region at high value of ρ features the largest topological
gap. We find that this enhancement of the topological gap
in satellite regions due to the QC structure ceases for C5

[see Fig. 5(e)].
Moving to higher Fibonacci approximants shows emer-

gence of yet additional satellite topological MBS phases [see
Figs. 5(e)–5(g)]. However, an increased number of overlap-
ping nontrivial phases leads to gap closings and fragmentation
of these nontrivial regions, resulting in either the complete
removal of the nontrivial MBS phase or lifting of the MBS
from zero energy due to too small protecting energy gaps.
Additionally, from our numerical investigation we note a
logical progression from the lower- to the higher-order ap-
proximants. This is especially visible in Fig. 5, where the
overall shape of the topological region is rather consistent
between approximant realizations. We here observe that the
beneficial effects stemming from quasiperiodicity diminish
with the size of approximant or, equally, with the effective
unit supercell. This can especially be seen at the extremes
of the ρ parameter range and becomes more severe for the
higher-order approximants. As an example, Fig. 5(h) de-
picts the energy spectrum along the red line in Fig. 5(f).
We observe multiple closings and reopenings of the energy
gap, where the trivial gaps are either of MBS or QC na-
ture. Finally, we note that we find qualitatively similar phase
diagrams when considering different models for the hop-
ping ratio, e.g., with conserved versus varying bandwidth
(see Appendix D).

B. Magnetic field dependence

As shown in the previous subsection, the hopping ratio ρ

is an effective variable to tune the importance of quasiperiod-
icity. However, from an experimental standpoint it could be
difficult to vary this parameter as it likely depends on both the
type of substrate and the angle of the atomic chain with respect
to the crystal lattice unit axis. Therefore, in this subsection,
we further quantify the influence of the magnetic field on the
topological phase diagram, which can be varied by either the
type of atoms used to produce the FC, tuning the effective
exchange interaction, or by an applied external magnetic field
[200,201]. Specifically, we compute the topological phase di-
agram as a function of the magnetic field VZ and the chemical
potential μ in Fig. 6 using the same layout as Fig. 5, now
fixing ρ = 1.5. Here, the topological phase diagram for C1

FC [Fig. 6(a)] shows the typical scenario of the topological
phase emerging, as described by Eq. (10) (due to the change
in bandwidth scaling with tB, the topological phase is shifted
to lower values of μ).

For the first real QC approximant, the C3 approximant in
Fig. 6(b), a large satellite topological phase emerges in a
parameter regime that is topologically trivial for a crystalline
atomic chain. It is the competition between quasiperiodicity
and topological superconductivity that influences the condi-
tion for the value of the critical magnetic field and thereby
allows for emergence of satellite nontrivial MBS phases. This
is a direct result of the QC gap closings, leading to new gap
openings that can be topologically nontrivial and host MBS.
An analytical description of this condition is usually obtained
by finding the gap closings [202], but here we can just modify
the crystalline condition given in Eq. (10) by taking into
account the FC structure of C3. This results in four solutions
for the gap closings and openings:

V C3± =

⎧⎪⎨
⎪⎩

[�2 + (tA + tB ± μ)2]
1
2 ,

[�2 + μ2 + (tA − tB)2 − 4α2

±2
√

(μ2 − 4α2)(tA − tB)2 − 4α2�2]
1
2 .

(11)

This extension to C3, and thus the inclusion of a secondary
type of hopping, allows for additional solutions of this gap
closing equation, which is the formal reason behind the satel-
lite nontrivial topological phases. Importantly, the satellite
phase at high chemical potential hosts the largest topological
gap, thereby generating the best robustness of the nontrivial
phase. Moreover, for the studied range of parameters, the FC
composed of C3 approximants covers the highest percentage
of the phase diagram with the nontrivial phase hosting MBS
among all approximants we investigate. We further observe
the same pattern here as in Fig. 5, that a trivial SC phase acts
as a buffer between the QC and MBS phases and that this
buffer also acts as an effective precursor for the MBS phase,
as it removes the QC subgap states.

Moving on to the C4 approximant in Fig. 6(c), we find ad-
ditional satellite nontrivial MBS regions. In a similar manner
to Eq. (11), we can extend the condition for the gap closings
to FC composed of C4 approximants, now given by the six
solutions of the cubic equation

(V C4± )3 + a(V C4± )2 + b±V C4± + c± = 0, (12)
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FIG. 6. Phase diagrams as a function of chemical potential μ and magnetic field VZ for C1, C3, and C4 (top row), and C5, C6, and C13

(bottom row) approximants. Panels (d), (h) show the energy spectrum as a function of VZ for C3 and C6 at the red lines in (b), (f), respectively.
Parameters used: ρ = 1.5, � = 0.2tA, α = 0.2tA. Panels (a), (d), (h) were generated for φ = 0, while the rest of the panels are generated for
all relevant phason angles φ that force the QC subgap state to wind around the gap.

where the coefficients a, b±, and c± depend on α, μ, ρ,
and � (see Appendix E for the full results). It is this pro-
liferation of solutions to the gap equation that generates
the increased number of topological regions. These analyti-
cally obtained topological boundaries for the C4 approximant
compare well with the numerical results. For even higher-
order approximants, Figs. 6(e)–6(g), the overall outline of
the topological regions is rather similar, except that each
region becomes ever more fragmented due to closely overlap-
ping nontrivial regions and a multitude of QC gaps. Overall,
this fragmentation suppresses the topological gap, such that
higher-order approximants have generally smaller gaps and
the largest gaps are then often also found in the origi-
nal, crystalline, topological region and not in the satellite
regions.

Finally, in Figs. 6(d) and 6(h) we show the energy spectrum
extracted for the phason angle φ = 0, along the red lines
in parameter space in (b) and (f), respectively. At VZ = 0,
there are no subgap states and the system is in the trivial
SC phase. With increasing magnetic field, two subgap states
appear, signifying a QC phase up until the transition to the
nontrivial MBS phase around VZ ∼ 0.5tA. Then, for the C3

approximant [Fig. 6(d)], this nontrivial phase continues until
very high magnetic fields. In contrast, for the C6 approx-
imant [Fig. 6(h)], an additional QC phase appears at zero
energy as a QC gap is incident on the nontrivial gap and
wins in the ensuing competition due to its larger size [cf.
Fig. 3(c)]. At φ = 0 its subgap states, however, reside at the
gap edge.

For the sake of completeness, we also extract the phase
diagram as a function of hopping ratio ρ and magnetic field
VZ (see Appendix F). We find that quasiperiodicity again has
a beneficial impact in the sense of a nontrivial phase appearing

over a wider range of parameters compared to the crystalline
limit, in particular for shorter approximants.

Summarizing the results for the topological phase diagram,
we clearly observe a beneficial influence of the Fibonacci
chains on the nontrivial MBS phase. The topological MBS
phase appears in a wider range of parameters, especially as
satellite regions in parameter regimes where the crystalline
chain can never be topologically nontrivial. The size of the
topological gap �T can also be larger than that of the crys-
talline atomic chain. However, for higher-order approximants
an increased fragmentation occurs in the topological regions.
Thus, even though the topological regions can be rather large,
the topological gap becomes suppressed for higher-order ap-
proximants. Therefore, as a conjecture, an infinitely long QC
magnetic chain will produce a phase diagram with a myriad
of infinitesimally small topological phases. There, even a
slight change in parameters would shift the system from the
topologically nontrivial to trivial phase, making it effectively
impossible to verify the existence of MBS. All of these re-
sults point to the benefit of short approximants, such as C3,4,
for generating topological superconductivity using chains of
magnetic atoms on a superconducting substrate.

V. QUASIPERIODIC SOC

So far we have assumed a constant SOC α, as described
in Sec. II C. It might also be realistic to consider a SOC
that changes proportionally to the hopping in the QC. In
this section, we therefore compare the already extracted
topological phase diagrams with a model where the SOC
changes proportionally to the bond length, here scaled with
tA,B, i.e., we use αB = αtB/tA = αρ and αA = α, on B and
A bonds, respectively. In other words, this corresponds to a
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FIG. 7. Difference between the MBS gap sizes �α
T and �T obtained with quasiperiodic SOC and constant SOC, respectively, as a function

of hopping ratio ρ and magnetic field VZ for approximants C3 (a) and C5 (b). Black solid (green dashed) line on (a) denotes V± (V±,α) for
constant (quasiperiodic) SOC. Parameters used: � = 0.2tA, α = 0.2tA, μ = −2tA.

quasiperiodic SOC with the same spatial modulation as the
Fibonacci hopping terms.

We start by studying the influence of the quasiperiodic
SOC on the topological phase transition, both analytically

and numerically. By generalizing the expression for the
critical field V± in the same manner as previously, we find
that the quasiperiodic SOC modifies Eq. (11) for C3 to
become

V C3±,α = [�2 + μ2 + (tA ± tB)2 − α2(tA ∓ tB)2 + 2η

√
μ2(tA ± tB)2 − α2[�2 + (tA ± tB)2](tA ∓ tB)2]

1
2 , (13)

where η = ±1 yields four solutions in total. However, we
find that this equation produces a nearly identical critical
field as the constant SOC situation (less than a percent
difference for typical parameter values), which can be ex-
plained by the new terms scaling with (α/tA)2 ≈ 10−4, which
is typically very small compared to other relevant terms.
Thus, when computing the topological phase diagram nu-
merically, we find that the two models for SOC produce
nearly identical topological regions as already found in, e.g..
Figs. 5, 6, and 12.

Still, we find a notable influence of quasiperiodic SOC
on the topological MBS gap size, which we denote �α

T for
the quasiperiodic SOC. To clearly illustrate this increase, we
plot the gap difference �α

T − �T in Fig. 7 as a function of
hopping ratio ρ and magnetic field VZ, where Figs. 7(a) and
7(b) show Fibonacci approximants C3 and C5, respectively.
The black solid line outlines the topological phase boundary
obtained with constant SOC, extracted from Figs. 12(b) and
12(e), and we find that this overlaps nearly perfectly with
the region obtained using quasiperiodic SOC (green dashed
line). In Fig. 7 blue (red) color denotes where a quasiperiodic
(constant) SOC yields the larger topological gap and therefore
increases topological robustness. We here omit to quantify any
gap difference in the trivial region since we do not find any
significant difference.

Interestingly, Fig. 7 uncovers that the topological MBS re-
gion is composed of two parts: one near the topological phase
transition threshold, which is left unchanged (white region just
above the black line) and one where the gap size is susceptible

to varying SOC (red and blue colors). The unchanging part
corresponds to where the MBS gap is just opening, which
is mainly governed by the magnetic field VZ, and hence the
SOC has no effect here. Instead, the SOC governs the energy
gap deeper into the topological region, as also illustrated by
the linear versus nonlinear parts of the gap above VZ > V+ in
Fig. 3(a). For the region where the size of the topological gap
�T is influenced by quasiperiodic SOC, we find that as the
quasiperiodicity gets stronger in either direction (i.e., further
away from the crystalline ρ = 1) there is an increased differ-
ence in the topological gap size. Specifically, constant SOC
(quasiperodic SOC) yields a stronger topological robustness
for ρ < 1 (ρ > 1). Thus, we observe that the introduction of
a quasiperiodic SOC strengthens the influence of quasiperi-
odicity on the topological gap. Additionally, its dependence
on ρ further increases the QC gap enhancement monoton-
ically (up until ρ ≈ 1.6). The satellite topological regions
follow a similar behavior, with an overall increased size of
the topological gap and thus stronger MBS robustness for
this set of parameters. Finally, we comment briefly on results
in higher-order Fibonacci approximants. While the overall
shapes of the topological regions are very similar between
the two SOC models, the introduction of a quasiperiodic
SOC allows for the existence of topological phases at slightly
different parameters near the extreme values of ρ → 0 or 2.
As the order of approximant increases, the fragmented nature
of the topological regions also increases. In conclusion, our
main finding is that the gap enhancing effects of quasiperiod-
icity can increase even more with a quasiperiodic SOC. This
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result further establishes quasiperiodicity as useful for MBS
formation.

VI. CONCLUSIONS

The experimental elusiveness of MBS motivates an ex-
tended search for an efficient and capable base structure at
which their existence is favored. Thanks to recent progress in
the fabrication of atomic chains on superconducting surfaces
[34,67], we here propose to utilize engineered quasiperiodic
structures of magnetic atoms on a superconducting substrate
to improve the possibilities for topological superconductivity
with MBS. By simulating a quasiperiodic structure in the form
of simple Fibonacci approximants, we find that quasiperiod-
icity leads to the emergence of additional large topological
phase regions in parts of parameter space where any crys-
talline chain is topologically trivial. We also find that the
topological gap, protecting the MBS, can be increased thanks
to quasiperiodicity. The gap can be further increased by a
quasiperiodic SOC. The optimal quasiperiodicity is reached
for rather short QC approximants, such as C3 and C4, which
is advantageous for experimental implementation. In contrast,
higher-order approximants generate too fragmented topolog-
ical phases, with suppressed energy gaps. At the same time,
we find that MBS can only emerge in regions which are not
depleted by QC gaps and that the topological superconducting
state with MBS is mutually exclusive to the topological QC
phase. In fact, while each of the QC gaps possesses a subgap
state that winds across the QC gap with change of the phason
angle φ, the MBS in contrast show no signs of such winding
or any other quasiperiodic properties, such as wave-function
criticality.

In conclusion, our work promotes quasiperiodic systems
as a promising platform for studying both the rich interplay
between the different topological phases and facilitating the
emergence of MBS by triggering a number of additional topo-
logical phase transitions and even enhancing the robustness of
MBS in some of these phases.
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APPENDIX A: IMPACT OF LOCAL
HUBBARD INTERACTION U

For weak local interactions, we consider the influence of
HI = ∑

i,s Uc†
is↑cis↑c†

is↓cis↓. To do so at a first feasible level,
we impose the mean-field approximation, which leads to
rescaled values of the chemical potential μ and the pairing
gap �:

μ → μ̃ ≡ μ + U 〈c†
isσ cisσ 〉,

� → �̃ ≡ � − U 〈cis↑cis↓〉.
The local Hubbard interaction U can in addition modify or-
dering in the magnetic channel and affect the Zeeman field
VZ → ṼZ . In practice, the interactions would thus shift the
topological phase with respect to various parameters in the
system. Specific results for the regular crystalline structure
have been previously reported by, e.g., [203]. For our qua-
sicrystal chains, we note that �, μ, and VZ are all treated as
input parameters and, therefore, we do not expect any quali-
tative changes of our results arising from the weak Coulomb
repulsion.

In order to support this claim, we show auxiliary results
for the chemical potential versus magnetic field topological
diagrams in Fig. 8 for various values of pairing gap � in
a C4 approximant. By varying all these three parameters we
thereby capture the induced rescaling from interactions.

We observe that as the value of � increases, the topological
phases shift to a higher value of magnetic field in accordance
to Eq. (12), discussed more extensively in Appendix E. Ad-
ditionally, we find that the maximum value of the topological
gap increases as well, which is a trivial result stemming from
increased pairing. However, no qualitative changes are ob-
served as the structure of the topological phases in the diagram
is similar. Moreover, the satellite regions continue to harbor
the point with the largest topological gap �T (see red dots).

We finally note that in the case of 1D Fibonacci approxi-
mants, weak interactions have been shown to typically have
minimal influence on an onsite quasiperiodic modulation,
while those for an off-diagonal hopping modulation force the
ground state into a Mott insulator state where the spin sector
behaves as an antiferromagnetic Fibonacci Heisenberg chain
[204]. However, we believe this situation may not relevant to
our setup, as our 1D Fibonacci chain is not an isolated 1D
system, but instead firmly connected by a bulk superconduc-
tor, such that a 1D Mott insulator phase may be unlikely to
appear, and even if a 1D Mott insulator phase may appear,
such treatment is beyond the scope of this work.

APPENDIX B: TOPOLOGICAL CLASSIFICATION
USING THE WILSON LOOP

In order to provide additional support for the classification
of the nontrivial topological superconducting state hosting
MBS in the main text, we show in this Appendix that we arrive
at the same conclusion regarding the topological characteri-
zation when employing a completely different method based
on the Wilson loop [196,197]. Specifically, in our analysis in
the main text we use the MP to identify the topological MBS
phase. The Wilson loop is instead a geometric quantity with
its argument being the Zak phase in 1D systems [205].
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FIG. 8. Impact of interaction U through related rescaling envi-
sioned by three values of the pairing gap for a C4 approximant. Note
that � = 0.20tA is the value generally used in our paper. Red dot
marks the point with the maximum value of topological gap �T for
given parameter combination. Parameters used: ρ = 1.5, α = 0.2tA.

To use the Wilson loop approach we consider an infinite
repetition of the nth Fibonacci approximant such that the
chain forms a 1D superlattice with unit cell Fn. Then the
Wilson loop W is obtained as

W = det

⎡
⎢⎢⎣

m−1∏
j=0

k j∈BZ

Ûo(k j+1)†Ûo(k j )

⎤
⎥⎥⎦ = eiλ, (B1)

where W = +1 (−1) implies a topologically trivial (nontriv-
ial) phase. Here, Ûo is a matrix of the eigenvectors (wave
functions) of the occupied states, and it is a function of k,
with k j ∈ [−π, π ] the discretized value of k into m points.
In addition, λ is the Zak phase. Since the wave function is
defined up to a U(1) phase, to ensure a gauge invariant W
we let km → k0 leading to Ûo(π ) → Ûo(−π ). This procedure
at the edge of the Brillouin zone eliminates any extra phase
without influencing the value of W . In Fig. 9 we present a
comparative analysis of the phase diagrams of the C3 approxi-
mant in μ-ρ parameter space, based on the method in the main
text [Fig. 9(a)] and using the Wilson loop [Fig. 9(b)]. It is

FIG. 9. Comparison between methods for obtaining the topolog-
ical phase diagram for the C3 approximant: (a) method based on MP
used in the main text and (b) Wilson loop method.

evident that the boundaries between the trivial and nontrivial
phases are consistent across all phases, confirming the MP
as a reliable indicator of MBS existence. We also verify this
across higher-order approximants and for an extended param-
eter space, find a full agreement. In summary, we find that the
topological classification based on the MP in the main text is
consistent with the Wilson loop approach and thus accurately
indicates the topological MBS phase.

APPENDIX C: INFLUENCE OF REPETITION
OF AN APPROXIMANT ON THE TOPOLOGICAL PHASE

In this Appendix we quantify how the repetition R of the
Fibonacci approximant influences the topological phase dia-
gram studied in the main text, showing that the most important
results are not influenced, as long as the MBS overlap is
sufficiently small by having chosen � to be long enough.

We start by commenting on the system-size dependence
in an atomic chain without quasiperiodicity since we can un-
derstand all emergent results from this dependence. It is well
known that MBS formation becomes robust once the wave-
function overlap between the MBS appearing at each chain
end becomes negligible [206]. In the case of a finite Fibonacci
approximant, repeating the approximant does not influence
the major QC gap structure of the FC, but only reduces the
level spacing in the nongapped part of the spectrum [86,165].
Thus, we do not expect the repetition to influence the topolog-
ical phase diagram either, as long as the total system length is
long enough to ensure vanishingly small MBS overlap.

In Fig. 10 we show the C11 approximant repeated (a) R = 1,
(b) R = 3, and (c) R = 5 times. The topological phases are
shown as a function of the chemical potential μ and hopping
ratio ρ, e.g., to be compared with Fig. 5(g) in the main text
where the results for a very similar approximant C13 (R = 1)
are shown. We see in Fig. 10 that the overall shape of the
topological regions is already established for R = 1 and does
not change substantially with R. Thus, we can be sure that
the black buffer region encompassing the nontrivial phase will
not fill out the nontrivial phase as the length of the atomic
chain increases. Some minor changes are, however, seen in
the satellite topological MBS regions, where the topological
phase becomes more prominent for longer chains. Moreover,
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FIG. 10. Topological phase diagram as a function of chemical potential μ and hopping ratio ρ for the approximant C11 repeated (a) R = 1,
(b) R = 3, and (c) R = 5 times. Colors indicate size of MBS gap, while gray (black) are gapped regions without MBS and with (without) other
QC subgap states. Parameters used: � = 0.2tA, α = 0.2tA, VZ = 0.4tA.

an increased R also decreases the MBS oscillations stemming
from wave-function overlap (not shown). To conclude, we find
that increasing R is generally beneficial for the topological
MBS phase.

APPENDIX D: QUASIPERIODICITY
WITH CONSERVED BANDWIDTH

In the main text, we use a QC hopping model that is
commonly employed in quasiperiodic systems [86], where the
quasiperiodicity is quantified by the hopping ratio ρ = tB/tA.
One consequence of this choice is that the bandwidth changes
with ρ, which might in principle change the topological phase
diagram. Still, we point out that our most important results are
obtained for both ρ < 1 and ρ > 1, i.e., both for a smaller and
larger bandwidth, respectively. Thus, our results must reason-
ably be related to quasiperiodicity, rather than bandwidth size.
For the sake of full transparency, we show in this Appendix
that the topological phase diagrams obtained in Sec. IV A are
indeed qualitatively the same when using a model where the
bandwidth is conserved.

We can preserve the bandwidth by modifying the tA and tB
hoppings according to [165]

Fn−1tA + Fn−2tB = Fn. (D1)

We present in Fig. 11 a comparison of the topological phase
diagram for the C4 approximant as a function of the chemical
potential μ and ρ with the bandwidth (a) not conserved, i.e.,
same as in the main text and (b) when it is conserved, using
Eq. (D1). When conserving the bandwidth, we find that the
topological phase diagram becomes nearly symmetric with
respect to ρ = 1 line. However, the two cases are still qualita-
tively similar as each of the topological regions is represented
on both panels (see roman numerals), although each region
is somewhat stretched and twisted due to the nonlinear map-
ping of ρ between both cases. These results confirm that the
topological regions are qualitatively comparable and portray
the same phenomena, regardless of the implementation of
quasiperiodicity and its related bandwidth.

APPENDIX E: CRITICAL FIELD COEFFICIENTS
FOR APPROXIMANT C4

In the main text we show in Eq. (12) the expression for the
critical magnetic field for the bulk s-wave gap to close for the
approximant C4. Here we provide the coefficients

a = −(
4t2

A − 6α2 + 3�2 + 3μ2 + 2t2
B

)
,

b± = 4t4
B + 9α4 + 3�4 + 3μ4 + 4

(
t2
A ± 3μtA)t2

B

+ �2
(
4t2

A + 6μ2 + 8t2
B

)
− 2α2[t2

A + 8tAtB + 6t2
B + 6μ2 ± 2μ(tA + 2tB)

] + t4
A,

c± = −(
α4{9�2 + [(4tA ∓ 3μ) + 2tB]2}

+ 2α2
{
3�4 + 3�2

[(
t2
A + t2

B ∓ 2μ(2tA + tB)
] + 2t2

A

}
− [

μ(μ ∓ tB) − 2t2
A

]
[3μ ∓ 2(tB + 2tA)](μ ± tB)

+ [
�4 + �2[(2μ2 ∓ 2μtB) + t2

A + 4t2
B

]
+ [

2t2
A − μ(μ ∓ tB)

]2
][�2 + (μ ± tB)2]

)
.

FIG. 11. Topological phase diagram as a function of chemical
potential μ and hopping ratio ρ for the approximant C4 with band-
width (a) not conserved and (b) conserved. Roman numerals I–V
depict the same nontrivial phases in the two cases. Parameters used:
VZ = 0.4tA, � = 0.2tA, α = 0.2tA.
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FIG. 12. Phase diagrams as a function of hopping ratio ρ and magnetic field VZ for C1, C3, and C4 (top row), and C5, C6, and C13 (bottom
row) approximants. Panels (d), (h) show the energy spectrum as a function of VZ for C3 and C6 indicated by red lines in (b), (f) respectively.
Parameters used: μ = −2tA, � = 0.2tA, α = 0.2tA. Panels (a), (d), (h) were generated for φ = 0, while the rest of the panels are generated for
all relevant phason angles φ that force the QC subgap state to wind around the gap.

As seen, this represents a significantly more complicated so-
lution compared to the C3 approximant given in Eq. (11). We
refrain from solving for higher-order approximants since the
complexity quickly reduces the usefulness. We note that this
complexity is explicitly visualized through the fragmented
topological phase diagrams in the higher-order approximants.

APPENDIX F: ρ-VZ TOPOLOGICAL PHASE DIAGRAM

In order to complete the investigation of the phase diagram
in μ-ρ-VZ space, we provide in this Appendix the topological
phase diagram as a function of hopping ratio ρ and magnetic

field VZ in Fig. 12, thus supplementing the discussion in
Sec. IV B. Here, the topological transition to the nontrivial
phase occurs for the lowest magnetic field at ρ = 1, which
is a common point for each of the panels in this figure as
such cross section portrays the same system, regardless of
the Fibonacci approximant. Overall, we find similar results
to those in Sec. IV B: the regions with a topological MBS
phase increase and this phase can be found for parameters
not available in a crystalline chain. Smaller approximants are
generally more beneficial as the topological regions get more
fragmented with increasing lengths of the approximants. The
topological gap also increases, especially for ρ > 1.
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