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Properties of a multiterminal superconducting nanostructure with a double quantum dot
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We study the charge transport and thermoelectric properties of a junction comprising a double quantum
dot embedded in T-shaped geometry on the interface between two normal/ferromagnetic electrodes and a
superconducting lead. We show that the interdot coupling plays a major role in controlling the local and nonlocal
transport properties of this setup. For the weak interdot coupling limit, we obtain the interferometric (Fano-type)
line shapes imprinted in the quasiparticle spectra, conductances, and Seebeck coefficients. In contrast, for strong
interdot coupling, we predict that the local and nonlocal transport coefficients are primarily dependent on
the molecular Andreev bound states induced by the superconducting proximity effect simultaneously in both
quantum dots.
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I. INTRODUCTION

Charge transport through superconducting heterostructures
comprising quantum dots (QDs) is currently being intensively
explored due to possible applications in nanoelectronics, spin-
tronics, metrology, and quantum information processing [1].
Various configurations of QDs coupled to either conventional
[2,3] or topological superconductors [4,5] are being con-
sidered, offering the realization of brand-new technological
devices.

The transport properties of hybrid structures where QDs
are between superconducting (S) and normal (N) or ferro-
magnetic (F) electrodes are essentially affected by the bound
states [6,7], enabling subgap charge transfer via electron-to-
hole (Andreev) scattering [8–11]. Such in-gap states originate
from the superconducting proximity effect. Competition with
the on-dot Coulomb repulsion, however, can lead, under spe-
cific conditions, to the single occupancy of a QD, allowing
for the Kondo state to emerge [6,12,13]. Signatures of these
Andreev and Kondo effects have been observed in various
nanostructures [14–16]. With the variation of the energy level
or hybridization to external leads the ground state of a QD
can change from the single occupied configuration to the
BCS-type configuration that is manifested by a crossing of
the in-gap states [6]. At such a parity crossing the low-
temperature Andreev conductance reaches its optimal value
4e2/h [13,17–20]. Thermal excitations can further activate the
quasiparticle excitations from outside the pairing gap, giving
rise to the Seebeck effect [21–23].

Charge transfer through multiterminal junctions is even
more complex because of several possible transport chan-
nels. For instance, three-terminal setup with a single quantum
dot on the interface of two normal electrodes and another
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superconducting electrode enables the single electron trans-
fer (ET) as well as the direct (DAR) and/or crossed
(CAR) Andreev reflections between the normal electrodes
[20,24–30]. Under such circumstances, both the local and
nonlocal transport coefficients can be measured [31]. It
has been shown that when the crossed Andreev reflections
prevail over the ballistic ET, the nonlocal conductance ac-
quires negative values [10,16,29,32,33]. Furthermore, the
temperature difference imposed in such a setup between
the normal electrodes allows for separating the charge from
the heat currents [34–37]. Interesting properties also oc-
cur in multiterminal geometries where the QD is between
one normal and two superconducting electrodes, form-
ing a Josephson-type junction [38–41]. The Kondo and
Andreev effects there can be controlled by the phase dif-
ference (via magnetic field) between the superconducting
electrodes.

In this paper we investigate signatures of the supercon-
ducting proximity effect appearing in the local and nonlocal
transport properties of a three-terminal junction, considering
two quantum dots in T-shaped geometry between two nor-
mal/ferromagnetic electrodes and the superconducting lead
[42–47] (see Fig. 1). Bound states of the double dot molecules
have so far been probed experimentally in two-terminal junc-
tions using the scanning tunneling technique [48,49], as well
as Josephson [50] and Andreev spectroscopy [51]. Here we
consider a three-terminal configuration where the supercon-
ducting proximity effect is indirectly transmitted to one of the
dots (QD1) via the other one (QD2); therefore, the interdot
coupling plays a decisive role in affecting the local and non-
local transport properties.

From numerical calculations we find that in the weak
interdot coupling regime the interferometric features (Fano-
type resonances) appear, whereas for tightly coupled dots we
predict that the molecular bound states can induce negative
conductance and lead to divergence of the Seebeck coeffi-
cient. These phenomena are caused solely by the Andreev
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FIG. 1. Sketch of two quantum dots (QD1 and QD2) on the
interface of a three-terminal junction. QD1 is embedded between two
normal/ferromagnetic leads (L and R) and is side attached to QD2,
which is coupled to the superconductor (S).

scatterings. We investigate them and other related effects in
the linear response limit, focusing on the deep subgap region.

This paper is organized as follows. We start by introducing
the microscopic model (Sec. II A) and defining the transport
coefficients (Secs. II B and II C). Next, we present our numeri-
cal results obtained for the normal (Sec. III) and ferromagnetic
(Sec. IV) electrodes, examining the local and nonlocal prop-
erties of charge conductance and thermopower. In Sec. V we
summarize the paper. The role of the Coulomb interaction is
briefly discussed in Appendix A, and the influence of temper-
ature on the transport coefficients of the polarized system is
presented in Appendix B.

II. MODEL

We consider a three-terminal junction with two quantum
dots in T-shaped geometry (Fig. 1), assuming the central
quantum dot (QD1) is weakly hybridized with the metallic (or
ferromagnetic) electrodes and the second quantum dot (QD2)
is strongly coupled to an s-wave S lead. Such asymmetry
of the couplings guarantees that the proximity effect induces
narrow in-gap states at QD2 which (through the interdot cou-
pling) affect the spectrum of QD1, influencing the local and
nonlocal transport properties of the junction.

A. Hamiltonian

Our hybrid structure can be described by the following
Hamiltonian:

H = HDQD + HN-QD1 + HS-QD2. (1)

The double quantum dot term is given by

HDQD =
∑

iσ

εiσ d†
iσ diσ +

∑
σ

t12(d†
1σ d2σ + H.c.), (2)

where operators d†
iσ (diσ ) create (annihilate) electrons on the

ith quantum dot with spin σ and energy εiσ . For numerical
computations, we assume the energy levels εiσ = εi and the
interdot hopping t12 are spin independent. This assumption is
valid in the absence of external magnetic field; otherwise, the
Zeeman splitting should be taken into account [52–54].

The term describing the normal/ferromagnetic leads and
their hybridization with QD1 can be expressed as

HN-QD1 =
∑
k,σ,α

(εkασ − μα )c†
kασ ckασ

+
∑
k,σ

(Vkασ d†
1σ ckασ + H.c.), (3)

where c†
kασ (ckασ ) is the creation (annihilation) operator of a

spin σ electron with momentum k in the α = L, R lead, εkασ is
the kinetic energy, μα denotes the chemical potential, and Vkα

is the hopping between external leads and QD1. In the wide
bandwidth limit, we can introduce the energy-independent
tunnel couplings �ασ = 2π

∑
k |Vkασ |2δ(ω − εkασ + μασ ). In

Sec. IV we consider their spin-polarized versions, �ασ =
�α (1 + σ pα ), assuming that pL = pR ≡ p0.

The superconducting lead which is directly coupled to QD2
will be treated within the BCS framework [18]:

HS-QD2 =
∑
k,σ

(εkSσ − μS )c†
kSσ ckSσ

+
∑

k

	(ckS↓c−kS↑ + c†
−kS↑c†

kS↓)

+
∑
k,σ

(VkSσ d†
2σ ckSσ + H.c.), (4)

where, again, the operator c†
kSσ (ckSσ ) refers to the creation

(annihilation) of a spin σ electron with momentum k, the
kinetic energy εkSσ is measured with respect to the chemical
potential μS , and 	 denotes the isotropic pairing gap. For con-
venience, we assume the superconducting lead is grounded,
μS = 0.

In the absence of interdot coupling (t12 = 0) and in the
superconducting atomic limit (	 → ∞), the spectrum of QD2
is characterized by a pair of Andreev bound states at energies
EA± = ±

√
ε2

2 + (�S/2)2, where �S = 2π
∑

k |VkSσ |2δ(ω −
εkSσ + μS ) is the coupling strength between QD2 and the
superconducting lead. These Andreev states hybridize with
the energy level of QD1 through the interdot coupling t12,
leading to development of the molecular structure of the dou-
ble quantum dot. For the uncorrelated setup we obtain the
effective quasiparticle states at energies

ε±
AD1 = ± 1√

2

√
A −

√
A2 − 4B, (5)

ε±
AD2 = ± 1√

2

√
A +

√
A2 − 4B, (6)

where

A = ε2
1 + E2

A+ + 2t2
12, (7)

B = (
ε1ε2 − t2

12

)2 + (ε1�S/2)2. (8)

The spectrum of the central quantum dot is presented in
Secs. III and IV. For t12 → 0 the quasiparticle energies sim-
plify to ε±

AD1 → ε1 and ε±
AD2 → EA±, respectively.

The transport properties of this three-terminal system in-
duced by the voltage applied to the normal leads μα = eVα

and/or by the temperature difference TL �= TR depend on the
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FIG. 2. Illustration of the charge transport processes in the three-terminal setup contributed by ballistic electron transfer (ET), direct
Andreev reflection (DAR), crossed Andreev reflection (CAR), and quasiparticles tunneling (QP).

effective quasiparticle states of the quantum dots. In what
follows we provide specific details concerning this issue.

B. Charge transport

Charge current from the Lth lead can be expressed by

JLσ = −e
d

dt

〈∑
k

c†
kLσ ckLσ

〉

= ie

h̄

〈∑
k

[c†
kLσ ckLσ , H]−

〉
. (9)

From a straightforward analysis we obtain

JLσ = 2e

h̄

∑
k

Re[VkLσG<
1σ,kLσ (t, t )], (10)

where G<
1σ,kLσ (t, t ′) = i〈c†

kLσ (t ′)d1σ (t )〉 is the lesser Green’s
function. Introducing the Fourier transform and following the

procedure formulated by Haug and Jauho [55], we can express
JLσ as
JLσ = −2e

h

�Lσ

2

∫
dωIm

[
2 fLσ 〈〈d1σ |d†

1σ 〉〉r
ω + 〈〈d1σ |d†

1σ 〉〉<ω
]
,

(11)

where fασ = {exp[(ω − μασ )/kBTα] + 1}−1 is the Fermi-
Dirac distribution function.

The retarded Green’s function 〈〈d1σ |d†
1σ 〉〉r

ω can be deter-
mined from the equation of motion

ω〈〈
i|
 j〉〉r
ω = 〈[
i, 
 j]+〉 + 〈〈[
i, H]−|
 j〉〉r

ω (12)

for the matrix Green’s function Ĝr (ω) = 〈〈
̂|
̂†〉〉r
ω, which

is defined in the Nambu spinor representation 
̂† =
(d†

1↑, d1↓, d†
2↑, d2↓). On the other hand, the lesser Green’s

function obeys the Keldysh equation [55]

Ĝ<(ω) = Ĝr (ω)�̂<(ω)Ĝa(ω), (13)

where �̂<(ω) denotes the lesser self-energy matrix.
The lesser self-energy matrix, appearing in Eq. (13), can be

expressed as

�̂<(ω) = −i

⎛
⎜⎜⎝

�L↑ fL↑ + �R↑ fR↑ 0 0 0
0 �L↓ f̃L↓ + �R↓ f̃R↓ 0 0
0 0 �Sβ(ω) fS �Sβ(ω)	

ω
fS

0 0 �Sβ(ω)	∗
ω

fS �Sβ(ω) fS

⎞
⎟⎟⎠, (14)

where f̃ασ = {exp[(ω + μασ )/kBTα] + 1}−1 is the distribution function for holes and β(ω) = |ω|
(|ω|−	)√
ω2−	2 − iω
(	−|ω|)√

	2−ω2 . For the
uncorrelated setup (neglecting the Coulomb repulsion on both quantum dots) we obtain [18]

Ĝr(a)(ω) =

⎛
⎜⎜⎜⎝

ω − ε1↑ ± i �N↑
2 0 t12 0

0 ω + ε1↓ ± i �N↓
2 0 −t12

t12 0 ω − ε2↑ ± i �S
2 β(ω) ±i �S

2 β(ω)	
ω

0 −t12 ±i �S
2 β(ω)	∗

ω
ω + ε2↓ ± i �S

2 β(ω)

⎞
⎟⎟⎟⎠

−1

. (15)

Using this formalism, we can represent the charge current
(11) by contributions from the ballistic ET, DAR, CAR, and
the quasiparticle flow (QP):

JLσ = JET
Lσ + JDAR

Lσ + JCAR
Lσ + JQP

Lσ . (16)

These transport channels are graphically displayed in Fig. 2.
The ballistic transfer of electrons from the L to R lead through

QD1 can be expressed as

JET
Lσ = e

h

∫
dωT ET

σ (ω)[ fLσ (ω) − fRσ (ω)], (17)

where the tunneling transmittance is given by

T ET
σ (ω) = �Lσ�Rσ

∣∣〈〈d1σ |d†
1σ 〉〉r

ω

∣∣2
. (18)
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The DAR describes the conversion of the electron from the
Lth lead to the local pair at QD2, followed by its injection into
the superconductor, while a hole of opposite spin is scattered
back to the same electrode. This current is given by

JDAR
Lσ = e

h̄

∫
dωT DAR

σ (ω)[ fLσ (ω) − f̃L−σ (ω)], (19)

with the transmittance

T DAR
σ (ω) = �Lσ�L−σ

∣∣〈〈d1σ |d1−σ 〉〉r
ω

∣∣2
. (20)

The crossed Andreev reflection process is similar to DAR,
except that it injects a hole into the Rth lead:

JCAR
Lσ = e

h̄

∫
dωT CAR

σ (ω)[ fLσ (ω) − f̃R−σ (ω)], (21)

where the corresponding transmittance

T CAR
σ (ω) = �Lσ�R−σ

∣∣〈〈d1σ |d1−σ 〉〉r
ω

∣∣2
. (22)

The last term in Eq. (16) describes the single electron transfer
from the Lth lead to a continuum outside the pairing gap of
the superconductor. This quasiparticle current is given as

JQP
Lσ = e

h̄

∫
dωT QP

σ (ω)[ fLσ (ω) − fSσ (ω)], (23)

with the transmittance [17]

T QP
σ (ω) = Re[β(ω)]�Lσ�Sσ

(∣∣〈〈d1σ |d†
2σ 〉〉r

ω

∣∣2

+ ∣∣〈〈d1σ |d2−σ 〉〉r
ω

∣∣2

+ 2
	

ω
Re

[〈〈d1σ |d†
2σ 〉〉r

ω〈〈d†
2−σ |d†

1σ 〉〉a
ω

])
. (24)

We note that Eq. (25) depends on Re[β(ω)], whose non-
vanishing value T QP

σ (ω) occurs solely for |ω| > 	. This
current JQP is hence meaningful only for a sufficiently large
voltage, |eVL| > 	, and/or at sufficiently large temperatures,
kBT � 	.

In an analogous way we can express the charge current
from the Rth electrode JR by swapping the indices L ↔ R.

C. Linear response limit

In the present work we shall focus on the low-temperature
limit T � Tc (where Tc denotes the superconducting critical
temperature) and consider infinitesimally small perturbations,
μα = eδVα and TL,R = TS + δTL,R. The charge current from

the Lth lead then simplifies to

JLσ = DET
σμ(eδVL − eδVR) + 2DDAR

σμ eδVL

+ DCAR
σμ (eδVL + eδVR) + DQP

σμeδVL

+ DQP
σT δTL + (

DET
σT + DCAR

σT

)
(δTL − δTR), (25)

where the coefficients

Dκ
σμ = e

h̄

∫
dωT κ

σ (ω)

[
− ∂ f

∂ω

]
, (26)

Dκ
σT = e

h̄T

∫
dωωT κ

σ (ω)

[
− ∂ f

∂ω

]
(27)

refer to κ = {ET, DAR, CAR, QP} transport channels.
Let us now define the local conductance Gαασ = dJασ

dVα
|δT =0

and nonlocal electrical conductance Gαβσ = − dJασ

dVβ
|δT =0,

where α �= β [24,28,31]. Equation (16) implies that the local
conductance is contributed by all transport channels,

GLLσ = GET
σ + 2GDAR

σ + GCAR
σ + GQP

σ , (28)

whereas the nonlocal conductance is given by a difference in
the electron transfer and the crossed Andreev reflection,

GRLσ = GET
σ − GCAR

σ , (29)

where Gκ
σ = eDκ

σμ. We clearly notice that the nonlocal
conductance (29) takes either positive or negative values, de-
pending on the dominant transport channel. In particular, it
will be negative when the superconducting proximity effect
plays a major role, promoting the Andreev scattering over the
single electron ballistic transfer.

At zero temperature the transport coefficients Dκ
σμ of our

uncorrelated setup simplify to

DET
σμ = e

h̄

�Lσ�Rσ

[(
ε2t2

12 − ε1E2
A+

)2 + �2
N

4 E4
A+

]
[�2

N
4 E2

A+ + B
]2

, (30)

DDAR
σμ = e

h̄

�Lσ�L−σ
�2

S
4 t4

12[�2
N

4 E2
A+ + B

]2
, (31)

DCAR
σμ = e

h̄

�Lσ�R−σ
�2

S
4 t4

12[�2
N

4 E2
A+ + B

]2
, (32)

and

DQP
σμ = 0. (33)

Under such circumstances, the coefficients Dκ
σμ do not depend

on the pairing gap of superconductor.
From Eqs. (30)–(33) we can derive explicit

expressions for the local and nonlocal electrical
conductances:

GLLσ = e2

h̄

�Lσ�Rσ

[(
ε2t2

12 − ε1E2
A+

)2 + �2
N

4 E4
A+

] + 2�Lσ�L−σ
�2

S
4 t4

12 + �Lσ�R−σ
�2

S
4 t4

12[�2
N

4 E2
A+ + B

]2
, (34)

GRLσ = e2

h̄

�Lσ�Rσ

[(
ε2t2

12 − ε1E2
A+

)2 + �2
N

4 E4
A+

] − �Lσ�R−σ
�2

S
4 t4

12[�2
N

4 E2
A+ + B

]2
. (35)
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For the setup with ferromagnetic electrodes the conduc-
tance depends on spin, GLL↑ �= GLL↓. Under such conditions
the local and nonlocal conductances are

GLL =
∑

σ

GLLσ , GRL =
∑

σ

GRLσ . (36)

We can also introduce their spin-polarized versions

PGLL = GLL↑ − GLL↓
GLL

, PGRL = GRL↑ − GRL↓
GRL

. (37)

In a similar way, for the temperature gradient 	Tα we
define the local, Sαασ = − dVα

dTα
|Jγ σ =0, and nonlocal, Sαβσ =

− dVα

dTβ
|Jγ σ =0, Seebeck coefficients, where voltage Vα compen-

sates the current induced by temperature gradient, Jγ σ = 0.
For an infinitesimally small temperature difference the ther-
mopower can be expressed by

SLLσ = DET
σT + DCAR

σT + DQP
σT

GLLσ

, (38)

SRLσ = −DET
σT + DCAR

σT + DQP
σT

GRLσ

. (39)

In the case of ferromagnetic electrodes SLL↑ �= SLL↓; there-
fore, we can consider the average Seebeck coefficients

SLL = SLL↑ + SLL↓
2

, SRL = SRL↑ + SRL↓
2

(40)

and their spin-resolved counterparts [56,57]

SS
LL = SLL↑ − SLL↓

2
, SS

RL = SRL↑ − SRL↓
2

. (41)

In the following sections we present the characteristic
properties obtained numerically for the local and nonlocal
transport coefficients of a three-terminal setup with normal
and ferromagnetic leads.

III. SETUP WITH NORMAL ELECTRODES

Let us start by considering the spin-resolved spectrum of
the central quantum dot (QD1) and then discuss its influence
on the transport properties of our system. For computations,
we treat �N = �L + �R ≡ 1 as a convenient energy unit and
assume strong coupling to the superconductor �S = 2�N to
obtain well-pronounced signatures of the quasiparticle states
in the spectra of both quantum dots.

Equations (34) and (35) show that at zero temperature
the local and nonlocal conductances do not depend on the
pairing gap of the superconducting lead. For this reason, to
simplify our study and reduce the number of model parame-
ters, we restrict ourselves to the superconducting atomic limit
approach (	 → ∞). This approach is valid when the ener-
gies εi are deep inside the pairing gap of the superconductor
	 and temperature is safely smaller than Tc. Otherwise, the
continuum electronic states from outside the pairing will play
important role.

A. Quasiparticle spectrum

We first analyze the quasiparticles of the quantum dots,
depending on the interdot coupling and their energy levels.

FIG. 3. The spectral function A1↑(ω) of QD1 as a function of the
interdot coupling t12 obtained for (a) ε1 = 0 and (b) ε1 = 0.5 using
the model parameters ε2 = 0, �S = 2, �L = �R = 0.5, kBT = 0, and
p0 = 0. White solid lines display the profile of the spectral function
in the weak (t12 = 0.1) and strong (t12 = 0.8) coupling limits. The
quasiparticle energies ε±

AD1 and ε±
AD2, given by Eqs. (5) and (6), are

marked by white dashed lines.

Let us consider the spectral function

A1σ (ω) = −�N

2
Im〈〈d1σ ; d†

1σ 〉〉r
ω (42)

of the central quantum dot (normalized here by the factor
π�N/2 to obtain dimensionless values). This quantum dot
affects all four transport processes in our setup (displayed in
Fig. 2). For the nonmagnetic L and R leads, this function (42)
is spin independent.

In Fig. 3 we present the spectrum of ↑-spin electrons of
QD1 obtained for the energy levels ε1 = 0 [Fig. 3(a)] and
ε1 = 0.5 [Fig. 3(b)]. For isolated quantum dots, t12 = 0, the
spectral function of QD1 takes the well-known Lorentzian
shape centered near ω = ε1. For finite interdot coupling,
t12 �= 0, we can observe two different effects, depending on
the ratio t12/�N [47]. In the weak coupling limit, t12/�N <

0.5, the interferometric (Fano-type) structures emerge at ω =
EA±. In the strong coupling limit, t12/�N � 0.5, we ob-
serve the development of a molecular quasiparticle spectrum
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FIG. 4. The (a) and (b) local and (c) nonlocal electron pairings
plotted vs the interdot coupling t12 for several energy levels ε1, as
indicated. Computations are done for the following set of model
parameters: ε2 = 0, �S = 2, �L = �R = 0.5, T = 0, and p0 = 0.

characterized by four peaks (two pairs symmetrically placed
around the Fermi level). This molecular structure is induced
by leakage of the electron pairs from the superconducting lead
onto both quantum dots. To support this claim we show in
Fig. 4 the variation of the on-dot and interdot pairings:

〈
di↓d j↑

〉 = −1

π

∫ ∞

−∞
Im〈〈d j↑; di↓〉〉r

ω

1

1 + eω/kBT
dω. (43)

Figure 4 shows the variation of the local and nonlocal
pairings with respect to t12 for several values of ε1. With
increasing t12 the local pairing induced in QD1 is gradually
amplified at the expense of a partial weakening of the electron
pairing in QD2. For the fully symmetric case, ε1 = 0 = ε2,

FIG. 5. Variation of the (a) local, GLL , and (b) nonlocal, GRL ,
conductances versus the interdot coupling t12 for several tempera-
tures, as indicated. Results are obtained for the model parameters
ε1 = ε2 = 0, �S = 2, �L = �R = 0.5, and p0 = 0.

the nonlocal singlet pairing 〈d2↓d1↑〉 is completely absent. It
emerges solely in the asymmetric case, ε1 �= ε2, yet is an order
of magnitude smaller in comparison to the local pairings.
Of particular importance for the charge transport properties
(discussed in next section) is 〈d1↓d1↑〉 because it controls the
efficiency of the Andreev scattering processes.

B. Zero-bias conductance

Electron pairing induced in QD2 by the proximity effect
and subsequently transmitted to the central quantum dot leads
to characteristic features in the local and nonlocal transport
properties. We discuss their signatures in the conductance
and analyze their qualitative changes with varying interdot
coupling (Fig. 5).

When the quantum dots are separated, t12 = 0, the con-
ductance is contributed only by the ballistic electron transport
(30), which at zero temperature takes a unitary limit value of
2e2/h. By coupling these dots, t12 �= 0, we observe a slight
reduction of GET (due to the suppression of the quasiparti-
cle state at ω = 0), while an additional contribution comes
from the Andreev channel GDAR(CAR), enhancing the total
conductance above its initial value of 2e2/h. In the strong
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FIG. 6. (a) Local, GLL , and (b) nonlocal, GRL , total zero-bias
conductivities with respect to the QD1 energy for different values
of t12. Other parameters are ε2 = 0, �S = 2, �L = �R = 0.5, p0 = 0,
and kBT = 0.05.

interdot coupling limit, t12 > 0.5, the local conductance is
substantially suppressed because the quasiparticle state, ini-
tially existing at ω = ε1, gradually evolves into the molecular
structure represented by four peaks (see Fig. 3).

In contrast to GLL, the nonlocal conductance turns out to be
a very sensitive probe of the competition between the crossed
Andreev reflections and the ballistic electron transfers. This
property can be inferred from Eq. (29) and can be ob-
served for arbitrary interdot couplings t12. Ultimately, for the
tightly coupled quantum dots (t12 � 0.75) the sign-reversal
of GRL occurs in analogy to the results previously obtained
for the three-terminal structure with a single quantum dot,
both in the uncorrelated [58] and strongly correlated [20]
cases.

The energy levels also have some influence on the ef-
ficiency of the superconducting proximity effect. Optimal
conditions for the on-dot pairing induced in QD1 occur in the
symmetric case, ε1,2 = 0 [black line in Fig. 4(b)]. Under such
circumstances the local conductance GLL reaches its maxi-
mum at t12 ≈ 0.5 [see Fig. 6(a)]. Far away from the symmetric
case the on-dot pairing (43) becomes residual; therefore, the
local conductance practically does not vary against ε1. This

behavior is evident from Fig. 6(b), which shows that negative
values of the nonlocal conductance (where the crossed An-
dreev reflections dominate over ballistic transfer) are realized
in the strong interdot coupling limit solely when |ε1| < 0.75.

The energy levels (tunable by external gate potentials)
along with the interdot coupling (transmitting electron pairing
from QD2 to QD1) thus control the relationship between the
single particle electron transfer and the anomalous electron-
to-hole scattering processes.

C. Thermopower

We now study how different transport channels affect the
thermoelectric properties. Usually, in bulk materials the sign
of the Seebeck coefficient reverses during the changeover
from electron- to hole-dominated transport regions. The same
behavior occurs in two-terminal metallic junctions with a
single quantum dot, where the thermopower takes sawtooth
shape as a function of the energy level [57,59]. In two-
terminal nanostructures with a quantum dot between a normal
and superconducting electrode, the nonvanishing value of the
Seebeck coefficient is obtained either at high temperatures or
in the presence of the Zeeman splitting [21].

We can identify the particle and hole dominant regions
of our three-terminal setup by inspecting the local See-
beck coefficient and can distinguish between the ballistic
and Andreev-type contributions using the nonlocal coeffi-
cient. Figure 7 shows the variation of the local SLL and
SRL Seebeck coefficients with respect to the QD1 energy
level obtained for several values of t12. In analogy with
two-terminal junctions, the local Seebeck coefficient has a
negative sign for ε1 < 0 and is positive for ε1 > 0. The in-
terdot coupling t12 causes only a flattening of its sawtooth
shape.

The nonlocal Seebeck coefficient, on the other hand, is
very sensitive to t12. For small t12 the nonlocal SRL has a
shape typical for a metallic dot, i.e., SRL > 0 for ε1 < 0
and SRL < 0 for ε1 > 0 (see, e.g., [26,57]). For the strong
interdot coupling limit (when the molecular Andreev bound
states are formed on QD1 and QD2) we observe divergence
and sign reversal of SRL. This behavior is typical for the
superconducting-proximity-effect regime, where SRL < 0 for
ε1 < 0 and SRL > 0 for ε1 > 0 (see Refs. [28,60]).

This divergence point corresponds to the changeover from
the thermoelectricity dominated by the ballistic channel to the
region dominated by the crossed Andreev reflections. This in-
formation is thus complementary to that for the local Seebeck
coefficient.

IV. SETUP WITH FERROMAGNETIC LEADS

We now consider the influence of electrode polarization
p0 on the properties of our system. Magnetically polarized
electrodes can be expected to induce spin-dependent features,
analogous to those due to Zeeman splitting. Since magnetism
and superconductivity compete with each other, it is therefore
important to analyze how they show up in the quasiparticle
spectra of QD1 and how they affect the transport properties of
our superconducting nanostructure.
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FIG. 7. (a) Local, SLL , and (b) nonlocal, SRL , thermopowers
with respect to the QD1 energy for different values of t12, using
the model parameters ε2 = 0, �S = 2, �L = �R = 0.5, p0 = 0, and
kBT = 0.05.

A. Polarized spectrum

To proceed, let us analyze the influence of the polarization
on the quasiparticle spectra of the quantum dots, focusing on
QD1 because of its crucial role for the transport properties.
Figure 8 shows the variation of the spin-resolved spectrum of
QD1 with respect to p0 obtained for ε1 = 0 = ε2 and interdot
coupling t12 = 0.5, where we can clearly resolve the quasipar-
ticle states of odd and even parity. For p0 = 0 the spectrum
consists of the central peak at ε1 and two Fano-type reso-
nances near ±�S/2 driven by the superconducting proximity
effect. With increasing polarization the spectral function of the
spin-↑ electrons absorbs more and more spectral weight, and
simultaneously, the central peak gradually splits. In contrast,
the outer resonances do not change position, proving that they
correspond to the spinless BCS-type states u2|0〉 ± v2| ↑↓〉.
As far as the spectrum of the spin-↓ electrons is concerned,
the polarization of external leads depletes its spectral weight.
Both these phenomena have a strong effect on the transport
properties, especially their spin-sensitive versions.

B. Conductance of the polarized system

Polarization affects the charge transport in both the bal-
listic channel and Andreev-type processes. In the first case

FIG. 8. The normalized spectral function A1σ (ω) of QD1 as a
function of the polarization parameter p0. Numerical results are
obtained for ε1 = ε2 = 0, �S = 2, �L = �R = 0.5, t12 = 0.5, and
T = 0. White lines show the profiles of the spectral function of the
weakly (p0 = 0.2) and strongly (p0 = 0.7) polarized systems.

its influence comes predominantly from renormalization of
the low-energy spectral functions A1σ (ω = 0), whereas the
electron-to-hole scatterings are sensitive to the modified elec-
tron pairing on QD1. Evolution of the quasiparticle spectrum
(discussed in Sec. IV A) thus suggests a detrimental influence
of the polarization on the differential conductance.

Figure 9 shows the variation of the local conductance GLL

[Fig. 9(a)] and its polarization PGLL [Fig. 9(b)] with respect
to the energy level ε1 for several t12 and p0. As expected,
for all values of the interdot coupling, the local conductance
is suppressed by p0. The polarized conductance [Fig. 9(b)]
proves that the spin-resolved ballistic channel is mostly
affected when ε1 is distant from the symmetry point. The An-
dreev channels (simultaneously involving both spin compo-
nents) are responsible for suppressing the local conductance
when ε1 ∼ 0.

Figure 10(a) presents the nonlocal conductance GRL ob-
tained for different values of t12 and p0. Again, we observe
that for small |ε1| the polarization p0 suppresses mainly
the crossed Andreev reflections. The polarized nonlocal
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FIG. 9. (a) The local conductance GLL and (b) its polarization
PGLL as a function of the energy level ε1 obtained for various t12 and
p0, as indicated. Results are obtained for ε2 = 0, �S = 2, �L = �R =
0.5, and kBT = 0.05.

conductance [Fig. 10(b)] reveals divergence points which in-
dicate a changeover of the dominant transport channel. Such
points are sensitive to the polarization and occur only for
sufficiently strong interdot coupling t12 > 0.5. The differen-
tial conductance, together with its polarized version, provides
valuable information about the leading transport channel of
our multiterminal superconducting junction, which is particu-
larly useful in the presence of external fields.

C. Thermopower of the polarized system

Polarization of the external leads has an effect on the See-
beck coefficients. Let us recall that in N-QD-N junctions the
thermopower is determined by the slope of the quantum dot
spectral function ∂Aσ (ω)/∂ω at the Fermi level (ω = 0) [61].
In the weak interdot coupling limit of our setup and in the
absence of polarization, the spectrum of QD1 is represented by
a Lorentzian peak centered at ε1 (Fig. 3); therefore, the local
thermopower [Fig. 11(a)] has the usual sawtooth shape. Po-
larization induces splitting of the quasiparticle state at ω ∼ ε1

(Fig. 8), which partly flattens the net thermopower.
Qualitative changes, however, can be noticed in the spin-

resolved Seebeck coefficient defined in Eq. (41). In the
presence of polarization, for ε1 < 0 and weak interdot cou-
pling we obtain ∂A↑/∂ω(εF ) > ∂A↓/∂ω(εF ); therefore, the

FIG. 10. Variation of (a) the nonlocal conductance GRL and
(b) its polarization PGRL with respect to the energy level ε1 obtained
for several values of t12 and p0, using the model parameters ε2 = 0,
�S = 2, �L = �R = 0.5, and kBT = 0.05.

spin-resolved thermopower is positive. With increasing t12,
the polarization amplifies the splitting of A↑(ω) sector and
suppresses the spectral weight of A↓(ω). In effect, the
thermopower SLL(S) [Fig. 11(b)] reverses sign due to the com-
bined influence of the electron pairing and the polarization
imposed on the central quantum dot.

The spin-resolved Seebeck coefficient is thus a sensitive
probe of the superconducting proximity effect (transmitted
to QD1 via interdot coupling) competing with polarization
effects.

V. SUMMARY

We studied the quasiparticle spectrum and transport prop-
erties of a double quantum dot embedded in T-shaped
geometry between two conducting (or ferromagnetic) leads
and strongly hybridized with superconducting electrode. In
this configuration the proximity effect induces the bound
states on the quantum dot adjacent to the superconductor
(QD2), which then is partly or entirely transmitted to the other
dot (QD1). In the weak interdot coupling regime this process
leads to the appearance of Fano-like structures in the spectrum
of QD1, whereas the tightly bound quantum dots develop the
molecular structure of their Andreev states. These phenomena
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FIG. 11. (a) The local thermopower SLL and (b) the spin-resolved
thermopower SS

LL as a function of the QD1 energy level obtained for
several values of t12 and p0, assuming the model parameters ε2 = 0,
�S = 2, �L = �R = 0.5, and kBT = 0.05.

qualitatively affect the charge transport and thermoelectric
properties of the setup.

We thoroughly analyzed the influence of the interdot
coupling t12 on the transport coefficients which could be
experimentally accessible. Specifically, we examined the
variation of the local and nonlocal conductances and thermo-
electric coefficients with increasing t12. We found that in the
weak coupling limit the ballistic transport becomes reduced
(by destructive quantum interference), whereas the direct and
crossed Andreev scatterings are gradually amplified (by the
superconducting proximity effect indirectly transmitted onto
QD1). This tendency is clearly reflected in the local electric
conductance (Figs. 5 and 6) and is even more pronounced in
the nonlocal conductance, revealing a competition between
the ballistic electron tunneling and the crossed Andreev re-
flection (29). The latter undergoes suppression with increasing
t12 and eventually reverses sign when the crossed Andreev
reflections become the dominant transport channel.

We also examined how the interdot coupling affects the
local and nonlocal thermopower. For the weak interdot cou-
pling we found that the local Seebeck coefficient acquires the
usual sawtooth shape as a function of the quantum dot energy
level (caused by the changeover from the particle- to hole-
dominated single particle charge transfer). In contrast, for

FIG. 12. The normalized spectral function Ai↑(ω) of the (a) first
and (b) second quantum dots as a function of the Coulomb repulsion
U2. Other parameters are ε1 = 0, ε2 = −U2/2, �S = 2, �L = �R =
0.5, kBT = 0, p0 = 0, and t12 = 0.4.

large coupling t12, we obtained qualitatively different behavior
which manifests the superconductivity-proximity-dominated
regime. In particular, it reveals the divergence point.

In the setup with ferromagnetic electrodes the ballis-
tic transport channel is dependent on the individual spin
components. For this reason we investigated in detail the spin-
resolved conductance and the Seebeck coefficients in both
their local and nonlocal versions. The resulting transport co-
efficient reveals a subtle interplay between the spin-resolved
ballistic transfer and the Andreev scatterings, which equally
engage both spin components.

In summary, we showed that charge transport measure-
ments are able to probe the efficiency of the superconducting
proximity effect imposed on the double quantum dot in three-
terminal hybrid structures. Transport properties can clearly
distinguish the molecular bound states (when the interdot
coupling is strong) from different situations where the in-
gap states are formed merely in one of the dots while the
second one is affected by interferometric (Fano-type) effects.
These phenomena could also be encountered in other hybrid
architectures, for instance, using two quantum dots attached
to Majorana modes [46]. Furthermore, similar effects might
show up when one inspects the parity of the Andreev molecule
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FIG. 13. The zero-bias conductance (local GLL , black line; non-
local GRL , red line; electron tunneling GET, blue line; and Andreev
reflection GAR = GDAR = GCAR, green line) as a function of the
Coulomb repulsion U2/�N . Results are obtained for ε1 = 0, ε2 =
−U2/2, �S = 2, �L = �R = 0.5, T = 0, p0 = 0, and t12 = 0.4.

of two quantum dots interconnected via a superconducting
reservoir [62,63]. The latter scenario is now considered a pos-
sible means for the realization of the minimal Kitaev model
hosting poor man’s Majorana quasiparticles [64].
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APPENDIX A: CORRELATION EFFECTS

Under specific conditions, the spectra of the quantum dots
can additionally be influenced by Coulomb repulsion between
opposite spin electrons Uid

†
i↑di↑d†

i↓di↓. We shall discuss the
major effects arising from such interactions, inspecting their
role at each dot (i = 1, 2) separately.

The repulsive potential U2 of the quantum dot directly
attached to the superconductor can be expected to compete
with the proximity effect. Signatures of this competition are
evident already within the mean field approximation (valid
for U2 � �S), leading to renormalization of the on-dot pair-
ing potential �S

2 → �S
2 − U2〈d2↓d2↑〉. With the use of more

sophisticated methods to treat the Hamiltonian of QD2 [66],
substantial changes in the Andreev bound states have been
predicted. In particular, by varying U2/�s the ratio or the
energy level ε2 the ground state of QD2 eventually undergoes
the quantum phase transition between the BCS-type (spin-
less) and singly occupied (spinful) configurations [6]. For
the particle-hole symmetric case (ε2 = −U2/2), this quantum
phase transition occurs at U2 = �S . In the strong interaction
limit, U2 > �S , the on-dot pairing 〈d2↓d2↑〉 is strongly (or
completely) suppressed. The influence of such effects on the
local and nonlocal conductances of the three-terminal junction
comprising the single quantum dot was recently addressed in

Ref. [20]. Here, in the setup with the double quantum dot, the
Coulomb potential could predominantly affect the transport
channels contributed by the Andreev scattering.

Figure 12 shows the quasiparticle spectrum of spin-↑ elec-
trons of both quantum dots obtained for the particle-hole
symmetric case, ε2 = −U2/2 (neglecting the Coulomb po-
tential U1 = 0). Numerical results for the Green’s function
matrix were obtained with the self-consistent second-order
perturbation theory [18,19,67]. Inspecting A2↑(ω), we can
clearly see the singlet-doublet changeover that occurs near
U2 ≈ �S (strictly speaking, it is no longer sharp due to the
interdot coupling). In the spectrum of QD2 adjacent to the
superconducting lead [Fig. 12(b)], we observe two Andreev
states which merge at U2 → �S . In contrast, in the strong

FIG. 14. Variation of the (a) local, GLL , and (b) nonlocal, GRL ,
spin-dependent conductivities and (c) the transport coefficients Dκ

σμL

versus the polarization p0, obtained for several temperatures us-
ing the model parameters ε1 = ε2 = 0, �S = 2, �L = �R = 0.5, and
t12 = 0.5.
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interaction limit, the Abrikosov-Suhl state develops at the
Fermi level, ω = 0, originating from the antiferromagnetic
exchange interactions of QD2 with mobile electrons from
external metallic leads [13]. In addition to this Kondo feature,
there are also other quasiparticles with finite energies that
represent molecular Andreev states [6]. On the other hand, the
spectrum of QD1 [Fig. 12(a)] reveals completely different line
shapes. At energies corresponding to the Andreev peaks (in
the weak interaction limit, U2 < �s) we observe resonantlike
dip structures, and (in the strong interaction regime, U2 > �s)
another depleted region is observed around the Kondo state.

The influence of the Coulomb potential U2 on the local
and nonlocal transport properties of our system is presented
in Fig. 13. We notice that upon traversing the singlet-doublet
transition, the ballistic electron transfer (blue line in Fig. 13)
is gradually suppressed. In contrast, the Andreev conductance
achieves optimal values around this crossover region (where
the molecular quasiparticle energies cross each other). A fur-
ther consequence of this behavior is observed in the nonlocal
conductance (displayed by the red line), which changes sign
to negative values near the singlet-doublet crossover.

Concerning the Coulomb interactions U1, its influence is
qualitatively different from that discussed above. Repulsive
interactions at QD1 mainly affect the ballistic transport chan-
nel, being less efficient for Andreev scattering. The resulting
effect is hence reminiscent of the Coulomb blockade. Its
signatures could be observed by enhancing the differential
conductance at ω = ε1 and ε1 + U1 due to the charging ef-
fects. Furthermore, at low temperatures, the Abrikosov-Suhl

peak can be induced by the effective exchange interactions
between the mobile electrons of the metallic leads and the
localized electron on QD1. Such Kondo physics would lead
to the enhancement of the zero-bias conductance of the single
electron (ballistic) channel. Further indirect effects on the
proximity-induced electron pairing would be less meaningful
unless the interdot coupling is strong. Major aspects related
to the latter mechanism were studied by Calle et al. [46];
therefore, we skip their discussion.

APPENDIX B: POLARIZED TRANSPORT COEFFICIENTS

In this appendix we briefly consider the influence of tem-
perature on the transport coefficients, originating from the
Fermi-Dirac distribution function entering the expressions for
charge current. Figure 14 shows the local, GLL, and nonlo-
cal, GRL, spin-dependent conductivities with respect to the
polarization of electrodes p0 obtained in the electron-hole
symmetric case, ε1 = 0 = ε2, and for several temperatures.
For T = 0 (black lines), the zero-bias conductivity is pro-
portional to the transmittance at ω = 0; therefore, GLL(RL)↑ =
GLL(RL)↓. By increasing the polarization, we observe suppres-
sion of T ET

σ (0) and a slight enhancement of T DAR(CAR)
σ (0).

Consequently, the local conductance GLLσ weakly depends on
p0, whereas the nonlocal conductance GRLσ reveals a grad-
ual reduction. At finite temperatures, T > 0, we obtain the
spin-dependent conductance GLL(RL)↑ �= GLL(RL)↓ for arbitrary
values of p0 �= 0. In this case, nonvanishing spin polarization
of the local and nonlocal conductance can be observed.
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structive influence of the induced electron pairing on the Kondo
state, Sci. Rep. 6, 23336 (2016).

[14] J.-D. Pillet, P. Joyez, R. Žitko, and M. F. Goffman, Tunneling
spectroscopy of a single quantum dot coupled to a superconduc-
tor: From Kondo ridge to Andreev bound states, Phys. Rev. B
88, 045101 (2013).

[15] B.-K. Kim, Y.-H. Ahn, J.-J. Kim, M.-S. Choi, M.-H. Bae, K.
Kang, J. S. Lim, R. López, and N. Kim, Transport measurement
of Andreev bound states in a Kondo-correlated quantum dot,
Phys. Rev. Lett. 110, 076803 (2013).

[16] J. He, D. Pan, G. Yang, M. Liu, J. Ying, Z. Lyu, J. Fan, X.
Jing, G. Liu, B. Lu, D. E. Liu, J. Zhao, L. Lu, and F. Qu,
Nonequilibrium interplay between Andreev bound states and
Kondo effect, Phys. Rev. B 102, 075121 (2020).

235403-12

https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/5.0004777
https://doi.org/10.1103/PhysRevApplied.22.054034
https://doi.org/10.1103/PhysRevB.94.014511
https://doi.org/10.1063/5.0024124
https://doi.org/10.1088/0953-8984/19/48/486211
https://doi.org/10.1080/00018732.2011.624266
https://doi.org/10.1103/PhysRevLett.99.126602
https://doi.org/10.1103/PhysRevLett.104.076805
https://doi.org/10.1038/nphys1811
https://doi.org/10.1038/nphys1911
https://doi.org/10.1103/PhysRevB.91.045441
https://doi.org/10.1038/srep23336
https://doi.org/10.1103/PhysRevB.88.045101
https://doi.org/10.1103/PhysRevLett.110.076803
https://doi.org/10.1103/PhysRevB.102.075121


PROPERTIES OF A MULTITERMINAL … PHYSICAL REVIEW B 112, 235403 (2025)

[17] Y. Yamada, Y.i Tanaka, and N. Kawakami, Enhanced Andreev
tunneling via the Kondo resonance in a quantum dot at finite
bias, J. Phys. Soc. Jpn. 79, 043705 (2010).

[18] Y. Yamada, Y. Tanaka, and N. Kawakami, Interplay of Kondo
and superconducting correlations in the nonequilibrium An-
dreev transport through a quantum dot, Phys. Rev. B 84, 075484
(2011).
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[57] I. Weymann and J. Barnaś, Spin thermoelectric effects in Kondo
quantum dots coupled to ferromagnetic leads, Phys. Rev. B 88,
085313 (2013).

[58] G. Michałek, T. Domański, B. R. Bułka, and K. I. Wysokiński,
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