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Abstract
We study the quasiparticle spectrum of a hybrid system, comprising a correlated
(Anderson-type) quantum dot coupled to a topological superconducting nanowire hosting the
Majorana boundary modes. From the exact solution of the low-energy effective Hamiltonian,
we uncover a subtle interplay between Coulomb repulsion and the Majorana mode. Our
analytical expressions show that the spectral weight of the leaking Majorana mode is sensitive
to both the quantum dot energy level and the repulsive potential. We compare our results with
estimations by Ricco et al (2019 Phys. Rev.B 99 155159) obtained for the same hybrid structure
using the Hubbard-type decoupling scheme, and analytically quantify the spectral weight of the
zero-energy (topological) mode coexisting with the finite-energy (trivial) states of the quantum
dot. We also show that empirical verification of these spectral weights could be feasible through
spin-polarized Andreev spectroscopy.

Keywords: quantum dot, Majorana quasiparticle, SESAR

1. Introduction

Quantum dots side-attached to topological superconducting
nanowires have been considered as a suitable platform for
probing the Majorana boundary modes [1–7] which can
demonstrate their non-local nature [8]. Hybridization between
these constituents induces the intersite pairing, allowing for
leakage of the Majorana mode onto the quantum dot region.
Such a process has been initially predicted for the uncorrel-
ated case [9] and later on also in the presence of Coulomb
repulsion [10–17]. Distinguishing the Majorana zero modes
(MZMs) from trivial states of the QD is, however, a challen-
ging issue because various trivial states at zero energy could
mimic the behavior of MZMs [8, 18].

Furthermore, in various hybrid structures the trivial states
can coexist with topological ones [19, 20] and their signatures
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might potentially yield misleading conclusions. For example,
Liu et al [21] demonstrated that coalescence of the Andreev
states can enhance zero-bias conductance to 2e2/h, typical
for the Majorana mode. Kondo resonance, appearing at zero
energy in strongly correlated structures, could also be con-
fused with the Majorana quasiparticle. Differences between
these effects could be resolved by spin-polarized tunneling
spectroscopy [10–14, 22–24], yet their unambiguous identi-
fication would be rather difficult.

Given these facts, there is an ultimate need to accurately
describe the quasiparticle spectra in topological hybrid sys-
tems. To address this issue, we analyze here the minimal setup
composed of the Anderson-type quantum impurity coupled
to the Majorana mode (figure 1), which can be solved ana-
lytically. From the exact solution, we determine the eigen-
states and analytically express the quasiparticle energies and
their spectral weights, providing information about optimal
conditions for leakage of the zero-energy Majorana mode
onto the correlated quantum impurity with strong Coulomb
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Figure 1. Schematics of the quantum dot (QD) attached to the
topological nanowire, hosting the boundary Majorana modes ηi.
Quasiparticles of the QD could be probed by spin-polarized
scanning spectroscopy, measuring the conductance of the charge
current contributed by electron-to-hole (Andreev) scattering of
identical spins (marked by red arrows).

repulsion between opposite-spin electrons. Our study could
be regarded as complementary to the previous investigations
based either on the Hubbard-I decoupling scheme [7] or other
purely numerical considerations [10–16]. Information derived
from such analytical results could be useful for considerations
of these quantum dot-topological superconductor hybrid struc-
tures under nonequilibrium conditions (for instance imposed
by gate potentials or time-dependent driving) when precise
knowledge of the eigenfunctions and quasiparticle energies is
necessary to deduce the quantum evolution.

For experimental detection of the Majorana and the trivial
bound states, we consider the Selective Equal-Spin Andreev
Reflection (SESAR) spectroscopy. In contrast to ordinary
Andreev reflection, its mechanism relies on polarized charge
transfer by scattering an electron into a hole of the same spins.
In quantum dot-Majorana hybrids, this process is feasible due
to the intersite triplet pairing. Such a mechanism was pro-
posed by He et al [25] for reliable identification of Majorana
quasiparticles. Spin-polarized Andreev spectroscopy has also
enabled the detection of topological zero-energy modes inside
the vortex in a topological superconductor [26]. In subsequent
studies, spin-dependent transport characteristics have been
measured for magnetic atom chains, revealing inherent polar-
ization of the Majorana quasiparticles at their edges [27].
SESAR has also been proposed for probing the spatial pro-
file ofMajorana quasiparticles in topological planar Josephson
junctions [28].

Furthermore, the recent realization of the minimal Kitaev
chain in double quantum dots interconnected through a
conventional superconductor [29, 30] enabled the realiza-
tion of triplet pairing, which has been resolved by spin-
polarized crossed Andreev scattering [31]. Another plat-
form for Majorana quasiparticles are topological nodal-point
superconductors [32], where SESAR spectroscopy has been
used as well. Motivated by the popular use of spin-resolved
Andreev spectroscopy, we inspect its mechanism here in

the minimal QD-MBS setup, providing the exact Green’s
functions, which encode information on the SESARprocesses.

It has been established [33] that charge tunneling could
probe the lifetime of the Majorana states in heterostruc-
tures consisting of a metal-quantum dot-topological super-
conductor. Charge transfer varies the electron number on the
quantum dot by ±1, thus connecting the even and odd par-
ity sections. In what follows, we determine the probability of
such parity changes in the strongly correlated quantum dot.
This brings information concerning optimal conditions for the
leakage of the Majorana modes.

The paper is organized as follows. In section 2 we intro-
duce the model and present the general forms of its eigenstates
and eigenenergies for arbitrary overlap between the Majorana
boundary modes. Next, in section 3, we analyze the spin-
resolved quasiparticle spectra of the correlated QD coupled
only to one Majorana mode. The next section 4 generalizes
our treatment to the case with nonzero overlap between the
Majorana modes. Finally, we summarize the obtained results.
The appendix provides brief information concerning the role
of the magnetic field.

2. Eigenstates and eigenenergies

The low-energy physics of the hybrid structure shown in
figure 1 can be described by the following Hamiltonian:

Ĥ= ĤQD +λ
(
d̂†↓η̂1 + η̂1d̂↓

)
+ iϵmη̂1η̂2, (1)

where

ĤQD =
∑
σ

εdd̂
†
σd̂σ +Udn̂↑n̂↓ (2)

refers to the correlated quantum dot (QD) with the energy level
εd and the Coulomb potentialUd. The second term on the r.h.s.
of equation (1) describes the coupling of the QD to one of the
boundary states, η̂1, of the topological nanowire. In the ana-
lyzedmodel, we assume that the tunneling between the dot and
the MZM is spin-polarized. This is because Majorana modes
in topological superconductors are typically associated with a
specific spin polarization, depending on the direction of the
magnetic field and the spin-orbit interaction. The boundary
modes are described by self-hermitian operators η̂†i = η̂i. The
last term stands for an overlap between the Majorana modes
(η̂1, η̂2) and it is relevant to short topological nanowires.

It is convenient to express the Majorana operators in terms
of the conventional fermion operators f̂, f̂ † defined through
η̂1 =

1√
2
(̂f † + f̂) and η̂2 =

i√
2
(̂f † − f̂). Hamiltonian (1) then

acquires the following structure:

Ĥ= ĤQD+ tm
(
d̂†↓ f̂+ f̂†d̂↓

)
+ tm

(
d̂†↓ f̂

† + fd↓
)
+ ϵm

(̂
f†̂f− 1

2

)
, (3)

where tm = λ/
√
2. We note that the second part of this

Hamiltonian (3) represents the usual tunneling of a spin-↓
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electron between the QD and the topological nanowire, while
the third part represents the intersite pairing potential, where
triplet pairs are formed or annihilated.

The Hilbert space of the model Hamiltonian (3) is spanned
by eight states |ndσ,nf⟩. Its eigenstates can be determined ana-
lytically and are represented by the following superpositions:

|Ψ±
1 ⟩= u±1 |0,0⟩+ v±1 | ↓,1⟩, (4)

|Ψ±
2 ⟩= u±2 | ↓,0⟩+ v±2 |0,1⟩, (5)

|Ψ±
3 ⟩= u±3 | ↑↓,0⟩+ v±3 | ↑,1⟩, (6)

|Ψ±
4 ⟩= u±4 | ↑,0⟩+ v±4 | ↑↓,1⟩. (7)

Let us remark that the correlated quantum dot coupled to a
conventional superconductor would be characterized by a dif-
ferent set of eigenvectors, represented either by the singly
occupied configurations | ↑⟩ and | ↓⟩ or the BCS-type coherent
superpositions u±|0⟩+ v±| ↑↓⟩ [34, 35]. Here, in contrast, we
obtain eigenstates that are superpositions of either the empty
and singly occupied dot, |Ψ1,2⟩, or the doubly and singly occu-
pied dot, |Ψ3,4⟩, combined with the edge mode. Unlike the
mentioned BCS-type superpositions, the eigenstates of the
considered system are superpositions of states with different
dot electron parity. One can also note that the states |Ψ1,2⟩
are characterized by opposite dot magnetization compared to
states |Ψ3,4⟩. Consequently, a ground state transition from
|Ψ1,2⟩ to |Ψ3,4⟩ (or vice versa) is accompanied by a conversion
of the dot’s magnetic properties (c.f. figure 2). Such a set of
eigenfunctions originates from the intersite pairing. For each
of these configurations, we obtained two possible solutions,
Ĥ|Ψ±

i ⟩= E±
i |Ψ

±
i ⟩, with eigenvalues

E±
1 =

1
2

[
ϵd±

√
(ϵd+ ϵm)

2
+ 4t2m

]
, (8)

E±
2 =

1
2

[
ϵd±

√
(ϵd− ϵm)

2
+ 4t2m

]
, (9)

E±
3 =

1
2

[
3ϵd+Ud±

√
(ϵd− ϵm+Ud)

2
+ 4t2m

]
, (10)

E±
4 =

1
2

[
3ϵd+Ud±

√
(ϵd+ ϵm+Ud)

2
+ 4t2m

]
. (11)

As the values of the square roots are positive, therefore candid-
ates for the ground state are only those eigenenergies (8)–(11)
with a minus-sign in front of the square root.

Figure 2 illustrates these eigenenergies, indicating the
ground state energy (solid line) obtained for large overlap
between the QD and the Majorana modes, ϵm = 0.5Ud. The
dashed faded lines mark the eigenvalues of the excited states.
The eigenenergies are plotted with respect to the parameter
ξd = ϵd+

Ud
2 , which represents the departure from the half-

filled QD. In figure 2 we used the on-site Coulomb repulsion
as the energy unit in order to highlight the critical points at
which the ground state is represented by different types of
states. Note that configurations |Ψ3⟩ and |Ψ4⟩ have a compon-
ent related to the double QD occupancy, while for the states
|Ψ1⟩ and |Ψ2⟩ a maximum number of electrons on the QD

Figure 2. Dependence of the eigenenergies E−
i on the energy level

εd of the QD. Solid lines refer to the ground-state energy. Results
are obtained for tm = 0.1Ud and ϵm = 0.5Ud. Dashed faded lines
represent excited states.

is one. Therefore, below QD half-filling (ξd < 0) the ground
state is represented either by |Ψ3⟩ or |Ψ4⟩. In the opposite case,
the Coulomb potential imposes the ground state |Ψ1⟩ or |Ψ2⟩.

In what follows, we shall inspect the quasiparticle excita-
tion spectrum that could be probed by tunneling experiments
when our hybrid structure is contacted with a conducting tip.
The main purpose of this study is to evaluate the spectral
weights shared between the topological and trivial branches,
upon varying the energy level of the correlated QD.

3. Results for ϵm = 0

Let us start with the situation corresponding to a sufficiently
long topological nanowire where the overlap between the
Majorana modes is negligible, ϵm → 0. Under such circum-
stances, E±

1 = E±
2 and E±

3 = E±
4 (nonvanishing overlap ϵm

lifts this degeneracy). For a positive value ϵm > 0, the ground
state energy depends on the QD level εd and the Coulomb
potential Ud.

minE−
i =


E−
3 for ξd ⩽−Ud/2,
E−
4 for −Ud/2< ξd ⩽ 0,
E−
2 for 0< ξd ⩽ Ud/2,
E−
1 for Ud/2< ξd.

(12)

To characterize the excitation spectrum of our hybrid system,
it is convenient to introduce the abbreviations.

Ep =
√
(ξd−Ud/2)

2
+ 4t2m (13)

Eq =
√
(ξd+Ud/2)

2
+ 4t2m (14)

and define the coefficients

u2p =
1
2

[
1+

ξd−Ud/2
Ep

]
= 1− v2p, (15)

u2q =
1
2

[
1+

ξd+Ud/2
Ep

]
= 1− v2q. (16)

3
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For ϵm = 0 the eigenvectors (4)–(7) simplify to

|Ψ−
1 ⟩= up|0,0⟩+ vp| ↓,1⟩, (17)

|Ψ+
1 ⟩= vp|0,0⟩− up| ↓,1⟩, (18)

|Ψ−
2 ⟩= vp| ↓,0⟩+ up|0,1⟩, (19)

|Ψ+
2 ⟩= up| ↓,0⟩− vp|0,1⟩, (20)

|Ψ−
3 ⟩= vq| ↑↓,0⟩+ uq| ↑,1⟩, (21)

|Ψ+
3 ⟩= uq| ↑↓,0⟩− vq| ↑,1⟩, (22)

|Ψ−
4 ⟩= uq| ↑,0⟩+ vq| ↑↓,1⟩, (23)

|Ψ+
4 ⟩= vq| ↑,0⟩− uq| ↑↓,1⟩. (24)

Explicit expressions for ϵm ̸= 0 are discussed in section 4.
From the set of eigenvectors (17)–(24) and eigenener-

gies (8)–(11), we can construct arbitrary Green’s functions,
using the spectral Lehmann representation. We assume our
setup to be in thermal equilibrium with an external bath, for
instance, the substrate on which the topological nanowire is
deposited and/or the conducting STM tip.

3.1. Spectrum of spin-↓ electrons

The Fourier transform of the single-particle propagator of
spin-↓ electrons is given by

⟨⟨d̂↓; d̂†↓⟩⟩ω =
1
Z

∑
m,n,s,̄s

|⟨Ψs̄
m|d̂↓|Ψs

n⟩|2
e−βEsn + e−βEs̄m

ω+Esn−Es̄m
, (25)

where Z=
∑

n,s exp(−βEsn) denotes the partition function
and β = (kBT)−1 is the inverse temperature. Indices m,n=
1,2,3,4 and s, s̄=± denote particular states introduced in
equations (17)–(24) as well as their corresponding energies
Es/̄sm/n given by equations (8)–(11). Transitions ⟨Ψs̄

m|d̂↓|Ψs
n⟩

are allowed only between the different parity states Ψs
1 ↔Ψs̄

2
and Ψs

3 ↔Ψs̄
4. Contribution to the zero-energy mode is given

by transitions between degenerate states. Such degeneration
occurs between particular states with the same indices (s= s̄)
as E±

1 = E±
2 and E±

3 = E±
4 . Matrix elements of such trans-

itions are given by |⟨Ψ+
1 |d̂↓|Ψ

+
2 ⟩|2 = |⟨Ψ−

1 |d↓|Ψ
−
2 ⟩|2 = u2pv

2
p

and |⟨Ψ−
3 |d↓|Ψ

+
4 ⟩|2 = |⟨Ψ+

3 |d̂↓|Ψ
−
4 ⟩|2 = u2qv

2
q. Therefore, the

zero-energy pole contribution to the Green’s function can be
written as

1
Z

∑
m,n

∑
s

|⟨Ψs
n|d̂↓|Ψs

m⟩|2
e−βEsn + e−βEsm

ω+Esn−Esm
=

A1

ω+ i0+
(26)

with the spectral weight

A1 =
4
Z

∑
s=±

[
u2pv

2
p

(
e−βEs1

)
+ u2qv

2
q

(
e−βEs3

)]
. (27)

On the other hand, transitions between the states Ψs
1 ↔

Ψs̄
2 and Ψs

3 ↔Ψs̄
4 with different sign index s ̸= s̄ contrib-

ute to the finite-energy poles at ±Ep and ±Eq, respectively.
For Ψs

1 ↔Ψs̄
2 matrix elements are given by |⟨Ψ+

1 |d↓|Ψ
−
2 ⟩|2 =

|⟨Ψ+
2 |d↓|Ψ

−
1 ⟩|2 = v4p and |⟨Ψ−

1 |d↓|Ψ
+
2 ⟩|2 = |⟨Ψ−

2 |d↓|Ψ
+
1 ⟩|2 =

u4p. The contribution to the Green’s function from the first two
transitions takes the form:

1
Z

∑
n,m=1,2

|⟨Ψ+
n |d̂↓|Ψ−

m ⟩|2
e−βE+

n + e−βE−
m

ω+E+
n −E−

m

= 2
v4p
Z
e−βE+

1 + e−βE−
1

ω+Ep
=

2
Z

∑
s=±

v4p
e−βEs1

ω+Ep
. (28)

Similarly, for the latter two we have

1
Z

∑
n,m=1,2

|⟨Ψ−
n |d̂↓|Ψ+

m ⟩|2
e−βE−

n + e−βE+
m

ω+E+
n −E−

m

=
2
Z

∑
s=±

u4p
e−βEs1

ω−Ep
. (29)

The total contribution to the trivial states from all trans-
itions between Ψs

1 ↔Ψs̄
2 can thus be written as

1
Z

1,2∑
m,n

∑
s=±

|⟨Ψs
n|d̂↓|Ψ−s

m ⟩|2 e
−βEn + e−βEm

ω+En−Em

=
A2

ω+Ep+ i0+
+

A3

ω−Ep+ i0+
, (30)

with amplitudes

A2 =
2
Z

∑
s=±

u4pe
−βEs1 (31)

A3 =
2
Z

∑
s=±

v4pe
−βEs1 . (32)

Analogous calculations for m and n= 3,4 give

3,4∑
m,n

∑
s=±

|⟨Ψs
n|d̂↓|Ψ−s

m ⟩|2 e
−βEn + e−βEm

ω+En−Em

=
A4

ω+Eq+ i0+
+

A5

ω−Eq+ i0+
(33)

with amplitudes

A4 =
2
Z

∑
s=±

u4qe
−βEs3 , (34)

A5 =
2
Z

∑
s=±

v4qe
−βEs3 . (35)

The density of states ρ↓(ω) =− 1
π Im⟨⟨d̂↓; d̂†↓⟩⟩ω+i0+ of

spin-↓ electrons consists of five branches

ρ↓ (ω) = A1δ (ω)+A2δ (ω−Ep)+A3δ (ω+Ep)

+A4δ (ω−Eq)+A5δ (ω+Eq) , (36)

where A1 represents the spectral weight of the Majorana mode
transmitted onto the correlated quantum dot, and the amp-
litudes A2−5 refer to the trivial (finite-energy) quasiparticles.
The coefficients Ai represent the spectral weights of the given

4
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Figure 3. Five quasiparticle branches of the spin-resolved spectrum
ρd↓(ω) vary with respect to ξd = εd+Ud/2. Dashed lines show the
quasiparticle energies, and their spectral weights, Ai, are displayed
according to the r.h.s. bar scale. White faded lines indicate the
topological gap separating ordinary states from the induced zero
mode.

quasiparticles. In other words, these dimensionless numbers
(Ai) can be regarded as probabilities for the existence of the
quasiparticles at the energies ωi. The total spectral weight sat-
isfies the sum rule

∑5
i=1Ai = 1.

Figure 3 shows the typical spectrum of ↓-spin electrons.
The black dashed line indicates the zero-energy quasiparticle,
originating from the Majorana mode leakage. Red/green
dashed lines correspond to the quasiparticle energies±Ep and
blue/magenta indicate the quasiparticle energies±Eq, respect-
ively. To understand their physical meaning, let us recall that
an isolated QD (tm = 0) has two quasiparticle energies: at ω =
εd (i.e. ξd =−Ud

2 ) with spectral weight 1− ndσ and another
Coulomb satellite at ω = εd+Ud (i.e. ξd =

Ud
2 ) with spectral

weight ndσ. For tm ̸= 0, these quasiparticle branches evolve
into the trivial modes ±Ep and ±Eq of our setup, which are
gapped due to the intersite pairing (for details see section 3.4).
In figure 3, we clearly notice avoided-crossing behavior of
the trivial (finite-energy) quasiparticle branches, repelled at
some distance from the topological (zero-energy)mode, which
is due to the protection of the Majorana state. At the crit-
ical points, ξd =±Ud

2 , the trivial states are separated from the
zero-energy mode by a gap of 2tm. Furthermore, the spectral
weight A1 of the zero-energy mode, ω= 0, is enhanced around
ω = ξd− Ud

2 and ω = ξd+
Ud
2 .

To specify the optimal spectral weight of the Majorana
mode, we present in figures 4 and 5 the variation of all amp-
litudes Ai against ξd. These plots demonstrate that, for the
weak coupling tm, practically only two trivial quasiparticles
coexist with the zero-energy mode. In other words, the spec-
trum of ↓-spin electrons exhibits three dominant (out of five)
quasiparticle branches. As regards the zero-energy mode, its
optimal spectral weight coincides with ξd =−Ud

2 and ξd =
Ud
2 .

Figure 4 shows the influence of the coupling tm on the
energy region in which theMajorana spectral weight is notice-
able. For infinitesimal coupling tm, the Majorana mode exists
only very close to the quasiparticle energies ξd± Ud

2 . Upon

Figure 4. Variation of the spectral weights A1−5 against the QD
energy level obtained for the weak coupling tm/Ud = 0.025 (top
panel), intermediate hybridization tm/Ud = 0.25 (middle panel),
and in the strong coupling limit tm/Ud = 1.5 (bottom panel).

increasing tm, theMajoranamode extends onto amuch broader
region around those energies. In the case of very strong dot-
Majorana coupling (tm > Ud), the quantum dot can be con-
sidered as an additional atom embedded in the topological
chain. For such a “molecular” case, leakage of MZM is effi-
cient over a wide range of ξd (c.f. bottom panel of figure 4).
Let us remark that the optimal value, max{A1}= 0.5, coin-
cides with the minima of |Eq,p|.

Similar behavior is observed when inspecting the influ-
ence of the Coulomb potential Ud, figure 5. In partic-
ular, at half-filling (ξd = 0), the spectral weight of the
Majorana mode approaches its optimal value only for vanish-
ing Coulomb repulsion Ud → 0. For stronger Coulomb poten-
tial, the optimal spectral weight of the Majorana mode shifts
from half-filling (as can be observed in the density of states,
figure 3). We have checked that forUd = 4tm, the quasiparticle
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Figure 5. Variation of the spectral weights Ai with respect to the
quantum dot energy level ξd = εd+Ud/2 obtained for several
values of the Coulomb potential Ud, as indicated.

spectral weights at half-filling acquire the following values:
A1 = 0.25, A2 = A5 ≃ 0.01, A3 = A4 ≃ 0.0365. At half-filling,
the effectiveness of MZM leakage diminishes with increas-
ing correlation strength Ud. The maximal value of the spectral
weight of A1 (reaching 0.5) is preserved upon strong correla-
tions when ξd =±Ud

2 .

3.2. Spectrum of spin−↑ electrons

The excitation spectrum of ↑−electrons reveals qualitatively
different behavior, even though the interaction term, Udn̂↑n̂↓,
mixes both spin sectors. The single-particle Green’s func-
tion ⟨⟨d̂↑; d̂†↑⟩⟩ω can be expressed in a form analogous to
equation (25). The only nonvanishingmatrix elements are con-
tributed by ⟨Ψs

2|d̂↑|Ψs′
3 ⟩ and ⟨Ψs

1|d̂↑|Ψs′
4 ⟩. We note that for

ϵm = 0 the pairs of quasiparticles appearing in these elements

are not degenerate. For this reason, we observe four branches
of the trivial quasiparticles (instead of two typical for the isol-
ated QD). The spectrum of ↑ electrons does not show the pres-
ence of the Majorana mode, which should be pinned to zero
energy. Degenerate pairs of the eigenstates Ψ±

1 , Ψ
±
2 , and Ψ

±
3 ,

Ψ±
4 (in the case ϵm = 0) imply that components of the Green

function obtained from the matrix elements ⟨Ψs
2|d̂↑|Ψs′

3 ⟩ are
identical to those originating from ⟨Ψs

1|d̂↑|Ψs′
4 ⟩. Accordingly,

we obtain the following four-pole structure of the Green’s
function:

⟨⟨d̂↑; d̂†↑⟩⟩ω =
B1

ω− ξd+
1
2 (Ep+Eq)

+
B2

ω− ξd− 1
2 (Ep+Eq)

+
B3

ω− ξd+
1
2 (Ep−Eq)

+
B4

ω− ξd− 1
2 (Ep−Eq)

, (37)

with the amplitudes

B1 =
2
Z
(vpuq− upvq)

2
(
e−βE+

1 + e−βE−
3

)
, (38)

B2 =
2
Z
(upvq− vpuq)

2
(
e−βE−

1 + e−βE+
3

)
, (39)

B3 =
2
Z
(upuq+ vpvq)

2
(
e−βE+

1 + e−βE+
3

)
, (40)

B4 =
2
Z
(upuq+ vpvq)

2
(
e−βE−

1 + e−βE−
3

)
. (41)

In the energy region εd ∈ (−Ud,0), two amplitudes B3 and B4

are negligibly small, so the dominant contribution comes from
B1 and B2. Outside of this regime, the prevailing contributions
are from B3 and B4.

Figure 6 displays the spectrum of ↑−spin electrons
obtained for the same set of parameters as in figure 3. We
clearly notice the absence of the Majorana mode. Although
↑ electrons are not directly coupled to the MZM in the
considered model, MZM leakage to ↓ electrons affects the
opposite spin spectrum through electron correlations (Ud).
Comparing the obtained results to the case where the MZM
is completely absent (tm = 0), we observe that instead of
two ordinary states located at ω = ξd± Ud

2 , we obtain four
branches. The most pronounced branch, represented by the
blue dashed line in figure 6 (corresponding to transitions
between the statesΨ−

1 ↔Ψ−
3 andΨ−

2 ↔Ψ−
4 ), reproduces the

state located at ω = ξd− Ud
2 for fillings way above 0.5 (i.e.

ξd ≪ 0) and the state at ω = ξd+
Ud
2 in the opposite case. Near

half-filling, this state crosses the zero-energy level. The branch
represented by the orange line behaves in the opposite manner,
crossing zero energy under the same conditions, but with an
inverse dependence on the filling. Two quasiparticle branches
crossing at zero energy for half-filling, ξd = 0, have nothing
to do with the topological mode. The influence of the topo-
logical superconductor is merely responsible for doubling the

6
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Figure 6. Variation of the quasiparticle spectrum ρd↑(ω) with
respect to ξd = εd+Ud/2 obtained for tm = 0.2Ud. The dashed
lines mark the positions of four poles, and their spectral weights are
displayed by color-width, whose scale is indicated by the r.h.s. bar.
Black faded lines mark the position of two poles ω = ξd± Ud

2 ,
which remain in the case tm = 0.

initial branches ξd±Ud/2 and for interconnecting two of them
(internal ones).

3.3. Magnetization

Qualitative differences of the opposite spin spectra are indir-
ectly manifested by the on-dot magnetization

m=
1
2
(⟨n↓⟩− ⟨n↑⟩) . (42)

emerging outside the half-filling (see figure 7). To explain the
sign change of QDmagnetization, let us inspect equations (4)–
(7), noting that Ψ1 and Ψ2 represent superpositions of the
empty and singly occupied spin−↓ configurations. Therefore,
if for particular model parameters state Ψ1 or Ψ2 is the
ground state, the dot magnetization would be oriented along
the ↓−direction. In contrast, the statesΨ3 andΨ4 are superpos-
itions of the nonmagnetic | ↑↓⟩ state and the singly occupied
spin−↑ configuration. The ground state represented by Ψ3

andΨ4 would then have magnetization along the ↑−direction.
Figure 2 shows that for ξd < 0, the ground state of QD is rep-
resented byΨ3 orΨ4. This fact explains the sign change of the
magnetization at half-filling, ξd = 0, in agreement with previ-
ous studies reported in [10, 11, 36].

As shown in the appendix (figure 13), the Zeeman field
modifies the eigenenergies in such a way that, when aligned
with the spin-down state, the crossing point between ener-
gies E12 and E34 shifts toward lower values of ξd (energies
become equal at smaller ξd compared to the case without the
field). This shift affects the polarization transition point of the
magnetization. Specifically, for weak Zeeman fields (particu-
larly when aligned with the spin-down orientation), the sys-
tem favors spin-down polarization over a broader range of
energies. Consequently, the magnetization turning point also
occurs at lower energy levels ξd, as illustrated in figure 8. As

Figure 7. Magnetization of QD as function of ξd = εd+
Ud
2 and the

hybridization stregth tm.

Figure 8. Magnetization of QD as function of ξd = εd+
Ud
2 in

presence of Zeeman field h obtained for tm = 0.25Ud.

the Zeeman field strength increases and surpasses a critical
value (for tm = 0.25Ud, this occurs at approximately h>
0.25Ud), the quantum dot’s magnetization becomes polarized
in a single direction over a wide range of energy levels ϵd.
The results indicate that, in the presence of a strong Zeeman
field, the only region where the quantum dot exhibits signi-
ficant magnetization is when the magnetization is fully polar-
ized in one direction. The transition point between opposite
polarizations occurs at an energy where, beyond this point, the
magnetization becomes very small. Therefore, in the region
where the magnetization is substantial, it is aligned in a single
direction. At this point, the system enters a regime where the
external magnetic field dominates over the Majorana leakage
influence, enforcing a rigid spin alignment.

3.4. Signatures of intersite pairing

The usual method for probing the QD quasiparticle spec-
trum relies on charge tunneling induced upon applying voltage
between our setup and an external conducting tip. This sort of
measurement has been reported by Deng et al [37], revealing
enhancement of the zero-bias conductance.

Another method, proposed in [38], is based on equal
spin Andreev scattering to detect efficiency of converting a
given spin electron into a hole of the same polarization. The
energy-dependent transmittance via such transport channel is

given by Tσ(ω) = Γ2
N

(∣∣∣⟨⟨d̂σ; f̂⟩⟩ω∣∣∣2 + ∣∣∣⟨⟨ f̂; d̂σ⟩⟩ω∣∣∣2), where
7
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ΓN denotes the coupling of QD to the polarized conducting
electrode. In the simplest approach, the influence of such an
external reservoir would be responsible for a level-broadening.
Under such conditions, we can express

⟨⟨d̂↓; f̂⟩⟩ω =
1
Z

∑
m,n,s,s ′

⟨Ψs
n|d̂↓|Ψs′

m⟩⟨Ψs′
m | f̂ |Ψs

n⟩

× e−βEsm + e−βEsn

(ω+ iΓN)+Esn−Esm
(43)

which accounts for the inter-site pairing of ↓−spin electrons.
This Green’s function (43) has the same poles as the
single-particle propagator (25), but with different spectral
weights. The matrix elements involving the states Ψ1 and Ψ2

that contribute to the zero-energy poles are given by

⟨Ψ−
1 |d̂↓|Ψ

−
2 ⟩⟨Ψ

−
2 | f̂ |Ψ

−
1 ⟩= upv

3
p (44)

⟨Ψ+
1 |d̂↓|Ψ

+
2 ⟩⟨Ψ

+
2 | f̂ |Ψ

+
1 ⟩=−u3pvp (45)

⟨Ψ−
2 |d̂↓|Ψ

−
1 ⟩⟨Ψ

−
1 | f̂ |Ψ

−
2 ⟩= u3pvp (46)

⟨Ψ+
2 |d̂↓|Ψ

+
1 ⟩⟨Ψ

+
1 | f̂ |Ψ

+
2 ⟩=−upv3p. (47)

In a similar manner, the matrix elements involving Ψ3 and Ψ4

follow the same structure, with up and vp replaced by uq and
vq. Substituting the explicit form of vp(q) and up(q), the sum
of given matrix elements simplifies to u3p(q)vp(q) + up(q)v3p(q) =
tm

Ep(q)
. This leads to the following expression describing the

amplitude of the zero-energy pole of the discussed Green’s
function

1
Z

[
2tm
Ep

(
e−βE−

1 − e−βE+
1

)
+

2tm
Eq

(
e−βE−

3 − e−βE+
3

)]
. (48)

The finite-energy poles of ⟨⟨d̂σ; f̂⟩⟩ω are given by

±1
Z
2tm
Ep

(
e−βE−

1 + e−βE+
1

) 1
ω+ iΓN±Ep

, (49)

±1
Z
2tm
Eq

(
e−βE−

3 + e−βE+
3

) 1
ω+ iΓN±Eq

. (50)

A typical plot of the spin−↓ selective Andreev transmit-
tance is presented in figure 9 for several ratios tm/Ud. These
plots provide clear indication that zero-bias conductance of
SESAR is able to probe the spectral weight of the Majorana
mode as it varies against ξd. Again, we notice that the Coulomb
repulsion shifts the optimal weight of such

4. Results for ϵm ̸= 0

The local solution allows us to identify the origin of the quasi-
particle spectrum of QD, assigning its specific features to the
topological or trivial components. Such identification becomes
a bit more complicated when ϵm ̸= 0. In such a situation, the
eigenstates of our setup Ψs

i are nondegenerate, with the cor-
responding energies (8)–(11). In analogy to the quasiparticle
energies (13) and (14), it is convenient to define

E±
p =

√
(εd± ϵm)

2
+ 4t2m (51)

Figure 9. Transmittance of the selective equal spin Andreev
reflection (SESAR) obtained for tm/Ud = 0.25 (top panel), 0.5
(middle panel), and 1 (bottom panel), assuming temperature
kbT= 0.01Ud and coupling ΓN = 0.01Ud.

E±
q =

√
(εd± ϵm+Ud)

2
+ 4t2m. (52)

which helps us to express the coefficients usi appearing in the
eigenstates |Ψs

i ⟩ by

(
u±1

)2
=

1
2

(
1± εd+ ϵm

E+
p

)
, (53)

(
u±2

)2
=

1
2

(
1± εd− ϵm

E−
p

)
, (54)

8
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(
u±3

)2
=

1
2

(
1± ϵm− εd+Ud

E−
q

)
, (55)

(
u±4

)2
=

1
2

(
1± εd+ ϵm+Ud

E+
q

)
, (56)

and (vsi )
2 = 1− (usi )

2.
After algebraic calculations we obtain the following spec-

tral function for arbitrary ϵm

ρ↓ (ω) = A−/−
12 δ

[
ω+

1
2

(
E−
p −E+

p

)]
+A−/+

12 δ

[
ω− 1

2

(
E−
p +E+

p

)]
+A+/−

12 δ

[
ω+

1
2

(
E−
p +E+

p

)]
+A+/+

12 δ

[
ω− 1

2

(
E−
p −E+

p

)]
+A−/−

34 δ

[
ω− 1

2

(
E−
q −E+

q

)]
+A−/+

34 δ

[
ω− 1

2

(
E−
q +E+

q

)]
+A+/−

34 δ

[
ω+

1
2

(
E−
q +E+

q

)]
+A+/+

34 δ

[
ω+

1
2

(
E−
q −E+

q

)]
(57)

with the amplitudesAs/s
′

12 related to transitionsΨs
1 ↔Ψs′

2 given
by

A−/−
12 =

1
Z

(
u−1 u

−
2

)2(
e−βE−

1 + e−βE−
2

)
+

1
Z

(
v+1 v

+
2

)2(
e−βE+

1 + e−βE+
2

)
,

A−/+
12 =

1
Z

(
u−1 u

+
2

)2(
e−βE−

1 + e−βE+
2

)
+

1
Z

(
v−1 v

+
2

)2(
e−βE−

1 + e−βE+
2

)
,

A+/−
12 =

1
Z

(
u+1 u

−
2

)2(
e−βE+

1 + e−βE−
2

)
+

1
Z

(
v+1 v

−
2

)2(
e−βE+

1 + e−βE−
2

)
,

A+/+
12 =

1
Z

(
u+1 u

+
2

)2(
e−βE+

1 + e−βE+
2

)
+

1
Z

(
v−1 v

−
2

)2(
e−βE−

1 + e−βE−
2

)
(58)

and amplitudes As/s
′

34 of transitions Ψs
3 ↔Ψs′

4 given by

A−/−
34 =

1
Z

(
u−3 u

−
4

)2(
e−βE−

3 + e−βE−
4

)
+

1
Z

(
v+3 v

+
4

)2(
e−βE+

3 + e−βE+
4

)
,

A−/+
34 =

1
Z

(
u−3 u

+
4

)2(
e−βE−

3 + e−βE+
4

)

Figure 10. Variation of the transition probabilities As/s
′

i j betweenΨs
i

and Ψs′
j states plotted against ξd = εd+Ud/2. Results are obtained

for tm/Ud = 0.3, assuming a finite overlap between the edge states
ϵm = 0.3Ud.

+
1
Z

(
v−3 v

+
4

)2(
e−βE−

3 + e−βE+
4

)
,

A+/−
34 =

1
Z

(
u+3 u

−
4

)2(
e−βE+

3 + e−βE−
4

)
+

1
Z

(
v+3 v

−
4

)2(
e−βE+

3 + e−βE−
4

)
,

A+/+
34 =

1
Z

(
u+3 u

+
4

)2(
e−βE+

3 + e−βE+
4

)
+

1
Z

(
v−3 v

−
4

)2(
e−βE−

3 + e−βE−
4

)
. (59)

For ϵm ̸= 0 we obtain nondegenerate eigenfunctions, char-
acterized by 8 quasiparticle excitation energies. The trans-
itions from each |Ψi⟩ to |Ψj⟩ are always accompanied by the
corresponding transitions from |Ψj⟩ to |Ψi⟩ (with interchanged
upper indexes), contributing to the quasiparticle energy. For
instance, the transition |Ψ−

1 ⟩ → |Ψ−
2 ⟩ contributes to the same

pole as |Ψ+
2 ⟩ → |Ψ+

1 ⟩. Although in general ρ↓(ω) is character-
ized by 8 quasiparticle energies, in practice all of them are vis-
ible only in close vicinity of the half-filling, ξd ≃ 0. Outside of
this region, some amplitudes become negligible and the spec-
trum of ↓-spin electrons is represented by four quasiparticles
(figures 10 and 11). Far away from the half-filling, |ξd| ≫ Ud,
one pair disappears as well, and the spectrum simplifies to the
standard single quasiparticle.

In figure 11 we plot the density of states ρ↓(ω) for nonvan-
ishing ϵm, which resembles the bowtie shapes obtained earlier
[8] from the mean-field approximation. Under specific condi-
tions, ξd =±Ud

2 , we observe a crossing of the Majorana fea-
tures, which otherwise are split into bonding/antibonding ener-
gies. At half-filling, the quasiparticle energies related to trans-
itions |Ψs

1⟩ ↔ |Ψs′
2 ⟩ are identical to the quasiparticle energies

for transitions |Ψs
3⟩ ↔ |Ψs′

4 ⟩, i.e. Esp = Esq. Consequently, the
trivial and topological features are represented by four peaks
at 1

2 (±E
−
p ±E+

p ) and
1
2 (±E

−
q ±E+

q ).
Nonvanishing ϵm also modifies the spectrum of electrons

that are not directly coupled to MZM. Figure 12 shows that
when a nonzero ϵm is introduced, the spectrum of ↑ electrons
generally exhibits an 8-peak structure (marked by different

9
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Figure 11. Variation of the quasiparticle spectrum ρd↓(ω) with
respect to ξd = εd+Ud/2 obtained for tm = 0.25Ud and
ϵm = 0.3Ud. The position of poles related to transitions between Ψ1

and Ψ2 states is marked with dashed lines, whereas transitions
between Ψ3 and Ψ4 are marked with solid ones.

Figure 12. Variation of the quasiparticle spectrum ρd↑(ω) with
respect to ξd = εd+Ud/2 obtained for tm = 0.25Ud and
ϵm = 0.3Ug. Position of poles related to transitions between Ψ2 and
Ψ3 states are marked with dashed lines whereas transitions between
Ψ1 and Ψ4 are marked with solid faded ones.

color lines). However, four of these peaks have small amp-
litude across the entire energy range, while 2 additional peaks
display significant amplitude only near half-filling. As a result,
close to half-filling, we observe 4 well-pronounced peaks,
whereas far from half-filling, only 2 peaks remain.

5. Summary and outlook

We have studied the spectrum of the single quantum dot
coupled to the boundary modes of the topological supercon-
ductor. From the exact solution of this setup, we inferred
the energies and spectral weights of the leaking Majorana
mode(s) coexisting with the conventional (nontopological)
quasiparticles.

For the non-correlated case, the trivial quasiparticles

exist at energies ±
√
ε2d+ 4t2m. In this scenario, the optimal

amplitude of the zero-energy mode occurs for εd = 0. Under
such circumstances, the Majorana mode acquires half of the
total spectral weight, and the trivial quasiparticles equally
share the remaining amount. The spectral function of QD in
this case is represented by a three-peak structure ρ↓(ω) =
0.5δ(ω)+ 0.25δ(ω− 2tm)+ 0.25δ(ω+ 2tm). Away from half-
filling, one of the trivial quasiparticles gradually absorbs more
and more spectral weight, at the expense of both the other con-
ventional quasiparticle and the zero-energy mode.

In the presence of the Coulomb repulsion, a leakage of the
zero-energy mode is most efficient when the zero mode coin-
cides either with the energy level εd = 0 or with the Coulomb
satellite εd+Ud = 0 (i.e. ξd =±Ud

2 ). One should note that,
at such points, the trivial quasiparticles are formed at ±2tm,
provided that the Majorana modes do not overlap with one
another. Away from these points, the spectrum of ↓-spin elec-
trons consists of four trivial quasiparticles coexisting with the
zero-energy mode (figure 3). We have demonstrated that they
could be experimentally detected by spin-polarized Andreev
spectroscopy, figure 9. The spin-↑ sector also consists of four
quasiparticle branches, but all of them refer to the nontopolo-
gical states.

We also investigated the quantum dot spectrum for the case
of a short topological superconductor, where the Majorana
modes overlap with one another. In such a situation, the
boundary modes transmitted onto the correlated quantum dot
form two sets of bonding/antibonding states separated from
the remaining four trivial quasiparticle branches, figure 11.
Again, the optimal spectral weight of the topological quasi-
particles coincides with ξd =±Ud

2 . Near these special points,
the Majorana modes cross each other, forming a bowtie shape.

Our analytical study extends the previous results [7]
obtained within the Hubbard-I approximation. The expres-
sions obtained here could be a useful starting point for fur-
ther considerations of the many-body effects arising from
the coupling of QD-MBS to mobile electrons of the external
lead(s). They would also be helpful for investigating far-
from-equilibrium effects, which can be induced by imposing
quantum quench and/or periodic driving.
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Figure 13. Dependence of the eigenenergies E−
i on the energy level

εd of QD in Zeeman field h= 0.5Ud obtained for weak overlap
ϵm = 0.1Ud.

Figure 14. Variation of the quasiparticle spectrum ρd↓(ω) with
respect to ξd = εd+Ud/2 obtained for the same set of parameters as
in figure 11 and Zeeman field h= 0.5Ud. The position of poles
related to transitions between Ψ1 and Ψ2 states is marked with
dashed lines, whereas transitions between Ψ3 and Ψ4 are marked
with faded solid ones.

Appendix: Influence of Zeeman field

In the presence of the external magnetic field, h, the
Hamiltonian of QD takes the form

ĤQD = (εd+ h) d̂†↑d̂↑ +(εd− h) d̂†↓d̂↓ +Udn̂↑n̂↓, (A.1)

where ϵ↓ = ϵd− h, ϵ↑ = ϵd+ h yield the eigenvalues (11)

E±
1 =

1
2

[
ϵ↓ ±

√
(ϵ↓ + ϵm)

2
+ 4t2m

]
(A.2)

E±
2 =

1
2

[
ϵ↓ ±

√
(ϵ↓ − ϵm)

2
+ 4t2m

]
(A.3)

E±
3 =

1
2

[
ϵ↓+2ϵ↑+Ud±

√
(ϵ↓−ϵm+Ud)

2
+4t2m

]
(A.4)

E±
4 =

1
2

[
ϵ↓+2ϵ↑+Ud±

√
(ϵ↓+ϵm+Ud)

2
+4t2m

]
. (A.5)

Coefficients usi and vsi remain the same upon substituting
ϵd by ϵ↓.

A magnetic field parallel to ↓ spin causes lowering of ener-
gies E1 and E2. Conversely, E3,4 have higher energies. This
shifts the transition point from the half-filling condition. The
Zeeman field shifts all quasiparticle peaks in both spin sectors,
which can be seen in figure 14. Additionally, we notice that the
magnetic field reduces the amplitudes of transitions between
Ψ3,4.
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