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Explicit Adams Methods

We now derive, following Adams, the first explicit multistep formulas. We in-
troduce the notation xi = x0 + ih for the grid points and suppose we know the
numerical approximations yn, yn−1, . . . , yn−k+1 to the exact solution y(xn), . . . ,
y(xn−k+1) of the differential equation

y′ = f(x, y), y(x0) = y0. (1.1)

Adams considers (1.1) in integrated form,

y(xn+1) = y(xn) +
∫ xn+1

xn

f
(
t, y(t)

)
dt. (1.2)

On the right hand side of (1.2) there appears the unknown solution y(x) . But since
the approximations yn−k+1, . . . , yn are known, the values

fi = f(xi, yi) for i = n− k + 1, . . . , n (1.3)

are also available and it is natural to replace the function f(t, y(t)) in (1.2) by the
interpolation polynomial through the points {(xi, fi) | i = n−k+1, . . . , n} (see
Fig. 1.1).
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This polynomial can be expressed in terms of backward differences

∇0fn = fn, ∇j+1fn = ∇jfn −∇jfn−1

as follows:

p(t) = p(xn + sh) =
k−1∑
j=0

(−1)j

(−s

j

)
∇jfn (1.4)

(Newton’s interpolation formula of 1676, published in Newton (1711), see e.g.
Henrici (1962), p. 190). The numerical analogue to (1.2) is then given by

yn+1 = yn +
∫ xn+1

xn

p(t) dt

or after insertion of (1.4) by

yn+1 = yn +h
k−1∑
j=0

γj∇jfn (1.5)
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where the coefficients γj satisfy

γj = (−1)j

∫ 1

0

(−s

j

)
ds (1.6)

(see Table 1.1 for their numerical values). A simple recurrence relation for these
coefficients will be derived below (formula (1.7)).

Table 1.1. Coefficients for the explicit Adams methods

j 0 1 2 3 4 5 6 7 8

γj 1
1
2

5
12

3
8

251
720

95
288

19087
60480

5257
17280

1070017
3628800

Special cases of (1.5). For k = 1, 2, 3, 4 , after expressing the backward differences
in terms of fn−j , one obtains the formulas

k = 1 : yn+1 = yn +hfn (explicit Euler method)

k = 2 : yn+1 = yn +h
(3

2
fn − 1

2
fn−1

)
k = 3 : yn+1 = yn +h

(23
12

fn − 16
12

fn−1 +
5
12

fn−2

)
k = 4 : yn+1 = yn +h

(55
24

fn − 59
24

fn−1 +
37
24

fn−2 −
9
24

fn−3

)
.

(1.5’)

Recurrence relation for the coefficients. Using Euler’s method of generating
functions we can deduce a simple recurrence relation for γi (see e.g. Henrici 1962).
Denote by G(t) the series

G(t) =
∞∑

j=0

γjt
j .

With the definition of γj and the binomial theorem one obtains

G(t) =
∞∑

j=0

(−t)j

∫ 1

0

(−s

j

)
ds =

∫ 1

0

∞∑
j=0

(−t)j

(−s

j

)
ds

=
∫ 1

0

(1− t)−s ds = − t

(1− t) log(1− t)
.

This can be written as

− log(1− t)
t

G(t) =
1

1− t
or as (

1 +
1
2
t +

1
3
t2 + . . .

)(
γ0 + γ1t + γ2t

2 + . . .
)

=
(
1 + t + t2 + . . .

)
.
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Comparing the coefficients of tm we get the desired recurrence relation

γm +
1
2
γm−1 +

1
3
γm−2 + . . .+

1
m+ 1

γ0 = 1. (1.7)

Implicit Adams Methods

The formulas (1.5) are obtained by integrating the interpolation polynomial (1.4)
from xn to xn+1 , i.e., outside the interpolation interval (xn−k+1, xn) . It is well
known that an interpolation polynomial is usually a rather poor approximation
outside this interval. Adams therefore also investigated methods where (1.4)
is replaced by the interpolation polynomial which uses in addition the point
(xn+1, fn+1) , i.e.,

p∗(t) = p∗(xn + sh) =
k∑

j=0

(−1)j

(−s + 1
j

)
∇jfn+1 (1.8)

(see Fig. 1.2). Inserting this into (1.2) we obtain the following implicit method

yn+1 = yn +h
k∑

j=0

γ∗
j∇jfn+1 (1.9)

where the coefficients γ∗
j satisfy

γ∗
j = (−1)j

∫ 1

0

(−s + 1
j

)
ds (1.10)

and are given in Table 1.2 for j ≤ 8 . Again, a simple recurrence relation can be
derived for these coefficients (Exercise 3).

Table 1.2. Coefficients for the implicit Adams methods

j 0 1 2 3 4 5 6 7 8

γ∗
j 1 −1

2
− 1

12
− 1

24
− 19

720
− 3

160
− 863

60480
− 275

24192
− 33953

3628800

The formulas thus obtained are generally of the form

yn+1 = yn +h
(
βkfn+1 + . . .+β0fn−k+1

)
. (1.9’)
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The first examples are as follows

k = 0 : yn+1 = yn +hfn+1 = yn +hf(xn+1, yn+1)

k = 1 : yn+1 = yn +h
(1

2
fn+1 +

1
2
fn

)
k = 2 : yn+1 = yn +h

( 5
12

fn+1 +
8
12

fn − 1
12

fn−1

)
k = 3 : yn+1 = yn +h

( 9
24

fn+1 +
19
24

fn − 5
24

fn−1 +
1
24

fn−2

)
.

(1.9”)

The special cases k =0 and k =1 are the implicit Euler method and the trapezoidal
rule, respectively. They are actually one-step methods and have already been con-
sidered in Chapter II.7.

The methods (1.9) give in general more accurate approximations to the exact
solution than (1.5). This will be discussed in detail when the concepts of order
and error constant are introduced (Section III.2). The price for this higher accuracy
is that yn+1 is only defined implicitly by formula (1.9). Therefore, in general a
nonlinear equation has to be solved at each step.

Predictor-corrector methods. One possibility for solving this nonlinear equation
is to apply fixed point iteration. In practice one proceeds as follows:

P: compute the predictor ŷn+1 = yn +h
∑k−1

j=0 γj∇jfn by the explicit Adams
method (1.5); this already yields a reasonable approximation to y(xn+1) ;

E: evaluate the function at this approximation: f̂n+1 = f(xn+1, ŷn+1) ;

C: apply the corrector formula

yn+1 = yn +h
(
βkf̂n+1 +βk−1fn + . . .+β0fn−k+1

)
(1.11)

to obtain yn+1 .

E: evaluate the function anew, i.e., compute fn+1 = f(xn+1, yn+1) .
This is the most common procedure, denoted by PECE. Other possibilities are:
PECECE (two fixed point iterations per step) or PEC (one uses f̂n+1 instead of
fn+1 in the subsequent steps).

This predictor-corrector technique has been used by F.R. Moulton (1926) as
well as by W.E. Milne (1926). J.C. Adams actually solved the implicit equation
(1.9) by Newton’s method, in the same way as is now usual for stiff equations (see
Volume II).

Remark. Formula (1.5) is often attributed to Adams-Bashforth. Similarly, the mul-
tistep formula (1.9) is usually attributed to Adams-Moulton (Moulton 1926). In
fact, both formulas are due to Adams.




