
II.4 Practical Error Estimation and Step Size Selection

Ich glaube indessen, dass ein practischer Rechner sich meistens
mit der geringeren Sicherheit begnügen wird, die er aus der Ue-
bereinstimmung seiner Resultate für grössere und kleinere Schritte
gewinnt. (C. Runge 1895)

Even the simplified error estimates of Section II.3, which are content with the lead-
ing error term, are of little practical interest, because they require the computation
and majorization of several partial derivatives of high orders. But the main advan-
tage of Runge-Kutta methods, compared with Taylor series, is precisely that the
computation of derivatives should be no longer necessary. However, since prac-
tical error estimates are necessary (on the one hand to ensure that the step sizes
hi are chosen sufficiently small to yield the required precision of the computed
results, and on the other hand to ensure that the step sizes are sufficiently large to
avoid unnecessary computational work), we shall now discuss alternative methods
for error estimates.

The oldest device, used by Runge in his numerical examples, is to repeat the
computations with halved step sizes and to compare the results: those digits which
haven’t changed are assumed to be correct (“ . . . woraus ich schliessen zu dürfen
glaube . . .”).

Richardson Extrapolation

. . . its usefulness for practical computations can hardly be over-
estimated. (G. Birkhoff & G.C. Rota)

The idea of Richardson, announced in his classical paper Richardson (1910) which
treats mainly partial differential equations, and explained in full detail in Richard-
son (1927), is to use more carefully the known behaviour of the error as a function
of h .

Suppose that, with a given initial value (x0, y0) and step size h , we compute
two steps, using a fixed Runge-Kutta method of order p , and obtain the numerical
results y1 and y2 . We then compute, starting from (x0, y0) , one big step with step
size 2h to obtain the solution w . The error of y1 is known to be (Theorem 3.2)

e1 = y(x0 +h)− y1 = C · hp+1 +O(hp+2) (4.1)

where C contains the error coefficients of the method and the elementary differ-
entials F J (t)(y0) of order p + 1 . The error of y2 is composed of two parts: the

II.4 Practical Error Estimation and Step Size Selection 165

transported error of the first step, which is(
I +h

∂f

∂y
+O(h2)

)
e1,

and the local error of the second step, which is the same as (4.1), but with the
elementary differentials evaluated at y1 = y0 +O(h) . Thus we obtain

e2 = y(x0 + 2h)− y2 =
(
I +O(h)

)
Chp+1 +

(
C +O(h)

)
hp+1 +O(hp+2)

= 2Chp+1 +O(hp+2). (4.2)

Similarly to (4.1), we have for the big step

y(x0 + 2h)−w = C(2h)p+1 +O(hp+2). (4.3)

Neglecting the terms O(hp+2) , formulas (4.2) and (4.3) allow us to eliminate the
unknown constant C and to “extrapolate” a better value ŷ2 for y(x0 + 2h) , for
which we obtain:

Theorem 4.1. Suppose that y2 is the numerical result of two steps with step size h
of a Runge-Kutta method of order p , and w is the result of one big step with step
size 2h . Then the error of y2 can be extrapolated as

y(x0 + 2h)− y2 =
y2 −w

2p − 1
+O(hp+2) (4.4)

and

ŷ2 = y2 +
y2 −w

2p − 1
(4.5)

is an approximation of order p + 1 to y(x0 + 2h) .

Formula (4.4) is a very simple device to estimate the error of y2 and formula
(4.5) allows one to increase the precision by one additional order (“ . . . The better
theory of the following sections is complicated, and tends thereby to suggest that
the practice may also be complicated; whereas it is really simple.” Richardson).

Embedded Runge-Kutta Formulas

Scraton is right in his criticism of Merson’s process, although
Merson did not claim as much for his process as some people
expect. (R. England 1969)

The idea is, rather than using Richardson extrapolation, to construct Runge-Kutta
formulas which themselves contain, besides the numerical approximation y1 , a
second approximation ŷ1 . The difference then yields an estimate of the local error
for the less precise result and can be used for step size control (see below). Since

166 II. Runge-Kutta and Extrapolation Methods

it is at our disposal at every step, this gives more flexibility to the code and makes
step rejections less expensive.

We consider two Runge-Kutta methods (one for y1 and one for ŷ1) such that
both use the same function values. We thus have to find a scheme of coefficients
(see (1.8’)),

0
c2 a21

c3 a32 a32

...
...

. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

b̂1 b̂2 . . . b̂s−1 b̂s

(4.6)

such that
y1 = y0 +h(b1k1 + . . .+ bsks) (4.7)

is of order p , and
ŷ1 = y0 +h(b̂1k1 + . . .+ b̂sks) (4.7’)

is of order p̂ (usually p̂ = p− 1 or p̂ = p + 1). The approximation y1 is used to
continue the integration.

From Theorem 2.13, we have to satisfy the conditions
s∑

j=1

bjΦj(t) =
1

γ(t)
for all trees of order ≤ p , (4.8)

s∑
j=1

b̂jΦj(t) =
1

γ(t)
for all trees of order ≤ p̂ . (4.8’)

The first methods of this type were proposed by Merson (1957), Ceschino (1962),
and Zonneveld (1963). Those of Merson and Zonneveld are given in Tables 4.1 and
4.2. Here, “name p(p̂)” means that the order of y1 is p and the order of the error
estimator ŷ1 is p̂ . Merson’s ŷ1 is of order 5 only for linear equations with constant
coefficients; for nonlinear problems it is of order 3 . This method works quite well
and has been used very often, especially by NAG users. Further embedded methods
were then derived by Sarafyan (1966), England (1969), and Fehlberg (1964, 1968,
1969). Let us start with the construction of some low order embedded methods.

Methods of order 3(2). It is a simple task to construct embedded formulas of order
3(2) with s = 3 stages. Just take a 3 -stage method of order 3 (Exercise II.1.4) and
put b̂3 = 0 , b̂2 = 1/2c2 , b̂1 = 1− 1/2c2 .

II.4 Practical Error Estimation and Step Size Selection 167

Table 4.1. Merson 4(“5”)

0

1
3

1
3

1
3

1
6

1
6

1
2

1
8

0
3
8

1
1
2

0 −3
2

2

y1
1
6

0 0
2
3

1
6

ŷ1
1
10

0
3
10

2
5

1
5

Table 4.2. Zonneveld 4(3)

0

1
2

1
2

1
2

0
1
2

1 0 0 1

3
4

5
32

7
32

13
32

− 1
32

y1
1
6

1
3

1
3

1
6

ŷ1 −1
2

7
3

7
3

13
6

−16
3

Methods of order 4(3). With s = 4 it is impossible to find a pair of order 4(3)
(see Exercise 2). The idea is to add y1 as 5 th stage of the process (i.e., a5i = bi

for i = 1, . . . , 4) and to search for a third order method which uses all five func-
tion values. Whenever the step is accepted this represents no extra work, because
f(x0 +h, y1) has to be computed anyway for the following step. This idea is called
FSAL (First Same As Last). Then the order conditions (4.8’) with p̂ = 3 represent
4 linear equations for the five unknowns b̂1, . . . , b̂5 . One can arbitrarily fix b̂5 �= 0
and solve the system for the remaining parameters. With b̂5 chosen such that b̂4 =0
the result is

b̂1 = 2b1 − 1/6, b̂2 = 2(1− c2)b2,

b̂3 = 2(1− c3)b3, b̂4 = 0, b̂5 = 1/6.
(4.9)

Automatic Step Size Control

D’ordinaire, on se contente de multiplier ou de diviser par 2 la
valeur du pas . . . (Ceschino 1961)

We now want to write a code which automatically adjusts the step size in order to
achieve a prescribed tolerance of the local error.

Whenever a starting step size h has been chosen, the program computes two
approximations to the solution, y1 and ŷ1 . Then an estimate of the error for the
less precise result is y1 − ŷ1 . We want this error to satisfy componentwise

|y1i − ŷ1i| ≤ sci, sci = Atoli + max(|y0i|, |y1i|) ·Rtoli (4.10)

where Atoli and Rtoli are the desired tolerances prescribed by the user (relative
errors are considered for Atoli = 0 , absolute errors for Rtoli = 0 ; usually both

168 II. Runge-Kutta and Extrapolation Methods

tolerances are different from zero; they may depend on the component of the solu-
tion). As a measure of the error we take

err =

√√√√ 1
n

n∑
i=1

(y1i − ŷ1i

sci

)2

; (4.11)

other norms, such as the max norm, are also of frequent use. Then err is compared
to 1 in order to find an optimal step size. From the error behaviour err ≈ C · hq+1

and from 1 ≈ C · hq+1
opt (where q = min(p, p̂)) the optimal step size is obtained as

(“ . . . le procédé connu”, Ceschino 1961)

hopt = h · (1/err)1/(q+1). (4.12)

Some care is now necessary for a good code: we multiply (4.12) by a safety factor
fac , usually fac = 0.8 , 0.9 , (0.25)1/(q+1) , or (0.38)1/(q+1) , so that the error will
be acceptable the next time with high probability. Further, h is not allowed to
increase nor to decrease too fast. For example, we may put

hnew = h ·min
(
facmax, max

(
facmin, fac · (1/err)1/(q+1)

))
(4.13)

for the new step size. Then, if err ≤ 1 , the computed step is accepted and the
solution is advanced with y1 and a new step is tried with hnew as step size. Else,
the step is rejected and the computations are repeated with the new step size hnew .
The maximal step size increase facmax , usually chosen between 1.5 and 5 , pre-
vents the code from too large step increases and contributes to its safety. It is clear
that, when chosen too small, it may also unnecessarily increase the computational
work. It is also advisable to put facmax = 1 in the steps right after a step-rejection
(Shampine & Watts 1979).

Whenever y1 is of lower order than ŷ1 , then the difference y1 − ŷ1 is (at least
asymptotically) an estimate of the local error and the above algorithm keeps this
estimate below the given tolerance. But isn’t it more natural to continue the integra-
tion with the higher order approximation? Then the concept of “error estimation”
is abandoned and the difference y1 − ŷ1 is only used for the purpose of step size
selection. This is justified by the fact that, due to unknown stability and instability
properties of the differential system, the local errors have in general very little in
common with the global errors. The procedure of continuing the integration with
the higher order result is called “local extrapolation”.

A modification of the above procedure (PI step size control), which is particu-
larly interesting when applied to mildly stiff problems, is described in Section IV.2
(Volume II).

II.4 Practical Error Estimation and Step Size Selection 169

Starting Step Size

If anything has been made foolproof, a better fool will be devel-
oped. (Heard from Dr. Pirkl, Baden)

For many years, the starting step size had to be supplied to a code. Users were
assumed to have a rough idea of a good step size from mathematical knowledge
or previous experience. Anyhow, a bad starting choice for h was quickly repaired
by the step size control. Nevertheless, when this happens too often and when the
choices are too bad, much computing time can be wasted. Therefore, several people
(e.g., Watts 1983, Hindmarsh 1980) developed ideas to let the computer do this
choice. We take up an idea of Gladwell, Shampine & Brankin (1987) which is
based on the hypothesis that

local error ≈ Chp+1y(p+1)(x0).

Since y(p+1)(x0) is unknown we shall replace it by approximations of the first and
second derivative of the solution. The resulting algorithm is the following one:

a) Do one function evaluation f(x0, y0) at the initial point. It is in any case
needed for the first RK step. Then put d0 = ‖y0‖ and d1 = ‖f(x0, y0)‖ , where
the norm is that of (4.11) with sci = Atoli + |y0i| ·Rtoli .

b) As a first guess for the step size let

h0 = 0.01 · (d0/d1)

so that the increment of an explicit Euler step is small compared to the size of
the initial value. If either d0 or d1 is smaller than 10−5 we put h0 = 10−6 .

c) Perform one explicit Euler step, y1 = y0 +h0f(x0, y0) , and compute f(x0 +
h0, y1) .

d) Compute d2 = ‖f(x0 +h0, y1)− f(x0, y0)‖/h0 as an estimate of the second
derivative of the solution; the norm being the same as in (a).

e) Compute a step size h1 from the relation

hp+1
1 ·max(d1, d2) = 0.01.

If max(d1, d2) ≤ 10−15 we put h1 = max(10−6, h0 · 10−3) .

f) Finally we propose as starting step size

h = min(100 · h0, h1). (4.14)

An algorithm like the one above, or a similar one, usually gives a good guess for the
initial step size (or at least avoids a very bad choice). Sometimes, more informa-
tion about h is known, e.g., from previous experience or computations of similar
problems.

