
II.3 Error Estimation and Convergence
for RK Methods

Es fehlt indessen noch der Beweis dass diese Näherungs-Ver-
fahren convergent sind oder, was practisch wichtiger ist, es fehlt
ein Kriterium, um zu ermitteln, wie klein die Schritte gemacht
werden müssen, um eine vorgeschriebene Genauigkeit zu erre-
ichen. (Runge 1905)

Since the work of Lagrange (1797) and, above all, of Cauchy, a numerically es-
tablished result should be accompanied by a reliable error estimation (“ . . . l’erreur
commise sera inférieure à . . .”). Lagrange gave the well-known error bounds for
the Taylor polynomials and Cauchy derived bounds for the error of the Euler poly-
gons (see Section I.7). A couple of years after the first success of the Runge-Kutta
methods, Runge (1905) also required error estimates for these methods.

Rigorous Error Bounds

Runge’s device for obtaining bounds for the error in one step (“local error”) can be
described in a few lines (free translation):

“For a method of order p consider the local error

e(h) = y(x0 +h)− y1 (3.1)

and use its Taylor expansion

e(h) = e(0) +he′(0) + . . .+
hp

p!
e(p)(θh) (3.2)

with 0 < θ < 1 and e(0) = e′(0) = . . . = e(p)(0) = 0. Now compute explicitly
e(p)(h) , which will be of the form

e(p)(h) = E1(h) +hE2(h), (3.3)

where E1(h) and E2(h) contain partial derivatives of f up to order p− 1 and
p respectively. Further, because of e(p)(0) = 0 , we have E1(0) = 0 . Thus, if all
partial derivatives of f up to order p are bounded, we have E1(h) = O(h) and
E2(h) = O(1) . So there is a constant C such that |e(p)(h)| ≤ Ch and

|e(h)| ≤ C
hp+1

p!
. ” (3.4)
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A slightly different approach is adopted by Bieberbach (1923, 1. Abschn., Kap.
II, §7), explained in more detail in Bieberbach (1951): we write

e(h) = y(x0 +h)− y1 = y(x0 +h)− y0 −h

s∑
i=1

biki (3.5)

and use the Taylor expansions

y(x0 +h) = y0 + y′(x0)h + y′′(x0)
h2

2!
+ . . .+ y(p+1)(x0 + θh)

hp+1

(p + 1)!

ki(h) = ki(0) + k′
i(0)h + . . .+ k

(p)
i (θih)

hp

p!
, (3.6)

where, for vector valued functions, the formula is valid componentwise with possi-
bly different θ ’s. The first terms in the h expansion of (3.5) vanish because of the
order conditions. Thus we obtain

Theorem 3.1. If the Runge-Kutta method (1.8) is of order p and if all partial
derivatives of f(x, y) up to order p exist (and are continuous), then the local error
of (1.8) admits the rigorous bound

‖y(x0 +h)− y1‖ ≤ hp+1
( 1

(p + 1)!
max
t∈[0,1]

‖y(p+1)(x0 + th)‖

+
1
p!

s∑
i=1

|bi| max
t∈[0,1]

‖k(p)
i (th)‖

) (3.7)

and hence also
‖y(x0 +h)− y1‖ ≤ Chp+1. (3.8)

Let us demonstrate this result on Runge’s first method (1.4), which is of order
p = 2 , applied to a scalar differential equation. Differentiating (1.1) we obtain

y(3)(x) =
(
fxx + 2fxyf + fyyf2 + fy(fx + fyf)

)(
x, y(x)

)
(3.9)

while the second derivative of k2(h) = f(x0 + h
2 , y0 + h

2 f0) is given by

k
(2)
2 (h) =

1
4

(
fxx

(
x0 +

h

2
, y0 +

h

2
f0

)
+ 2fxy(...)f0 + fyy(...)f2

0

)
(3.10)

(f0 stands for f(x0, y0) ). Under the assumptions of Theorem 3.1 we see that the
expressions (3.9) and (3.10) are bounded by a constant independent of h , which
gives (3.8).
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The Principal Error Term

For higher order methods rigorous error bounds, like (3.7), become very unprac-
tical. It is therefore much more realistic to consider the first non-zero term in the
Taylor expansion of the error. For autonomous systems of equations (2.2), the error
term is best obtained by subtracting the Taylor series and using (2.14) and (2.7;q).

Theorem 3.2. If the Runge-Kutta method is of order p and if f is (p + 1) -times
continuously differentiable, we have

yJ(x0 +h)− yJ
1 =

hp+1

(p + 1)!

∑
t∈Tp+1

α(t)e(t)F J(t)(y0) +O(hp+2) (3.11)

where

e(t) = 1− γ(t)
s∑

j=1

bjΦj(t). (3.12)

γ(t) and Φj(t) are given in Definitions 2.9 and 2.10; see also formulas (2.17)
and (2.19). The expressions e(t) are called the error coefficients.

Example 3.3. For the two-parameter family of 4 th order RK methods (1.17) the
error coefficients for the 9 trees of Table 2.2 are (c2 = u , c3 = v ):

e(t51) = −1
4

+
5
12

(u + v)− 5
6

uv, e(t52) =
5
12

v− 1
4
,

e(t53) =
5
8

u− 1
4
, e(t54) = −1

4
,

e(t55) = 1− 5(b4 + b3(3− 4v)2)
144b3b4(1− v)2

,

e(t56) = −4e(t51), e(t57) = −4e(t52),

e(t58) = −4e(t53), e(t59) = −4e(t54).

(3.13)

Proof. The last four formulas follow from (1.12). e(t59) is trivial, e(t58) and
e(t57) follow from (1.11h). Further

e(t51) = 5
∫ 1

0

t(t− 1)(t−u)(t− v) dt

expresses the quadrature error. For e(t55) one best introduces c′i =
∑

j aijcj such
that e(t55) = 1− 20

∑
i bic

′
ic

′
i . Then from (1.11d,f) one obtains

c′1 = c′2 = 0, b3c
′
3 =

1
24(1− v)

, b4c
′
4 =

3− 4v

24(1− v)
.
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For the classical 4 th order method (Table 1.2a) these error coefficients are
given by Kutta (1901), p. 448 (see also Lotkin 1951) as follows(

− 1
24

,− 1
24

,
1
16

,−1
4
,−2

3
,

1
6
,

1
6
,−1

4
, 1
)

Kutta remarked that for the second method (Table 1.2b) (“Als besser noch erweist
sich . . .”) the error coefficients become(

− 1
54

,
1
36

,− 1
24

,−1
4
,−1

9
,

2
27

,−1
9
,

1
6
, 1
)

which, with the exception of the 4 th and 9 th term, are all smaller than for the above
method. A tedious calculation was undertaken by Ralston (1962) (and by many
others) to determine optimal coefficients of (1.17). For solutions which minimize
the constants (3.13), see Exercise 3 below.

Estimation of the Global Error

Das war auch eine aufregende Zeit . . . (P. Henrici 1983)

The global error is the error of the computed solution after several steps. Suppose
that we have a one-step method which, given an initial value (x0, y0) and a step
size h , computes a numerical solution y1 approximating y(x0 +h) . We shall
denote this process by Henrici’s notation

y1 = y0 +hΦ(x0, y0, h) (3.14)

and call Φ the increment function of the method.
The numerical solution for a point X > x0 is then obtained by a step-by-step

procedure

yi+1 = yi +hiΦ(xi, yi, hi), hi = xi+1 −xi, xN = X (3.15)

and our task is to estimate the global error

E = y(X)− yN . (3.16)

This estimate is found in a simple way, very similar to Cauchy’s convergence proof
for Theorem 7.3 of Chapter I: the local errors are transported to the final point xN

and then added up. This “error transport” can be done in two different ways:
a) either along the exact solution curves (see Fig. 3.1); this method can yield

sharp results when sharp estimates of error propagation for the exact solutions
are known, e.g., from Theorem 10.6 of Chapter I based on the logarithmic norm
μ(∂f/∂y).

b) or along N − i steps of the numerical method (see Fig. 3.2); this is the
method used in the proofs of Cauchy (1824) and Runge (1905), it generalizes eas-
ily to multistep methods (see Chapter III) and will be an important tool for the
existence of asymptotic expansions (see II.8).
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Fig. 3.1. Global error estimation, Fig. 3.2. Global error estimation,
method (a) method (b)

In both cases we first estimate the local errors ei with the help of Theorem 3.1
to obtain

‖ei‖ ≤ C · hp+1
i−1 . (3.17)

Warning. The ei of Fig. 3.1 and Fig. 3.2, for i �= 1 , are not the same, but they
allow similar estimates.

We then estimate the transported errors Ei : for method (a) we use the known
results from Chapter I, especially Theorem I.10.6, Theorem I.10.2, or formula
(I.7.17). The result is

Theorem 3.4. Let U be a neighbourhood of {(x, y(x))|x0 ≤ x ≤ X} where y(x)
is the exact solution of (1.1). Suppose that in U∥∥∥∂f

∂y

∥∥∥≤ L or μ
(∂f

∂y

)
≤ L, (3.18)

and that the local error estimates (3.17) are valid in U. Then the global error (3.16)
can be estimated by

‖E‖ ≤ hp C′

L

(
exp
(
L(X −x0)

)− 1
)

(3.19)

where h = maxhi ,

C′ =
{

C L ≥ 0
C exp(−Lh) L < 0 ,

and h is small enough for the numerical solution to remain in U .

Remark. For L → 0 the estimate (3.19) tends to hp C (xN −x0).
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Proof. From Theorem I.10.2 (with ε = 0 ) or Theorem I.10.6 (with δ = 0 ) we
obtain

‖Ei‖ ≤ exp
(
L(xN −xi)

)‖ei‖. (3.20)

We then insert this together with (3.17) into

‖E‖ ≤
N∑

i=1

‖Ei‖.

Using hp+1
i−1 ≤ hp · hi−1 this leads to

‖E‖ ≤ hpC
(
h0 exp

(
L(xN −x1)

)
+h1 exp

(
L(xN −x2)

)
+ . . .

)
.

The expression in large brackets can be bounded by∫ xN

x0

exp(L(xN −x))dx for L ≥ 0 (3.21)

∫ xN

x0

exp(L(xN −h−x))dx for L < 0 (3.22)

(see Fig. 3.3). This gives (3.19).

x x x  . . . xN xN

x

e L xN - x

x x x  . . . xN xN

x

e L xN - h - x

e L xN - x

Fig. 3.3. Estimation of Riemann sums

For the second method (b) we need an estimate for ‖zi+1 − yi+1‖ in terms of
‖zi − yi‖ , where, besides (3.15),

zi+1 = zi +hiΦ(xi, zi, hi)

is a second pair of numerical solutions. For RK-methods zi+1 is defined by

	1 = f(xi, zi),

	2 = f(xi + c2hi, zi +hia21	1), etc.
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We now subtract formulas (1.8) from this and obtain

‖	1 − k1‖ ≤ L‖zi − yi‖,
‖	2 − k2‖ ≤ L(1 + |a21|hiL)‖zi − yi‖, etc.

This leads to the following

Lemma 3.5. Let L be a Lipschitz constant for f and let hi ≤ h . Then the incre-
ment function Φ of method (1.8) satisfies

‖Φ(xi, zi, hi)−Φ(xi, yi, hi)‖ ≤ Λ‖zi − yi‖ (3.23)

where

Λ = L
(∑

i

|bi|+hL
∑
i,j

|biaij |+h2L2
∑
i,j,k

|biaijajk|+ . . .
)
. (3.24)

From (3.23) we obtain

‖zi+1 − yi+1‖ ≤ (1 +hiΛ)‖zi − yi‖ ≤ exp(hiΛ)‖zi − yi‖ (3.25)

and for the errors in Fig. 3.2,

‖Ei‖ ≤ exp
(
Λ(xN −xi)

)‖ei‖ (3.26)

instead of (3.20). The same proof as for Theorem 3.4 now gives us

Theorem 3.6. Suppose that the local error satisfies, for initial values on the exact
solution,

‖y(x +h)− y(x)−hΦ(x, y(x), h)‖≤ Chp+1, (3.27)

and suppose that in a neighbourhood of the solution the increment function Φ
satisfies

‖Φ(x, z, h)−Φ(x, y, h)‖≤ Λ‖z− y‖. (3.28)

Then the global error (3.16) can be estimated by

‖E‖ ≤ hp C

Λ

(
exp
(
Λ(xN −x0)

)− 1
)

(3.29)

where h = maxhi .
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Exercises

1. (Runge 1905). Show that for explicit Runge Kutta methods with bi≥0 , aij ≥0
(all i, j ) of order s the Lipschitz constant Λ for Φ satisfies

1 +hΛ < exp(hL)

and that (3.29) is valid with Λ replaced by L .

2. Show that e(t55) of (3.13) becomes

e(t55) = 1− 5
(4v2 − 15v + 9)−u(6v2 − 42v + 27)−u2(26v− 18)

12(1− 2u)(6uv− 4(u + v) + 3)

after inserting (1.17).

3. Determine u and v in (1.17) such that in (3.13)

a) maxi=5,6,7,8 |e(t5i)| = min b)
∑9

i=1 |e(t5i)| = min

c) maxi=5,6,7,8 α(t5i) |e(t5i)| = min d)
∑9

i=1 α(t5i) |e(t5i)| = min

Results.
a) u = 0.3587, v = 0.6346, min = 0.1033;
b) u = 0.3995, v = 0.6, min = 1.55;
c) u = 0.3501, v = 0.5839, min = 0.1248;
d) u = 0.3716, v = 0.6, min = 2.53.

Such optimal formulas were first studied by Ralston (1962), Hull & Johnston
(1964), and Hull (1967).

4. Apply an explicit Runge-Kutta method to the problem y′ = f(x, y) , y(0) = 0 ,
where

f(x, y) =

⎧⎨⎩
λ

x
y + g(x) if x > 0

(1−λ)−1g(0) if x = 0,

λ ≤ 0 and g(x) is sufficiently differentiable (see Exercise 10 of Section I.5).

a) Show that the error after the first step is given by

y(h)− y1 = C2h
2g′(0) +O(h3)

where C2 is a constant depending on λ and on the coefficients of the
method. Also for high order methods we have in general C2 �= 0 .

b) Compute C2 for the classical 4 th order method (Table 1.2).


