#### Nanopierścienie: korelacje i nieporządek

#### Maciej Maśka

#### Uniwersytet Śląski, Katowice



Współpraca: Marcin Mierzejewski Katarzyna Czajka Żaneta Śledź

Kazimierz 2005

w nieobecności strumienia:

$$\hat{H} = \frac{1}{2m} \left[ \frac{\hbar}{i} \frac{d}{dx} \right]^2 + W(x)$$

potencjał  $W(x+L) = W(x) \implies \text{ansatz} - \text{funkcja Blocha:}$ 

$$\psi_k(x) = e^{ikx} u_k(x), \quad u_k(x+L) = u_k(x)$$

I wrunek brzegowy: 
$$\psi_k(x+L) = e^{ikL}\psi_k(x)$$



w nieobecności strumienia:

$$\hat{H} = \frac{1}{2m} \left[ \frac{\hbar}{i} \frac{d}{dx} \right]^2 + W(x)$$

potencjał  $W(x+L) = W(x) \Rightarrow ansatz - funkcja Blocha:$ 

$$\psi_k(x) = e^{ikx}u_k(x), \quad u_k(x+L) = u_k(x)$$

I wrunek brzegowy:  $\psi_k(x+L) = e^{ikL}\psi_k(x)$ 

włączenie strumienia

$$\hat{H} = \frac{1}{2m} \left[ \frac{\hbar}{i} \frac{d}{dx} - \frac{eA_x}{c} \right]^2 + W(x), \quad LA_x = \Phi, \quad \Rightarrow \hat{H} = \frac{\hbar^2}{2m} \left[ \frac{\hbar}{i} \frac{d}{dx} - \frac{2\pi}{L} \frac{\Phi}{hc/e} \right]^2 + W(x)$$



w nieobecności strumienia:

$$\hat{H} = \frac{1}{2m} \left[ \frac{\hbar}{i} \frac{d}{dx} \right]^2 + W(x)$$

potencjał  $W(x+L) = W(x) \Rightarrow ansatz - funkcja Blocha:$ 

$$\psi_k(x) = e^{ikx}u_k(x), \quad u_k(x+L) = u_k(x)$$

I wrunek brzegowy:  $\psi_k(x+L) = e^{ikL}\psi_k(x)$ 

włączenie strumienia

$$\hat{H} = \frac{1}{2m} \left[ \frac{\hbar}{i} \frac{d}{dx} - \frac{eA_x}{c} \right]^2 + W(x), \quad LA_x = \Phi, \quad \Rightarrow \hat{H} = \frac{\hbar^2}{2m} \left[ \frac{\hbar}{i} \frac{d}{dx} - \frac{2\pi}{L} \frac{\Phi}{\Phi_0} \right]^2 + W(x),$$



w nieobecności strumienia:

$$\hat{H} = \frac{1}{2m} \left[ \frac{\hbar}{i} \frac{d}{dx} \right]^2 + W(x)$$

potencjał  $W(x+L) = W(x) \Rightarrow ansatz - funkcja Blocha:$ 

$$\psi_k(x) = e^{ikx}u_k(x), \quad u_k(x+L) = u_k(x)$$

I wrunek brzegowy:  $\psi_k(x+L) = e^{ikL}\psi_k(x)$ 

włączenie strumienia

B=0

$$\hat{H} = \frac{1}{2m} \left[ \frac{\hbar}{i} \frac{d}{dx} - \frac{eA_x}{c} \right]^2 + W(x), \quad LA_x = \Phi, \quad \Rightarrow \hat{H} = \frac{\hbar^2}{2m} \left[ \frac{\hbar}{i} \frac{d}{dx} - \frac{2\pi}{L} \frac{\Phi}{\Phi_0} \right]^2 + W(x)$$

można potraktować jako transformację cechowania:

$$A_x^0 = 0 \quad \longrightarrow \quad A_x^\Phi = A_x^0 - \nabla \chi(x) = \frac{2\pi}{L} \frac{\Phi}{\Phi_0} = \frac{\alpha}{L} \quad \Rightarrow \quad \chi(x) = \frac{\alpha x}{L}$$
  
$$\psi_0(x) \quad \longrightarrow \quad \psi_\Phi(x) = e^{i\chi(x)}\psi_0(x) = e^{i\alpha x/L}\psi_0(x)$$

w nieobecności strumienia:

$$\hat{H} = \frac{1}{2m} \left[ \frac{\hbar}{i} \frac{d}{dx} \right]^2 + W(x)$$

potencjał  $W(x+L) = W(x) \implies \text{ansatz} - \text{funkcja Blocha:}$ 

$$\psi_k(x) = e^{ikx}u_k(x), \quad u_k(x+L) = u_k(x)$$

I wrunek brzegowy:  $\psi_k(x + \overline{L}) = e^{ikL}\psi_k(x)$ 

włączenie strumienia

$$\hat{H} = \frac{1}{2m} \left[ \frac{\hbar}{i} \frac{d}{dx} - \frac{eA_x}{c} \right]^2 + W(x), \quad LA_x = \Phi, \quad \Rightarrow \hat{H} = \frac{\hbar^2}{2m} \left[ \frac{\hbar}{i} \frac{d}{dx} - \frac{2\pi}{L} \frac{\Phi}{\Phi_0} \right]^2 + W(x)$$

można potraktować jako transformację cechowania:

$$A_x^0 = 0 \longrightarrow A_x^\Phi = A_x^0 - \nabla \chi(x) = \frac{2\pi}{L} \frac{\Phi}{\Phi_0} = \frac{\alpha}{L} \Rightarrow \chi(x) = \frac{\alpha x}{L}$$
  
$$\psi_0(x) \longrightarrow \psi_\Phi(x) = e^{i\chi(x)}\psi_0(x) = e^{i\alpha x/L}\psi_0(x)$$

II warunek brzegowy: 
$$\psi_{\Phi}(x+L) = e^{i\alpha}\psi_{\Phi}(x)$$





Łącząc warunki I oraz II:

$$\psi(x+L) = e^{ikL}e^{i\alpha}\psi(x) = e^{i(kL+\alpha)}\psi(x) = \psi(x)$$
$$k = -\frac{2\pi}{L}\frac{\Phi}{\Phi_0}$$

W(x) = 0:

$$\psi_n = e^{ik_0 nx}, \ k_0 = \frac{2\pi}{L}$$

$$E_n = \frac{\hbar^2 k_0^2}{2m} \left( n + \frac{\Phi}{\Phi_0} \right)^2$$

$$I_n = -\frac{ev_n}{L}, \ v_n = \frac{1}{\hbar} \frac{\partial E_n}{\partial k_n}$$

$$I_n = -c\frac{\partial E_n}{\partial \Phi}, \quad I = \sum_n I_n$$



 $W(x) \neq 0$ :

$$\psi_n \qquad e^{iK_0nx}, K_n \qquad \frac{2\pi}{L}$$

$$L_n = \frac{\hbar^2 K_0^2}{2m} \left(n + \frac{\Sigma}{\Phi_0}\right)^2$$

$$I_n = -\frac{ev_n}{L}, \quad v_n = \frac{1}{\hbar} \frac{\partial E_n}{\partial K_n}$$

$$I_n = -c\frac{\partial E_n}{\partial \Phi}, \quad I = \sum_n I_n$$































Dodatkowo trzeba uwzględnić wpływ:

- temperatury
- nieporządku
- korelacji kulombowskich
- poprzecznych wymiarów, ...



#### EKSPERYMENTY

wykonywane na dużym zespole pierścieni

 L.P. Lévy *et al.*,
 Phys. Rev. Lett. **64**, 2074 (1990) 10<sup>7</sup> miedzianych pierścieni:



R. Deblock *et al.*,
 Phys. Rev. Lett. **89**, 206803 (2002)
 10<sup>5</sup> srebrnych pierścieni:



⇒ diamagnetyczna reakcja dla słabego pola (silne sprzężenie spin–orbita ?)



#### EKSPERYMENTY

wykonywane na pojedynczym pierścieniu

 V. Chandrasekhar *et al.*, Phys. Rev. Lett. **67**, 3578 (1991)



• D. Mailly *et al.*, Phys. Rev. Lett. **70**, 2020 (1993) pierścień GaAlAs/GaAs  $\Rightarrow j \approx ev_F/L \quad (l/L \approx 1.3 - \text{pierścień}$ w reżimie balistycznym)



#### EKSPERYMENTY

wykonywane na wielu pierścieniach

E.M.Q. Jariwala *et al.*Phys. Rev. Lett. **86**, 1594 (2001)
30 złotych pierścieni:



- $\Rightarrow$  oscylacje prądu z okresem zarówno
- $ig(\Phi_0ig)$ jak i  $ig(\Phi_0/2ig)$

⇒ diamagnetyczna reakcja obu składowych

W. Rabaud *et al.*Phys. Rev. Lett. 86, 3124 (2001)
16 pierścieni GaAlAs/GaAs:



⇒ oscylacje prądu z okresem  $\Phi_0$ ⇒ prądy trwałe zarówno przy *izolowanych* jak i przy *połączonych* pierścieniach



#### WPŁYW:

- temperatury
- ♡ wymiarów poprzecznych pierścienia
- ♦ nieporządku
- korelacji elektronowych

**TEMPERATURA** 



$$I = -c \frac{\partial \mathcal{F}}{\partial \Phi}, \quad I = \sum_{n} I_n f(E_n), \quad I(T) \propto \exp\left(-\frac{T}{T^*}\right)$$

•  $T^* = \Delta/k_{\rm B}$  – system bez domieszek,  $\Delta$  – odległość między poziomami

•  $T^* = E_{\rm Th}/k_{\rm B}$  – system z domieszkami,  $E_{\rm Th} = \frac{\hbar D}{L^2}$  – energia Thouless'a (*D* – stała dyfuzji, *L* – obwód pierścienia)

#### NIEPORZĄDEK i WYMIAR POPRZECZNY

czysty, 1-wymiarowy pierścień:

$$: I_0 = \frac{ev_F}{L}$$

• "gruby" pierścień: 
$$I = I_0 \sqrt{M}$$
  $M = \frac{A}{\lambda_F}$  – liczba kanałów,  $A$  – pole przekroju pierścienia,  $\lambda_F = \frac{2\pi}{k_F}$  – długość fali na poziomie Fermiego

• nieporządek: sprzęga kanały zmniejszając współczynnik  $\sqrt{M}$ .

w reżimie dyfuzynym:  $I = I_0 \frac{l}{L} l -$ średnia droga swobodna (balistyczny czas obiegu pierścienia  $\implies$  czas dyfuzji po obwodzie pierścienia)

#### KORELACJE ELEKTRONOWE

 diagramy dające przyczynki do energii najbardziej zależne od strumienia znacząco wzmacniają prąd trwały...

(V. Ambegaokar and U. Eckern, Phys. Rev. Lett. 65, 381 (1990))

- ... ale uwzględnienie diagramów wyższego rzędu redukuje ten efekt (R. Smith and V. Ambegaokar, Europhys. Lett. 20, 161 (1992))
- korelacje elektronowe mogą przeciwdziałać redukcji prądu trwałego przez domieszki (A. Müller–Groeling and H. Weidenmüller, Phys. Rev. B 49, 4752 (1994); S. Maiti, J. Chowdhury and S. Karmakar, Sol. State Comm. 135, 278 (2005))
- korelacje uwzględnione na poziomie Hartree–Focka (średnio) obniżają prądy trwałe (H. Kato and D. Yoshioka, Phys. Rev. B 50, 4943 (1994); A. Cohen, K. Richter, and R. Berkovits, Phys. Rev. B 57, 6223 (1998))
- dokładna diagonalizacja może prowadzić zarówno do zwiększenia jak i do redukcji średniego prądu

(M. Abraham and R. Berkovits, Phys. Rev. Lett. 70, 1509 (1993); G. Bouzerar, D. Poilblanc, and G. Montambaux, Phys.

Rev. B 49, 8258 (1994))

### CO POTRAFIMY WYJAŚNIC, A CZEGO NIE?

### $\implies$ Rozumiemy:

- okresowość prądu trwałego
- zależność od temperatury
- znikanie składowej o okresie  $\Phi_0$  w dużych zespołach pierścieni

### $\implies$ Nie rozumiemy:

- dużej amplitudy prądu w pierścieniach dyfuzyjnych
- znaku prądu diamagnetyczna reakcja w pobliżu zerowego pola

### MODEL: 1-WYMIAROWY PIERŚCIEŃ W PRZYBLIŻENIU CIASNEGO WIĄZANIA



 Diagonalizacja metodą Lanczösa ⇒ energia stanu podstawowego i nisko leżących stanów wzbudzonych

• 
$$I = -\frac{dE_0}{d\Phi} \ (T = 0), \quad I = -\frac{d\mathcal{F}}{d\Phi} \ (T > 0)$$

K. Czajka, M.M., M. Mierzejewski, Ż. Śledź, Phys. Rev. B 72, 035320 (2005)

### PIERŚCIEŃ BEZ DOMIESZEK



# PIERŚCIEŃ Z JEDNĄ DOMIESZKĄ



- oddziaływanie przyciągające  $(U < 0) \Longrightarrow$  maksymalny prąd przy braku domieszek
- oddziaływanie odpychające  $(U > 0) \implies$  maksymalny prąd w obecności domieszki (i *vice versa:* w obecności domieszki maksymalny prąd występuje przy oddziaływaniu odpychającym)

### PIERŚCIEŃ Z DWIEMA DOMIESZKAMI



### PIERŚCIEŃ Z DWIEMA DOMIESZKAMI



### PIERŚCIEŃ Z DWIEMA DOMIESZKAMI













Czy zmiana okresu na pewno związana jest z pojawieniem się tendencji do tworzenia stanu nadprzewodzącego?

podatność par Coopera

$$\chi_{\sup} = \frac{1}{N} \sum_{ij} \left( \langle \Delta_i \Delta_j^{\dagger} \rangle - \langle a_{i\uparrow} a_{j\uparrow}^{\dagger} \rangle \langle a_{i\downarrow} a_{j\downarrow}^{\dagger} \rangle \right), \quad \Delta_i^{\dagger} = a_{i\downarrow}^{\dagger} a_{i\uparrow}^{\dagger}$$

– nie posiada symetrii cechowania – w obecności strumienia pola magnetycznego nie wykazuje okresowości  $\Phi_0$ .

• zamast tego zdefiniujmy macierz:

$$\chi_{ij} = \langle \Delta_i \Delta_j^{\dagger} \rangle - \langle a_{i\uparrow} a_{j\uparrow}^{\dagger} \rangle \langle a_{i\downarrow} a_{j\downarrow}^{\dagger} \rangle$$

i zbadajmy jej maksymalną wartość własną  $\lambda_{\max}$ .



 zależna od pola tendencja do parowania (R. Little and W. Parks, Phys. Rev. Lett., 9, 9 (1962))

### PIERŚCIEŃ Z KORELACJAMI PARUJĄCYMI O SKOŃCZONEJ SZEROKOŚCI

hamiltonian w przybliżeniu średniego pola:

$$U\sum_{i} n_{i\uparrow} n_{i\downarrow} \simeq U\sum_{i} \left( \langle n_{i\uparrow} \rangle n_{i\downarrow} + n_{i\uparrow} \langle n_{i\downarrow} \rangle \right) + U\sum_{i} \left( \Delta_{i} a_{i\uparrow}^{\dagger} a_{i\downarrow}^{\dagger} + \Delta_{i}^{*} a_{i\downarrow} a_{i\uparrow} \right)$$

Równania Bogolubova – de Gennes'a:

Wprowadzamy nowe operatory fermionowe  $\gamma_{n\sigma}^{(\dagger)}$  w których hamiltonian jest diagonalny:

$$egin{aligned} a_{i\uparrow} &=& \sum_l u_{il} \gamma_{l\uparrow} - v_{il}^* \gamma_{l\downarrow}^\dagger, \ a_{i\downarrow} &=& \sum_l u_{il} \gamma_{l\downarrow} + v_{il}^* \gamma_{l\uparrow}^\dagger. \end{aligned}$$

Równania Bogolubova – de Gennes'a:

$$\sum_{j} \begin{pmatrix} \mathcal{H}_{ij} & U\Delta_{i}\delta_{ij} \\ U\Delta_{i}^{*}\delta_{ij} & -\mathcal{H}_{ij}^{*} \end{pmatrix} \begin{pmatrix} u_{jl} \\ v_{jl} \end{pmatrix} = E_{l} \begin{pmatrix} u_{il} \\ v_{il} \end{pmatrix}$$

$$\mathcal{H}_{ij} = -t\delta_{i+\delta,j}e^{i\theta_{ij}} + (U\bar{n}_i + w_i - \mu)\delta_{ij} \qquad \Delta_i = -\sum_l u_{il}v_{il}^* \tanh\left(\frac{E_l}{2kT}\right)$$

$$\bar{n}_{i} = \sum_{l} |u_{il}|^{2} f(E_{l}) + |v_{il}|^{2} f(-E_{l})$$

PRĄD:

$$I_{ij} = -\frac{2et}{\hbar c} \operatorname{Im}\left[e^{i\theta_{ij}} \sum_{l} \left(\frac{v_{il}v_{jl}^{*} - u_{il}^{*}u_{jl}}{\hbar c}\right) \tanh\left(\frac{E_{l}}{2kT}\right)\right]$$





#### DOMIESZKI: konkurencja CDW i nadprzewodnictwa



- $\Omega_i$  parametr porządku CDW
- $\Delta_i$  parametr porządku nadprzewodnictwa

• 
$$\Psi_i = \sqrt{\Omega_i^2 + \Delta_i^2}$$

### PODSUMOWANIE I PERSPEKTYWY

- nieporządek silnie modyfikuje prąd trwały pośrednio poprzez "pinning" i/lub tworzenie fal gęstości ładunku
- w przypadku oddziaływania parującego efekt ten jest szczególnie wyraźny ze względu na konkurencję (tendencji do) nadprzewodnictwa i fal gęstości ładunku

### PODSUMOWANIE I PERSPEKTYWY

- nieporządek silnie modyfikuje prąd trwały pośrednio poprzez "pinning" i/lub tworzenie fal gęstości ładunku
- w przypadku oddziaływania parującego efekt ten jest szczególnie wyraźny ze względu na konkurencję (tendencji do) nadprzewodnictwa i fal gęstości ładunku
- czy sterując rozkładem domieszek można wpływać na własności nanopierścieni?

### PODSUMOWANIE I PERSPEKTYWY

- nieporządek silnie modyfikuje prąd trwały pośrednio poprzez "pinning" i/lub tworzenie fal gęstości ładunku
- w przypadku oddziaływania parującego efekt ten jest szczególnie wyraźny ze względu na konkurencję (tendencji do) nadprzewodnictwa i fal gęstości ładunku
- czy sterując rozkładem domieszek można wpływać na własności nanopierścieni?
- możliwości wyprodukowania nanoringu?
  - V. Bagci et al., Phys. Rev. B 66, 045409 (2002)



X. Kong et al. Science 303, 1348 (2004)

monokryształ

średnica:  $1 \div 4 \ \mu$ m,

szerokość:  $10 \div 30 \text{ nm}$