

WŁAŚCIWOŚCI FAZ WSTĘGOWYCH W TLENKACH METALI PRZEJŚCIOWYCH

Marcin Raczkowski

Raymond Frésard and Andrzej M. Oleś

Marian Smoluchowski Institute of Physics, Jagellonian University Universite de Caen Basse–Normandie, Laboratoire de Cristallographie et Sciences des Matériaux CRISMAT

STRIPE PHASES

- 1D domain walls of holes which separate AF domains of opposite phases.
- they might be:

site-centered centered on rows of metal atoms

bond-centered centered on rows of oxygen atoms bridging two metal sites

• their shape and properties are material dependent

TYPICAL MATERIALS

- $La_{2-x-y}Nd_ySr_xCuO_4$, $La_{2-x}Sr_xCuO_4$
- superconducting above $x \simeq 0.06$
- $\mathbf{Q}_s = \pi(1 \pm 2\epsilon, 1)$, $\mathbf{Q}_s = \pi(1, 1 \pm 2\epsilon)$ with $\epsilon \simeq x$ for $x \le 1/8$
- half-filled vertical/horizontal stripes (0.5 hole per Cu atom in a domain wall)
- $3d^9$: Cu²⁺ (S = 1/2), Cu³⁺ (S = 0) \Rightarrow orbital degeneracy is absent
- quantum fluctuations important
- proper treatment of strong electron correlations required

- $La_{2-x}Sr_xNiO_4$, $La_2NiO_{4+\delta}$
- insulator up to $x \simeq 1$
- $\mathbf{Q}_s = \pi(1 \pm \epsilon, 1 \pm \epsilon)$ with $\epsilon \simeq x$ for $x \le 1/3$
- filled diagonal stripes (one hole/Ni ion in a domain wall)
- $3d^8$: Ni²⁺ (S = 1), Ni³⁺ (S = 1/2) \Rightarrow orbital degeneracy
- more classical
- Hartree approach should capture the physics of the nickelates

EXPERIMENTAL SIGNATURES OF STRIPES: CUPRATES

Summary of experimental data illustrating the doping dependence of incommensurability ϵ in the cuprates. In LSCO, ϵ has been defined as a distance from the IC peak position to the AF wave vector (1/2, 1/2) either in the orthorhombic (x < 0.06) or tetragonal (x > 0.06) notation, whereas at x = 0.06, both definitions are used due to the coexistence of diagonal and parallel to the Cu-O bonds spin modulations.

EXPERIMENTAL SIGNATURES OF STRIPES: NICKELATES

Summary of the results for $La_{2-x}Sr_xNiO_4$ (filled circles), $Nd_{2-x}Sr_xNiO_4$ (diamonds), and $La_{2-x}Sr_xNiO_{4+\delta}$ (empty circles) for different net dopant induced hole concentration $n_h = x + 2\delta$ dependence of: (a) transition temperature for a checkerboard-type charge order (T_{CO}^C) as well as a stripe-type charge (T_{CO}^{IC}) and spin (T_N) order, and (b) incommensurability ϵ , after Kajimoto *et al.*, Phys. Rev. B **67**, 014511 (2003).

FINGERPRINT OF STRIPES ?

(a) chemical potential shift $\Delta \mu$:

Ino et al., Phys. Rev. Lett. 79, 2101 (1997).

Satake *et al.*, Phys. Rev. B **61**, 15515 (2000).

(b) ARPES spectra: $La_{2-x}Sr_xCuO_4$ A. Ino, *et al.*, Phys. Rev. B **62**, 4137 (2000).

SLAVE-BOSON APPROACH

• single-band Hubbard model with the next-nearest-neighbor hopping t'

$$H = -\sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

• in terms of the SB operators

$$H_{SB} = \sum_{ij} \sum_{\sigma\sigma'\sigma_1} t_{ij} z_{i\sigma_1\sigma}^{\dagger} f_{i\sigma}^{\dagger} f_{j\sigma'} z_{j\sigma'\sigma_1} + U \sum_i d_i^{\dagger} d_i$$

• SB operators have to fulfill a set of constraints at each site

$$\begin{split} e_i^{\dagger} e_i + d_i^{\dagger} d_i + \sum_{\mu} p_{i\mu}^{\dagger} p_{i\mu} &= 1 \\ 2 d_i^{\dagger} d_i + \sum_{\mu} p_{i\mu}^{\dagger} p_{i\mu} &= \sum_{\sigma} f_{i\sigma}^{\dagger} f_{i\sigma} \\ p_{0i}^{\dagger} \mathbf{p}_i + \mathbf{p}_i^{\dagger} p_{0i} - i \mathbf{p}_i^{\dagger} \times \mathbf{p}_i &= \sum_{\sigma\sigma'} \boldsymbol{\tau}_{\sigma\sigma'} f_{i\sigma'}^{\dagger} f_{i\sigma} \end{split}$$

• one replaces the Bose fields by their time-independent averages, determined from the saddle-point equations $\nabla F = 0$ with

$$F = \sum_{i} \left\{ -\beta_{0i} (p_{0i}^{2} + p_{i}^{2} + 2d_{i}^{2}) + U_{i} d_{i}^{2} - 2\beta_{i} \cdot \mathbf{p}_{i} p_{0i} \right\} - \beta^{-1} \sum_{\mathbf{q}\sigma} \ln\left(1 + e^{-\beta\varepsilon_{\mathbf{q}\sigma}}\right) + \mu N_{el} d_{i}^{2} + 2\beta_{i} \cdot \mathbf{p}_{i} p_{0i} \right\}$$

• remedy: choose a proper unit cell

(a) Vertical stripe phase, its unit cell, and two periodicity vectors $\mathbf{g}_1 = (4, 1)$ and $\mathbf{g}_2 = (0, 2)$. (b) Diagonal SC stripe phase, its unit cell, and two periodicity vectors $\mathbf{g}_1 = (1, 1)$ and $\mathbf{g}_2 = (4, -4)$.

• in the reciprocal space representation one can reduce a large original fermionic matrix into decoupled submatrices, which gives a considerable time gain during numerical diagonalization

(filled domain walls)

(half-filled domain walls)

SB free energy of various phases at temperature $\beta t = 100$ on a 128×128 cluster

SB band structure of the HVSC stripe phase

t/t'	phase	F/t
0.0	PM	-0.5040
	HDSC	-0.5339
	AF	-0.5393
	HVSC	-0.5689
	VSC	-0.5751
	DSC	-0.5821
-0.3	VSC	
	PM	-0.4822
	AF	-0.5341
	HDSC	-0.5534
	DSC	-0.5655
	HVSC	-0.5749

Doping dependence of the vertical stripe ground state (SBA: U=12t)

SB ground state free energy of the VSC and VBC stripes (t' = -0.15t)

	VSC			VBC	
x	d	F/t	d	F/t	
0.050	11	-0.4263	11	-0.4263	
0.055	10	-0.4360	10	-0.4359	
0.060	9	-0.4456	9	-0.4455	
0.070	8	-0.4649	8	-0.4648	
0.080	7	-0.4841	7	-0.4840	
0.090	6	-0.5034	6	-0.5032	
0.100	5	-0.5225	6	-0.5224	
0.120	5	-0.5607	5	-0.5607	
0.140	4	-0.5985	4	-0.5983	
0.160	4	-0.6342	4	-0.6342	
0.180	4	-0.6671	4	-0.6670	
0.200	3	-0.6978	3	-0.6983	
0.250	3	-0.7682	3	-0.7689	
0.300	3	-0.8242	3	-0.8245	
0.350	2	-0.8627	3	-0.8605	

Systems with orbital degeneracy

• Hamiltonian for e_g electrons: $|x\rangle \sim |x^2 - y^2\rangle$ and $|z\rangle \sim |3z^2 - r^2\rangle$

$$\mathcal{H} = H_{kin} + H_{int} + H_{cf}$$

• kinetic energy

$$H_{kin} = \sum_{\langle ij \rangle} \sum_{\alpha\beta\sigma} t_{ij}^{\alpha\beta} c_{i\alpha\sigma}^{\dagger} c_{j\beta\sigma}, \qquad t_{ij}^{\alpha\beta} = -\frac{t}{4} \begin{pmatrix} 3 & \pm\sqrt{3} \\ \pm\sqrt{3} & 1 \end{pmatrix}, \qquad t_{ij}^{\alpha\beta} = -(t/2)\delta_{\alpha\beta}$$

• electron-electron interactions

$$H_{int} = U \sum_{i} \left(n_{ix\uparrow} n_{ix\downarrow} + n_{iz\uparrow} n_{iz\downarrow} \right) + \left(U - \frac{5}{2} J_H \right) \sum_{i} n_{ix} n_{iz}$$
$$- 2J_H \sum_{i} \mathbf{S}_{ix} \cdot \mathbf{S}_{iz} + J_H \sum_{i} \left(c^{\dagger}_{ix\uparrow} c^{\dagger}_{ix\downarrow} c_{iz\downarrow} c_{iz\uparrow} + c^{\dagger}_{iz\uparrow} c^{\dagger}_{iz\downarrow} c_{ix\downarrow} c_{ix\uparrow} \right)$$

- crystal-field splitting between $|x\rangle$ and $|z\rangle$ orbitals along the c axis

$$H_{cf} = \frac{1}{2} E_0 \sum_{i\sigma} (n_{ix\sigma} - n_{iz\sigma})$$

Half-filled BC stripes (
$$U = 8t$$
, $J_H = 1.5t$, $E_z = 0$, $x = 1/8$)

vertical

diagonal

• intraorbital double occupancy

$$D(l_x) = \sum_{\alpha} n_{\alpha\uparrow}(l_x) n_{\alpha\downarrow}(l_x)$$

• interorbital double occupancies

$$D_{xz}^{\sigma\bar{\sigma}}(l_x) = \sum_{\sigma} n_{x\sigma}(l_x) n_{z\bar{\sigma}}(l_x)$$
$$D_{xz}^{\sigma\sigma}(l_x) = \sum_{\sigma} n_{x\sigma}(l_x) n_{z\sigma}(l_x)$$

Half-filled vertical BC stripes (
$$U = 8t$$
, $J_H = 1.5t$, $E_z = 0$, $x = 1/8$)

Hartree band structure

$$N_{\alpha}(\omega) = \frac{1}{N} \sum_{\mathbf{k}} \sum_{i\sigma} |\Psi_{i\alpha\sigma}(\mathbf{k})|^2 \delta(\omega - \varepsilon_{\mathbf{k}\sigma})$$

SUMMARY

- our goal was first and foremost to understand the properties of stripe phases and to determine the reasons of differences between the doped layered cuprates and nicke-lates
- we have developed a simple but powerful approach which allows one to investigate stripe phases with a large unit cell and carry out the calculation on large ($\sim 100 \times 100$) clusters
- it allows to obtain unbiased results at low temperature $\beta t = 100$ and to eliminate the role of finite size effects
- stripe phases found in the present approach are stabilized not due to particular boundary conditions but they represent a generic tendency of doped strongly correlated electron systems
- adequate description of half-filled vertical stripes in the cuprates involves a proper treatment of strong electron correlations in the t-t'-U model
- filled diagonal stripe phases observed in the nickelates are a generic feature of the model with two *e*_g electrons