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Proximity effect - basic facts

∆

χ

ξ

∆ =      χ

N SC
 U = 0  U < 0

 −U

N-S F-S

• Holm et al, Z. Phys. (1932): • pair breaking ⇒ short superconducting
vanishing of the resistance of the proximity effect
S-N-S system (Josephson effect)

• Cooper, PRL (1961): • de Jong & Beenakker, PRL (1995):
first microscopic theory of the N-S system suppression of the Andreev reflections

• Andreev, JETP (1964): • Clogston, PRL (1962):
Andreev reflections Eex > ∆/

√
2 ⇒ no superconductivity



Some remarkable experiments

superconducting transition temperature Lazar et al., PRB (2000)

• Fe/Pb/Fe
• resistivity + AC suceptibility

curves ~lines in the figure! thus allowing the determination of
microscopic parameters. For the time being, we only point
out that we derive a critical thickness dPb

crit.700 Å for Fe/
Pb/Fe trilayers and dPb

crit.350 Å for the bilayers for the van-
ishing of superconductivity.

The second essential result of the present paper is shown
in Fig. 9 where we have plotted the dependence of the su-
perconducting transition temperature Tc versus the thickness
of the Fe layer with the thickness of the Pb layer fixed at 730
Å. Tc drops sharply when increasing dFe up to dFe56 Å,
passes through a flat minimum with Tc.1.4 K, increases
slightly by about 0.5 K and saturates at about 2 K. The width
of the superconducting transitions for this series of samples
does not exceed 0.1 K. Therefore error bars in determination
of Tc is of the order of 0.05 K. As mentioned in the second
section, the error bars in the thickness of the Fe layers within
one series of samples can be estimated to be below 1 Å and
thus are within the experimental points plotted in Fig. 9. The
roughness parameters of the Fe layers determined by the
small angle x-ray scattering measure the thickness fluctua-
tions on a very small lateral length scale. Since we do not
observe any broadening of the superconducting transition
curve in resistivity or ac-susceptibility, the lateral length
scale of the thickness fluctuations seems to be smaller than
the superconducting coherence length. In this case the rough-
ness parameter is irrelevant for the Tc(dFe) curve in Fig. 9.
In addition our SQUID-magnetization and FMR data indi-
cate that Fe layers in our samples are continuous at least
down to 6 Å. This means that in spite of some roughness of
the surfaces, the local thickness of the Fe layer is more or
less constant within the whole area of the film. Thus we
regard the existence of the minimum in the Tc(dFe) curve as

well established experimentally in Fig. 9. As mentioned in
the Introduction, oscillations in the Tc(dFe) curve is the most
interesting aspect in the S/F proximity effect, and, referring
to the theory, are a hallmark for unconventional supercon-
ductivity in these systems. We have observed this effect in
the Pb/Fe system. For the samples with a larger roughness
parameters (s23.50 Å) the Tc(dFe) curve turned out to be a
monotonically decreasing function.15

V. DISCUSSION

We now come to the interpretation of the experimental
results, especially the thickness dependencies Tc(dPb) ~Fig.
7! and Tc(dFe) ~Fig. 9! in the framework of theoretical cal-
culations. In most of the previous experimental studies the
theory by Radović et al.11,17 was applied and we will also
analyze our experimental data first using their theory. Within
the single-mode approximation the reduced superconducting
transition temperature tc5Tc /Tc0 ~where Tc0 is the transi-
tion temperature for the isolated superconducting layer! can
be found as a solution of the equation @see Eq. ~7! in Ref. 17#

Re CS 1
2 1

r

tc
D2CS 1

2 D1ln~ tc!50, ~6!

where Re C(x) means the real part of the digamma function
C(x). The pair breaking parameter for a trilayer is defined
as

r5

2f2

~ds /js!
2 , ~7!

where f5ksds/2, js is the superconducting coherence
length and ks is the propagation momentum of the pairing
wave function in the superconducting layer, which can be

FIG. 8. Superconducting transition curves are compared for bi-
layers and trilayers. The upper panel reproduces ac-susceptibility
measurements for bilayers ~S809! with dPb51000 Å and dPb
5500 Å, the lower panel for trilayers ~S808! with dPb52000 Å
and dPb51000 Å. In both sets the Fe-layer thickness is dFe
540 Å.

FIG. 9. Dependence of the superconducting transition tempera-
ture on the thickness of the Fe layer as determined by resistivity
measurements ~closed symbols! for the series S749 ~see Table I!.
The dashed and solid lines are the best fits using the theory by
Radović et al. and the theory by Tagirov, respectively, with param-
eters given in the figure subscripts of Figs. 10 and 11.
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differential conductance Kontos et al., PRL (2001)

• Nb/PdNi/Al2O3/Al
• planar tunneling spectroscopy
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FIG. 1. (a) Exponentially damped oscillations of the real part
of the superconducting order parameter induced into a ferro-
magnetic material by proximity effect. The space coordinate x
denotes the distance from the superconductor /ferromagnet inter-
face. The period of the oscillations is set by the coherence length
jF . 0 state and p state correspond to positive and negative signs
of the real part of the order parameter, respectively. For the sake
of simplicity, the superconductor is assumed unaffected by the
exchange field of the ferromagnet F. Inset: superconducting
density of states at zero temperature in the “0 and p” states for
an exchange energy Eex much larger than the energy gap, Ds

[6]. The characteristic reversed shape in the p state is a con-
sequence of the order parameter oscillations. (b) Schematic of
the Andreev reflection process: an electron in the normal metal
with momentum, k1, is elastically reflected as a hole, k2, at the
superconductor /normal metal interface �S�N�. (c) If N is spin
polarized, the momentum shift, DpF , is dominated by the spin
splitting of the up and down bands.

Fig. 1(c)]. If the exchange energy is much larger than the
energy gap, which is usually the case, DpF � Q and the
phase difference between the electron and hole wave func-
tions is almost energy independent. The DOS is modified
in a thin layer on the order of jF . In particular, the in-
terference between the electron and hole wave functions
produces an oscillating term in the superconducting DOS
with period xEex�h̄yF . The oscillations turn the energy-
dependent DOS upside down with respect to the normal
state. Note that a phase-induced oscillating term in the su-
perconducting DOS is a natural consequence of the coher-
ent superposition of the electron and hole wave functions
in a normal metal and has been observed as a function of
energy in either the clean [10] or the dirty [11] limit.

We measure the superconducting DOS in a thin
ferromagnetic film by tunneling spectroscopy. The nor-
malized conductance vs bias of a normal-metal /insulator/

ferromagnet/superconductor �N�I��F�S� junction probes
the superconducting DOS induced in F by the proximity
effect, convoluted by the thermal broadening [12]. The
normalized conductance is defined as the bias-dependent
conductance divided by the background conductance
measured when both electrodes are in the normal state.
Al�Al2O3�Pd12xNix�Nb junctions were fabricated en-
tirely in situ by thin film evaporation, with shadow masks
defining the junction geometry [see inset of Fig. 2(a)].
The normal metal �N� is Al in its normal state. The Nb
and Pd12xNix (hereafter called PdNi) are the Cooper
pair reservoir �S� and the ferromagnetic thin film �F�,
respectively. Samples were e-gun evaporated in a typical
base pressure of 10

29 torr, with film thicknesses being

FIG. 2. (a) Differential conductance vs bias for two
Al�Al2O3�PdNi�Nb tunnel junctions corresponding to two
different thicknesses (50 and 75 Å) of PdNi. The spectra have
been taken at T � 300 mK and H � 100 G and normalized
by the normal state conductance obtained by applying a
magnetic field higher than the Nb critical field. The tunneling
spectra show the “0” and “p” state shapes expected from
Fig. 1(a) when the thickness of the ferromagnetic layer is,
respectively, smaller or larger than jF . Note that the induced
superconducting density of states is small. The normalized
conductance for a tunnel junction without PdNi is also reported
on the right-hand side. Inset: junction geometry. The field
dependence of the normalized Hall resistivity at T � 1.5 K for
the same PdNi films as in the tunnel junctions corresponding
to the 0 state (50 Å) and to the p state (75 Å) is shown in
(b) and (c), respectively. Long-range magnetic order leads to
saturation of the anomalous component of the Hall effect and
field-induced hysteresis.

305

.

VOLUME 86, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 8 JANUARY 2001

FIG. 3. Tunneling conductance at zero energy vs the PdNi
thickness normalized by the coherence length jF . The data
taken at T � 300 mK and H � 100 G are shown as solid sym-
bols. The theoretical curve (dotted line) obtained by solving the
Usadel equations in the presence of an exchange field takes into
account a finite interface resistance as a fitting parameter. The
dashed line denotes the transition from the 0 state to the p state.

exchange energy and hence verify the estimated coherence
length in the ferromagnet. We obtain M � 0.21mB which
gives Eex � 15 meV and jF � 45 Å.

Increasing the thickness of the ferromagnetic layer, i.e.,
for x ¿ jF , the proximity effect disappears and the nor-
malized tunneling conductance becomes equal to unity.
This is shown in Fig. 3 which shows the DOS at zero en-
ergy, N�0�, vs x�jF . jF is obtained by measuring the
exchange energy from the saturation magnetization as in-
dicated above. For large exchange energies, N�0� is re-
lated to the order parameter C by the simple formula
N�0� � Re

p
1 2 C2. Thus the dependence of N�0� on

the thickness of F is easily deduced from that of C shown
in Fig. 1(a) [5,20]. In the case of a finite resistance, RB, of
the F�S interface the order parameter in F is reduced by a
scale factor 1�gB as found by solving the Usadel equations
for gB ¿ 1 and Eex ¿ Ds, supplemented by the appro-
priate F�S boundary conditions [21]. gB is a transparency
parameter given by gB � RB�rjF . The best fit of the
data in Fig. 3 is found for gB � 7.5, corresponding to an
interface resistance RB � 10

26 V, consistent with the up-
per limit estimated directly from the I�V curves. In the
fit the spatial coordinate, x, is shifted by 15 Å, suggest-
ing that the actual ferromagnetic thickness is reduced with
respect to its nominal value. This may be a consequence
of the fluctuations in the thickness of F as observed by
XTEM or/and to some interdiffusion at the F�S interface
as shown by x-ray reflectivity measurements [22].

Our results show that the superconducting order parame-
ter induced into a ferromagnet by proximity effects oscil-
lates with a period given by the exchange energy. They
suggest that S�F nanostructures offer a unique way to
investigate the interplay between superconductivity and
magnetic order since they do not require comparable en-

ergy scales. Furthermore, they indicate that the proximity
effect may indeed be used to fabricate Josephson junctions
with a p-phase shift, as recently proposed [23].

We are indebted to P. Veillet, P. Monod, and J. Ferré
for the SQUID and MOKE magnetic characterization, to
W. Guichard and P. Gandit for measuring the Nb�PdNi�Nb
interface resistance, and to S. Collin and O. Kaitasov for
the TEM analysis. We also thank D. Esteve, H. Pothier,
W. Belzig, Yu. Nazarov, A. Buzdin, J-P. Torre, O. Bour-
geois, and H. Bernas for useful discussions.
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density of states Cretinon et al., PRB (2005)

• Nb/CuNi
• scanning tunneling microscopy (STM)



Superconducting electrons

in an exchange field - FFLO state

• ∆eiQr Fulde & Ferrel, Phys. Rev. (1964)
• ∆cos(Qr) Larkin & Ovchinnikov, Sov. Phys. JETP (1965)
• F-S Demler et al., PRB (1997)

Proshin & Khusainov, JETP Lett. (1997)



(T ,E )t

E ex

FFLO

BCS

NM
T

t

Izyumov et al., Phys. Usp. (2002)
phase diagram

properties of the FFLO state

• spatially dependent order parameter ∆(~r)
• non-zero pairing momentum in the BCS theory
• spin polarization
• almost normal Sommerfeld specific heat
• almost normal single-electron tunneling characteristics
• unusual anisotropic electrodynamic behavior
• spontaneously generated current
• sensitivity to disorder
• strong dependence on the shape of the Fermi surface



Andreev bound states

I-N-S
Bohr-Sommerfeld:

−(α1 + α2)∓ δϕ + β(ω) = 2nπ

0 : =⇒ ω/∆ = ±cos
(

2ωL
∆ξcos(γ2)

)
de Gennes & Saint-James, PL (1963)

π : =⇒ ω/∆ = ±sin
(

2ωL
∆ξcos(γ2)

)
Hu, PRL (1994)

I-F-S

ωnσ(ϕ) = σcos((γ(ϕ) + σln/ξF) /2)

Kuplevakhskii & Fal‘ko, JETP Lett. (1990)

− cos(γ(ϕ)) = 1− 2cos(ϕ/2)
− σ = ±1
− ξF = h̄vF/Eex



splitting of the zero-energy states

self-induced Doppler shift:

ω → ω ± δ = ω ± evFA

below T ? ≈ (ξ/λ)Tc



linear current response

total current:

J = Jdia + Jpara

diamagnetic:

Jdia = −e2n
mc

A

paramagnetic:

Jpara = e2n
mc

A
∫

dω
(
− df

dω

)
N(ω)

N0

0 :
⇒ ρ(εF) = 0
⇒ Jpara = 0 at T = 0

π :

⇒ sharp peak at EF

⇒ overcompensation of the diamagnetic response

⇒ instability: δF = −JδA < 0

⇒ spontaneous current

splitting
of ZES

spontaneous
current

magnetic
field



Self-consistent theory:

negative U Hubbard model

M. K., B. L. Györffy & J. F. Annett, PRB (2002); EPJB (2003); Physica C (2003);
PRB (2004); Physica C (2005)

model H = Σijσ

[
tij + (εiσ − µ)δij

]
c+iσcjσ + Σiσ

Ui
2 n̂iσn̂i−σ

- hopping integral: tij = −te
−ie

∫ ~rj

~ri

~A(~r)·d~r

- Coulomb interaction: Ui = 0 (FM) and Ui < 0 (SC)
- site energies: εiσ = 1

2
Eexσ (FM) and εiσ = 0 (SC)

- magnetic field: ~B = (0,0, Bz(x)) ⇒ ~A = (0, Ay(x),0)



SPHFG equations

Σm′ky

(
ωτ̂0δnm′ − Ĥnm′(ky)

)
Ĝm′m(ω, ky) = δnm

Ĥnm(ky) =


1
2
Eexδnm − T− −∆nδnm 0 0
−∆nδnm

1
2
Eexδnm + T+ 0 0

0 0 −1
2
Eexδnm − T− ∆nδnm

0 0 ∆nδnm −1
2
Eexδnm + T+



T± = (tcos(ky ± eAy(n)) + µ)δnm + tδn,n+1

- principal layer technique Turek et al., Electronic structure ..., Boston (1997)

- finite temperature method Litak et al., Physica C (1995)

〈Ô〉 =
2

π

2N−1∑
ν=0

ReG(ων)e
(2ν+1)πi/2N

ω = σ
(
e(2ν+1)πi/2N − 1

)
; N = βσ/2 ; σ > W/2



self-consistency and the Ampere’s law

• electron concentration: nn = nn↑ + nn↓

nn = 2
β
ΣkyνRe

{
Tr(Ĝnn(ων, ky))e(2ν+1)πi/2N

}
• spin polarization: mn = nn↑ − nn↓

mn = 2
β
ΣkyνRe

{
Tr(Ĝnn(ων, ky)τ̂3)e(2ν+1)πi/2N

}
• SC order parameter: ∆n = UnΣky

〈cn↓(ky)cn↑(ky)〉

∆n = 2Un

β
ΣkyνRe

{
G12

nn(ων, ky)e(2ν+1)πi/2N
}

• current in the y direction: J tot
y (n) = Jy↑(n) + Jy↓(n)

J tot
y (n) = 4et

β
Σkyνsin(ky − eAy(n))Re

{
Tr(Ĝnn(ων, ky))e(2ν+1)πi/2N

}
• polarization of the current: ∆Jy(n) = Jy↑(n)− Jy↓(n)

∆Jy(n) = 4et
β

Σkyνsin(ky − eAy(n))Re
{
Tr(Ĝnn(ων, ky)τ̂3)e(2ν+1)πi/2N

}
• Ampere’s law on a lattice: ~∇× ~∇× ~A(~r) = µ0~j(~r)

Ay(n + 1)− 2Ay(n) + Ay(n− 1) = −µ0Jy(n)



Current carrying ground state

pairing amplitude

χn ∝
sin(n/ξF )

(n/ξF )



Andreev bound states zero-energy bound states (ZES):

- splitting of the ZES

δ ≈ 2etĀy



spontaneous current

FM SC

B

J
C

p 
(2

e)

e−h (2e)



spontaneous magnetic field

Φ(n) = Ay(n + 1)−Ay(n)

A AΦn
n n+1

SCFM

H ∼ 10−2Hbulk
c2



density of states vs temperature

T ? < Tc ⇒ spontaneous current
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ground state energy

∆E = EJ − E0 < 0 ⇒ true ground state

.
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Effect of the normal metal

slab (F-N-S)

M. K., J. F. Annett & B. L. Györffy, cond-mat (2005)

model H = Σijσ

[
tij + (εiσ − µ)δij

]
c+iσcjσ + Σiσ

Ui
2 n̂iσn̂i−σ

- hopping integral: tij = −te
−ie

∫ ~rj

~ri

~A(~r)·d~r

- Coulomb interaction: Ui = 0 (FM and NM) and Ui < 0 (SC)
- site energies: εiσ = 1

2
Eexσ (FM) and εiσ = 0 (NM and SC)

- magnetic field: ~B = (0,0, Bz(x)) ⇒ ~A = (0, Ay(x),0)



pairing amplitude

χn ∝
sin(n/ξF )

(n/ξF )
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spontaneous current
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Conclusions

F-S

• oscillatory behavior of the pairing amplitude

• zero-energy Andreev bound states in FM

• spontaneous current and magnetic field

• true ground state

F-N-S
• pairing amplitude in FM : χFNS ≈ χFS

• difference in the GS energy: |∆EFNS| > |∆EFS|

• NM 6= transparency of the interface


