

Substitution effect on superconductivity in the solid solutions $(Mo_{1-x}T_x)_3Sb_7$, where T = Nb, Ru and Fe

L.M. TRAN, M. SZUMNA, K. ZUBOWSKI, E. BUKOWSKA, D. BADURSKI, R. GORZELNIAK, V.H. TRAN

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-950 Wrocław, Poland

The Nb-, Ru- and Fe-substitution effects on superconducting and magnetic properties of Mo₃Sb₇ ($T_c = 2.1$ K) were studied by measuring the magnetic susceptibility, electrical resistivity and specific heat. It is found that single phase (Mo_{1-x}T_x)₃Sb₇ samples, where T = Nb, Ru and Fe, are obtained for the concentrations x < 0.2. In this range, with increasing doping concentration x, the lattice parameter and the cell volume of these three systems are found to be gradually decreased. However, the substitution effect on the superconducting transition temperature T_c is completely different between (Mo_{1-x}Fe_x)₃Sb₇, (Mo_{1-x}Ru_x)₃Sb₇ and (Mo_{1-x}Nb_x)₃Sb₇. In the first system, the Fe substitution depresses T_c down to 1.5 K, whereas in the Ru-substituted samples, there is negligible change in T_c . In contrast with the Fe- or Ru-substitution, the replacement of Mo by Nb enhances T_c up 2.3 K. Considering the relationship between the lattice parameters and T_c we may conclude that the change in T_c cannot be ascribed to the volume effect. We discuss the observed behaviour in terms of T-substitution induced changes in the electronic structure at the Fermi energy.