XV Krajowa Szkoła Nadprzewodnictwa "Stulecie Nadprzewodnictwa" Kazimierz Dolny, 9-13 października 2011 r. ## Superconducting properties of $VN-SiO_2$ sol-gel derived thin films B. KOŚCIELSKA 1 , O.I. YUZEPHOVICH 2,3 , S.V. BENGUS 2,3 , A. WINIARSKI 4 , W. SADOWSKI 1 AND M. ŁAPIŃSKI 1 ¹Wydział Fizyki Technicznej i Matematyki Stosowanej, Politechnika Gdańska, Narutowicza 11/12, 80-233 Gdańsk ² B. Verkin Institute for Low Temperature Physics and Engineering, NAS of Ukraine, Kharkov 61103, Ukraine ³International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 53-421 Wrocław > ⁴. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland In this work studies of structure and superconducting properties of VN-SiO₂ films are reported. The films were obtained through thermal nitridation (ammonolysis) of sol-gel derived V₂O₃-SiO₂ coatings (in a proper V₂O₃/SiO₂ ratio) at 1200°C. This process leads to the formation of disordered structure with VN metallic grains dispersed in the insulating SiO₂ matrix. The structural transformations occurring in the films as a result of ammonolysis were studied using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). To examine the influence of magnetic field on superconducting properties of the films, the resistance versus temperature was measured in high magnetic fields.