

Magnetocaloric effect in partially Co-substituted melt-spun $Gd_{65}Fe_{20-y}Co_yAl_{10}X_5$ (X = Si, B) system

B. Idzikowski¹, Z. Śniadecki¹, J. Marcin², J. Kováč², I. Škorvánek²

¹ Institute of Molecular Physics PAS, M. Smoluchowskiego 17, 60-179 Poznań, Poland

 2 Institute of Experimental Physics SAS, Watsonova 47, $040\ 01$ Kosice, Slovakia

Effective refrigeration using magnetocaloric materials has great attention because is energy efficient alternative to the existing vapor-compression technology. Among the recently designed magnetic refrigerant materials, the Gd(TM)Al-based amorphous alloys prepared by melt-spinning combine favourable magnetic entropy characteristics with sufficiently high effective magnetic moment per volume.

In this work [1], we report on Fe/Co substitution dependence of the magnetocaloric behaviour of melt-spun GdFeAl-based ribbons. The results obtained for the Gd₆₅Fe₁₀Co₁₀Al₁₀B₅ ribbon are very promising and surpass the characteristics reported for the parent Co-free Gd₆₅Fe₂₀Al₁₀B₅ alloy [2]. Maximal magnetic entropy change (ΔS_M) under 50 kOe reached 7.02J/kgK at 150 K in comparison with 5.17 J/kg K at 197 K for the latter one. The refrigeration capacity (RC) value under 50 kOe for Gd₆₅Fe₁₀Co₁₀Al₁₀B₅ ribbon was calculated to be 766 J/kg, which is slightly higher than that reported for the parent Co-free alloy [3]. The values of refrigeration capacity were determined as the area below the S_M peak with the integration limits corresponding to the temperatures at its half maximum. The same evidence was performed for Gd₆₅Fe₅Co₁₅Al₁₀Si₅ and Gd₆₅Fe₁₅Co₅Al₁₀Si₅ specimens. The maximal ΔS_M value under 50 kOe is 6.81 J/kgK at 155 K, while for the second one the maximum of the ΔS_M has slightly lower value but is shifted up to 195 K. The enhanced values of ΔS_M extended over a wide temperature range together with the good magnetic softness leading to the low hysteresis losses make the partially Co-substituted GdFeCoAl(Si,B) amorphous ribbons promising magnetic refrigerants in the temperature range from 80 to 220 K.

This work was supported by the funds for science in years 2011-2013 as a research project No. N202 381740.

- Will be also presented at 56th Annual Conference on Magnetism and Magnetic Materials, 30.10-3.11.2011, Scottsdale, Arizona, USA
- [2] S. Gorsse, B. Chevalier, G. Orveillon, Appl. Phys. Lett. 92 (2008) 122501
- [3] Y.K. Fang, C.H. Lai, C.C. Hsieh, X.G. Zhao, H.W. Chang, W.C. Chang W. Li, J. Appl. Phys. 107 (2010) 09A901