Hidden Symmetries in Intrinsic Frame

Andrzej Góźdź,

... Institute of Physics, Dept. Math. Phys., UMCS, Lublin, Poland

Kazimierz, 26–30 September 2012
What is presented?

Intrinsic frame

Intrinsic groups

Uniqueness of quantum states

Intrinsic Symmetries of schematic vibration+rotation model
COLLABORATION

TETRANUC Collaborators

Aleksandra Pędruk,
IF UMCS, Lublin, Poland

Agnieszka Szulerecka,
IF UMCS, Lublin, Poland

Artur Dobrowolski,
IF UMCS, Lublin, Poland

TETRANUC
Jerzy Dudek
IPHC, Strasbourg, France

Katarzyna Mazurek
IFJ, Kraków, Poland
Tetrahedral nuclei

A possibility that atomic nuclei exhibit tetrahedral symmetry—in quantum physics, it is discussed mainly as a property of certain molecules, metal clusters, or fullerenes—has a definite interest for all the related domains of physics. While in the above-mentioned objects the underlying interactions are electromagnetic, the nuclear tetrahedra (pyramidlike nuclei with “rounded edges and corners”) are expected to be stabilized primarily by the strong interactions. A possibility that atomic nuclei exhibit tetrahedral symmetry has been discussed for more than half a century, although experimental evidence is still lacking. In many light nuclei, because of the smallness of the energy gap, it is possible to neglect the octupole deformation. Using the Hartree-Fock approach in their symmetry-constrained variant, Takami et al., Ref. [3], obtain in some light $Z = N$ nuclei an α_{32} instability. In Ref. [4] this and other exotic octupole deformations were studied in the ^{32}S nucleus while, in [5], a similar hypothesis has been advanced theoretically for a group of nuclei around $A \sim 70$.

The experimental verification of the discussed phenomenon is considered in this work. The authors of Ref. [2] have suggested that an ensemble of isomeric states of tetrahedral nuclei may exist in the region of light nuclei. The tetrahedral nuclei do break spontaneously both the spherical symmetry and the symmetry by inversion (see below). The tetrahedral nuclei have a definite interest for all the related domains of physics. While in the above-mentioned objects the underlying interactions are electromagnetic, the nuclear tetrahedra (pyramidlike nuclei with “rounded edges and corners”) are expected to be stabilized primarily by the strong interactions. A possibility that atomic nuclei exhibit tetrahedral symmetry has been discussed for more than half a century, although experimental evidence is still lacking. In many light nuclei, because of the smallness of the energy gap, it is possible to neglect the octupole deformation. Using the Hartree-Fock approach in their symmetry-constrained variant, Takami et al., Ref. [3], obtain in some light $Z = N$ nuclei an α_{32} instability. In Ref. [4] this and other exotic octupole deformations were studied in the ^{32}S nucleus while, in [5], a similar hypothesis has been advanced theoretically for a group of nuclei around $A \sim 70$.

The experimental verification of the discussed phenomenon is considered in this work.
Surface collective variables

In the following the surface collective variables will be used as an example of collective variables.

The equation of nuclear surface in the laboratory frame is:

\[R(\theta, \phi) = R_0 \left(1 + \sum_{\lambda \mu} (\alpha^{\text{lab}}_{\lambda \mu})^* Y_{\lambda \mu}(\theta, \phi) \right) \]

\(\alpha^{\text{lab}}_{\lambda \mu} \) are spherical tensors in respect to \(\text{SO}(3) \).

\(\text{SO}(3) \) denotes rotation group in the laboratory frame.
Intrinsic frame
An idea of quantum rotating frame

Definition of rotating intrinsic frame for collective variables \(\{\alpha_{\lambda\mu}\} \):

1. Let \(\{\alpha_{\lambda\mu}^{\text{lab}}\} = \) laboratory nuclear collective variables.
 and \(\{\alpha_{\lambda\mu}\} \) their counterparts (defined below).

2. Let \(SO(3) \ni T(g) = \) rotation group acting in the space \(\{\alpha_{\lambda\mu}^{\text{lab}}\} \).
The group parameters \(g = g(\Omega) = g(\Omega_1, \Omega_2, \Omega_3) \) are intended to be used as a part of intrinsic variables.

3. The transformation formula from the lab. to int. (rotating) frame:

\[
\alpha_{\lambda} = T(g)\alpha_{\lambda}^{\text{lab}}.
\]
An idea of quantum rotating frame

The intrinsic variables α_λ are invariant in respect simultaneous action $T(h) \times T_G(h)$, $T_G(h)$ acts on the group manifold of the group $SO(3)$ by left shift operation

$$T(h) \times T_G(h)\alpha^{\text{lab}} = T(h(h^{-1}g))\alpha^{\text{lab}} = T(g)\alpha^{\text{lab}} = \alpha^{\text{lab}}.$$

$T(h) \times T_G(h) = a$ simultaneous rotation of the intrinsic frame and the corresponding laboratory variables by the same angles.

4. Required constraints:

$$F_i(\alpha, \Omega) = 0, \quad \text{where } i = 1, 2, 3.$$
Classical versus quantum rotation

Figure: (left) Motion of a mass as a function of time, (right) The spin orientation probability for a rotating system: $\psi \sim D_{M3}^5(\Omega) - D_{M,-3}^5(\Omega)$.
Intrinsic groups \overline{G}

Def. For each element g of the group G, one can define a corresponding operator \overline{g} in the group linear space \mathcal{L}_G as:

$$\overline{g}S = Sg,$$

for all $S \in \mathcal{L}_G$.

The group formed by the collection of the operators \overline{g} is called the intrinsic group of G.

IMPORTANT PROPERTY:

$$[G, \overline{G}] = 0$$

The groups G and \overline{G} are antyisomorphic.
Example: Intrinsic group $\overline{SO(3)}$

The action of the rotation intrinsic group $\bar{g} \in \overline{SO(3)}$.

Transformations of coordinates:

\[
\alpha_{\lambda\mu}' = \bar{g} \alpha_{\lambda\mu} = \alpha_{\lambda\mu}
\]

\[
\alpha_{\lambda\mu}' = \bar{g} \alpha_{\lambda\mu} = \sum_{\mu'} D_{\mu'\mu}(g^{-1}) \alpha_{\lambda\mu'}
\]

\[
\Omega' = \bar{g} \Omega = \Omega g.
\]

The action in the space of functions of intrinsic variables

\[
\bar{g}\psi(\alpha, \Omega) = \psi(\bar{g}\alpha, \Omega g^{-1})
\]
Uniqueness of quantum states 1/4

In practice, the transformation to intrinsic frame is not a one-to-one function.

Figure: A one-to-many transformation from laboratory to intrinsic variables.
To have physical interpretation of some quantities in both laboratory and intrinsic frames one cannot restrict domains of required observables.

Uniqueness achieved by choosing an appropriate subspace of physical states written in intrinsic frame

The construction by making use of a group of transformations \(h \in G_s \):

\[
(\alpha, \Omega) \xrightarrow{h} (\alpha', \Omega')
\]

which the corresponding laboratory coordinates leave invariant:

\[
\alpha^{\text{lab}}(\alpha', \Omega') = \alpha^{\text{lab}}(\alpha, \Omega)
\]
For an arbitrary function in intrinsic frame usually

\[\Psi(\alpha, \Omega) \neq \Psi(\alpha', \Omega'), \]

but

\[\Psi(\alpha, \Omega) = \Psi(\alpha_{lab}) \]
\[\Psi(\alpha', \Omega') = \Psi(\alpha'_{lab}). \]

CONTRADICTION.

The group \(\overline{G}_s \) is called the **SYMMETRIZATION GROUP.**
The symmetrization condition for states. For all $\bar{h} \in \overline{G}_s$:

$$\bar{h} \psi(\alpha, \Omega) = \psi(\alpha, \Omega)$$
Example: Symmetrization group

Let us consider the **standard** choice of collective quadrupole variables \((\alpha_{20}, \alpha_{22}, \Omega)\):

\[
F_{1,2}(\alpha, \Omega) = \alpha_{2\pm1} = 0 \quad \text{and} \quad F_{3}(\alpha, \Omega) = \alpha_{2-2} - \alpha_{22} = 0
\]

\[\Rightarrow G_s = \mathcal{O}_h\]

Another choice of intrinsic variables \((\alpha_{20}, \alpha_{21}, \Omega)\):

\[
F_{1,2}(\alpha, \Omega) = \alpha_{2\pm2} = 0 \quad \text{and} \quad F_{3}(\alpha, \Omega) = \alpha_{21} + \alpha_{2-1} = 0
\]

\[\Rightarrow G_s = \mathcal{D}_{2h}\]
Symmetry operations in the intrinsic frame

The operations allowed in the intrinsic variables space:

All operations which fulfil the conditions:

\[F_i(\{\alpha_{\lambda\mu}\}, \Omega) = 0, \quad i = 1, 2, 3. \]

save the structure of intrinsic variables space.

EXAMPLES:

- Ex.1.: \(\overline{O(3)}^{(rot)} \) which acts only on the rotational degrees of freedom.
- Ex.2.: \(\overline{SO(3)}^{(quad)} \) acting only on quadrupole variables:

\[\alpha'_{2\mu} = \sum_{\mu'} D^2_{\mu'\mu}(\xi) \alpha_{2\mu'} \]

fulfil the required conditions.
Intrinsic Symmetries of schematic vibration+rotation model
Hamiltonian = oscillator + rotor

The variables \((q_1 = \sqrt{2}\alpha_{22}, q_2 = \alpha_{20}, \Omega)\) with standard constraints.

The quadrupole+rotor model Hamiltonian:

\[
\hat{H} = \hat{H}_{\text{vib}} + \hat{H}_{\text{rot}},
\]

where

\[
\hat{H}_{\text{vib}} = -\frac{\hbar^2}{2B} \left(\frac{\partial^2}{\partial q_1^2} + \frac{\partial^2}{\partial q_2^2} \right) + \frac{1}{2} B\omega^2 (q_1^2 + q_2^2).
\]

\[
\hat{H}_{\text{rot}} = \hat{H}_{\text{rot}}(J_x, J_y, J_z)
\]

and \([\hat{H}_{\text{rot}}, SO(3)^r] = 0\)

No vib-rot coupling terms \(\Rightarrow\) the eigenfunctions:

\[
\psi_{\Gamma_a;JM\nu}(\alpha, \Omega) = \phi_{\Gamma_a}(\alpha) R_{JM\nu}(\Omega)
\]
Symmetry group chain

\[\hat{H} = \hat{H}_{\text{vib}} + \hat{H}_{\text{rot}} \]

\[\overline{G}_s \subset \overline{G}_H = \overline{G}_{\text{vib}} \times \overline{G}_{\text{rot}} \]

\[\Gamma_s = 0 \quad \sigma \]

\[\Gamma_v \quad \Gamma_r \]

The symmetrization group \(G_s \) is NOT a PHYSICAL SYMMETRY group of \(\hat{H} \).

The physical symmetry of \(\hat{H} \) should be constructed from the formal symmetry \(G_H \) after “subtracting” of the symmetrization group \(G_s \).
Transitions

The $SO(3)$–reduced matrix elements of the multipole transition operator:

$$\langle \Psi_{\Gamma' a' ; J' \nu'} | Q^{lab}_\lambda | \Psi_{\Gamma a ; J \nu} \rangle = \sum_\mu \langle \phi_{\Gamma' a'} | Q_{\lambda \mu} | \phi_{\Gamma a} \rangle \langle R_{J' \nu'} | D^{\lambda*}_\mu | R_{J \nu} \rangle$$

The reduced probability:

$$B(E \lambda ; (\Gamma a ; J \nu) \rightarrow (\Gamma' a' ; J' \nu')) = \frac{|\langle \Gamma' a' ; J' \nu' | Q^{lab}_\lambda | \Gamma a ; J \nu \rangle|^2}{(2J + 1)}$$

Partial symmetries of \hat{H} can be responsible for some selection rules! Still, an OPEN PROBLEM
Vibrational Hamiltonian

Boson creation-annihilation operators

\[b_k^+ = \frac{1}{\sqrt{2}} \left[\sqrt{\frac{B\omega}{\hbar}} - i \sqrt{\frac{1}{B\hbar\omega}} \left(-i \frac{\partial}{\partial q_k} \right) \right] \]

\[b_k = (b_k^+)^\dagger \]

The vibrational Hamiltonian can be rewritten:

\[\hat{H}_{\text{vib}} = \hbar \omega (\hat{N} + 1), \]

where \(\hat{N} = b_1^+ b_1 + b_2^+ b_2 \).

The formal symmetry group \(\overline{G}_{\text{vib}} = U(2)^{(\text{vib})} \).
Vibrational $\overline{U(2)}^{(vib)}$

The 2-dim i.r. $g_v(\vartheta, a, b) \in \overline{U(2)}^{(vib)}$ acts only on vibrational degrees of freedom:

$$g_v(\vartheta, a, b) b_k^+ g_v(\vartheta, a, b)^{-1} = \sum_{k'=1}^{2} \Delta^{(U, \frac{1}{2})}_{k'k}(\vartheta, a, b) b_{k'}^+$$

$$g_v(\vartheta, a, b) \psi(\Omega) = \psi(\Omega),$$

where

$$\Delta^{(U, \frac{1}{2})}(\vartheta, a, b) = \exp(i\vartheta) \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix},$$

where $|a|^2 + |b|^2 = 1$.

The vibrational octahedral group $\overline{O}^{(vib)} \subset \overline{U(2)}^{(vib)}$
Rotational $\text{SO}(3)^{(\text{rot})}$

$g_R(\theta = (\theta_1, \theta_2, \theta_3)) \in \text{SO}(3)^{(\text{rot})}$ acts only on rotational degrees of freedom:

\[g_R(\theta) b_k^+ g_R(\theta)^{-1} = b_k^+ \]
\[g_R(\theta) \Psi(\Omega) = \Psi(\Omega \theta^{-1}). \]

The rotational octahedral group $\overline{O}^{(\text{rot})} \subset \text{SO}(3)^{(\text{rot})}$.

NOTE:

The symmetrization group $\overline{G}_s = \overline{O} \subset \overline{O}^{(\text{vib})} \times \overline{O}^{(\text{rot})}$.
Hidden intrinsic symmetries of \hat{H}

One needs to find the symmetry operations $h \in \overline{G}_H$ (Hamiltonian formal symmetry group) which do not belong to G_s (symmetrization group).

Consider the single-phonon function:

$$|N = 1, JM\rangle = \sqrt{\frac{5}{2}} \left(\frac{1}{\sqrt{2}} b_1^+(D_{M2}^2(\Omega)^* + D_{M,-2}^2(\Omega)^*) + b_2^+ D_{M0}^2(\Omega)^* \right) |0\rangle.$$

This state is G_s invariant.
Hidden intrinsic symmetries of \hat{H}

The additional operations $h \in \overline{G}_H$ and $h \not\in \overline{G}_s$ which leave the vector $|N = 1, JM\rangle$ in the same 1-Dim subspace are

$$(\exp(i\vartheta)e_G, \tilde{C}_{2l}), \text{ where } l = x, y, z.$$
A few conclusions

• One can choose different kinds of rotating intrinsic frames.
• Usually the transformation to intrinsic frame is not unique. Because of physical reasons, instead of cutting domains of intrinsic variables, one needs to introduce the symmetrization group G_s.
• The physical space consists of G_s-scalar functions of intrinsic variables.
• The physical symmetries of the intrinsic Hamiltonian are hidden and should be obtained after subtraction the symmetrization group G_s from the formal symmetry group G_H.