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Abstract
It is shown, that the Gamow-like model with only one adjustable parameter–radius constant—is
able to reproduce well the alpha-decay half-lives for all even–even nuclei with the proton
number larger than 50. The systematics for odd–A and odd–odd isotopes can be also well
described when one introduces an additional hindrance factor. A similar model based on the
W J Świaţecki idea from 1955 is developed to reproduce the spontaneous fission half-lives of
transactinide nuclei. The achieved accuracy of reproduction of the data is better than that
obtained in more advanced theories.

Keywords: nuclear fission, alpha-decay, fission barrier height, half-lives, gamow model, liquid
drop model

(Some figures may appear in colour only in the online journal)

1. Introduction

Large progress in synthesis of heavy nuclei done in the last
decades, mainly in laboratories in GSI-Darmstadt and JINR-
Dubna (see e.g. reference list in the review paper [1] and in
[2, 3]) raises new demands for a better and better theoretical
description of their decay modes. Spontaneous fission and
α-radioactivity are the most important processes of disin-
tegration of heavy nuclei.

Alpha decay occurs most often in actinides region, but is
also observed in isotopes with Z 52⩾ . The first theoretical
interpretation of the alpha-decay process was given inde-
pendently by Gamow [4], Gurney and Condon [5] in 1928
year. Emission of the alpha particle is treated as quantum-
mechanical tunnelling through the nuclear Coulomb barrier,
where the probability of emission is calculated using one-
dimensional WKB approximation. Recently it was proven
that this approximation can be successfully used to evaluate
the probability of tunnelling by the alpha particle and cluster
as well (see [6]). It was also shown that within this simple
model (containing only 1 adjustable parameter for even–even
nuclei) one can reproduce alpha decay half-lives of heavy
emitters with higher accuracy in comparison with the modern
(containing 5 parameters) version [7] of Viola-Seaborg for-
mula [8].

The observation in 1938 of the neutron-induced nuclear
fission by Hahn and Strassmann came rather unexpected [9].
This new phenomenon was explained within a few weeks by
Meitner and Frisch who established the most important fea-
tures of low-energy fission: the energy released in this process
equals almost 200MeV and results from the Coulomb
repulsion of the fission fragments and the number of neutrons
emitted per fission event larger than one, that has opened a
possibility for a chain reaction [10]. One and a half years after
Hahn and Strassmann’s discovery, Flerov and Petrzhak first
observed the spontaneous fission of Uranium [11]. As we
have written above, Gamow had explained the α-decay and its
sometimes rather long half-lives by a quantum tunnelling
process of a pre-formed α particle through the Coulomb
barrier. So, according to the concepts of Meitner and Frisch,
one could expect spontaneous fission of uranium also from
the ground-state, but with a considerably longer half-life than
for the α-decay, because of the larger reduced mass for almost
symmetric fission.

The first quantitative estimates of the spontaneous fission
probability became possible, when the microscopic-macro-
scopic model of the potential energy of deformed nuclei was
developed and the Inglis cranking model was implemented to
evaluate the inertia corresponding to the fission mode. Of
course in time these models give more and more precise

| Royal Swedish Academy of Sciences Physica Scripta

Phys. Scr. 90 (2015) 114013 (10pp) doi:10.1088/0031-8949/90/11/114013

0031-8949/15/114013+10$33.00 © 2015 The Royal Swedish Academy of Sciences Printed in the UK1

mailto:azdeb@kft.umcs.lublin.pl
http://dx.doi.org/10.1088/0031-8949/90/11/114013
http://crossmark.crossref.org/dialog/?doi=10.1088/0031-8949/90/11/114013&domain=pdf&date_stamp=2015-10-29
http://crossmark.crossref.org/dialog/?doi=10.1088/0031-8949/90/11/114013&domain=pdf&date_stamp=2015-10-29


reproduction of the spontaneous fission half-lives systematics
and the fission mass distributions. A short critical description
of the spontaneous fission theories will be presented in our
paper in order to better understand the physical background of
a simple model for the probability of this decay mode, which
we have developed following an old idea of W. J. Świaţecki.
Namely, in 1955 he proposed a formula which was able to
describe the global systematics of the spontaneous fission
half-lives [12]. His simple phenomenological formula, based
on correlations between logarithms of observed spontaneous
fission half-lives and ground state microscopic corrections,
reproduced well the experimental data known at that time. We
are going to show in the following that his idea, combined
with the modern version of the liquid drop model (LSD) [13],
allows us to obtain satisfactory agreement with the sponta-
neous fission half-lives measured up to now.

The paper is organized as follows: the main assumptions
of α-decay model and results obtained for emitters with

Z52 110⩽ ⩽ are presented in section 2. The WKB theory of
the fission barrier penetration as well as the the semi-
empirical Świaţecki’s formula for spontaneous fission half-
lives will be described in section 3, where results for the
isotopes with Z90 114⩽ ⩽ are analyzed. Section 4 contains
the summary.

2. Alpha decay

2.1. The model

The quantum tunnelling theory of alpha emission assumes
that the decay constant λ is proportional to the barrier pene-
tration probability P, frequency of assaults on the nuclear
Coulomb barrier per time-unit n and particle preformation factor
Sα. In the presented model the expression for decay constant is
simplified as the effect of the preformation is effectively
included into the probability P (see discussion in [6]):

nP. (1)λ =

The probability P of tunnelling through the barrier is calculated
using one-dimensional WKB approximation:

( )P V r E rexp
2

2 ( ) d , (2)
R

b⎡
⎣⎢

⎤
⎦⎥ ∫ μ= − − α

where μ is a reduced mass, R is the spherical square well radius

( )R r A A (3)d0
1 3 1 3= +α

and b is the exit point from the Coulomb barrier:

b
Z Z e

E
. (4)d

2

= α

α

A Z,α α and A Z,d d are the mass and proton numbers of an
alpha particle (or cluster) and a daughter nucleus respectively.
Eα is the kinetic energy of emitted alpha (cluster) particle [14].
The number of assaults per time-unit n is evaluated from the
quantum-mechanical ground-state frequency in the spherical

Figure 1. Differences of the theoretical and experimental [14] alpha
decay half-lives on logarithmic scale, calculated for nuclei with 52 ⩽
Z ⩽ 70 (top) and Z71 80⩽ ⩽ (bottom).
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square well:

n
R2

. (5)
2

π
μ

=

In this formalism the α-decay half-life can be expressed as
follows:

T
ln 2

10 , (6)h
1 2 λ

=

where constant h (so-called hindrance factor) was additionally
introduced for odd nuclei. The least-square fit of the radius
constant r0 was performed to known experimental half-lives of
even–even α-emitters (127 cases) [14]. Only the most probable
alpha decay mode at each isotope was chosen in our analysis.
Obtained in this way the value of the nuclear well radius con-
stant is equal to r 1.230 = fm, and slightly differs from that
reported in [6], as now more alpha emitters were taken and the
cluster decays were not included in our analysis. Fitting pro-
cedures of hindrance factor were performed for odd systems
with fixed r0 value (h = 0.25 for odd–A and doubled for odd–
odd emitters).

2.2. Results

The logarithms of the ratios of the half-lives (T1 2
cal), calculated

using the above formalism, to the measured ones (T1 2
exp ) for

all examined nuclei are shown in figures 1-3 as a function of
the neutron number N.

Large deviations from the data are observed for emitters
with neutron number N = 127 in 83Bi - 92U elements
(figure 2), where underestimations of the log (T )10 1 2 reach
about two orders of magnitude. Similar inaccuracies one
observes also for some isotopes far from magic number
N = 126, namely: Re (N = 86), Ir (N = 99), Bi (N = 114), No
and Bh. Calculated half-lives of some lighter emitters (52Te -
74W) are overestimated, but these discrepancies do not exceed
one order of magnitude. The root-mean-square deviations of
our estimations made for the α-decay half-lives for all con-
sidered nuclei are summarized in table 1.

3. Spontaneous fission within the WKB theory

A continuous interest in the theoretical description of the
fission dynamics is observed since discovery of this phe-
nomenon in 1938. In the present section we are going to
concentrate on the spontaneous fission and its description
within the WKB theory only. The results presented here will
be used to understand why a simple one parameter (for even–
even nuclei) model à la Świa̧tecki [12], described in section 4,
is able to reproduce the spontaneous fission half-lives of all
known nuclei with higher accuracy than obtained using more
advanced theories.

Quantum mechanically it is possible for a nucleus in its
ground state to tunnel the fission barrier. The probability of
the barrier penetration depends not only on the height and
width of the barrier but also on the magnitude of the collective

Figure 2. The same as in figure 1, but for isotopes with Z81 90⩽ ⩽
(top) and Z91 101⩽ ⩽ (bottom).
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inertia associated with the fission mode. The calculations of
the spontaneous fission half-lives Tsf require a careful eva-
luation of the collective potential energy surface and the
collective inertia tensor. Different models, like the macro-
scopic-microscopic model [15, 16] or the Hartree–Fock–
Bogolubov self-consistent theories (see e.g. [17]), can be used
to generate the potential energy surfaces. The collective mass
parameters are usually evaluated in the cranking approxima-
tion [16, 18] or within the Generator Coordinate Method
(GCM) with the generalized Gaussian Overlap Approxima-
tion (GOA) [19].

The spontaneous fission half-life is given by:

T
nP

ln 2
. (7)1 2

sf =

Here n is the number of assaults per time unit, associated with
the frequency of zero-point vibration of a nucleus in the fis-
sion mode direction. The fission barrier penetration prob-
ability P might be evaluated within the one-dimensional
WKB approximation, which leads to the following

expression:

P
S L

1

1 exp {2 ( )}
. (8)=

+

The action–integral S(L), calculated along a fission path L(s)
in the multi-dimensional space of collective coordinates is
given by:

S L B s V s E s( )
2

( ) ( ) d , (9)
s

s

2 eff gs

1 2

1

2 ⎧⎨⎩ ⎡⎣ ⎤⎦⎫⎬⎭
∫= −

where the integration limits s1 and s2, correspond to the
classical turning points. Egs is the energy of a nucleus in its
ground state and V(s) is the collective potential. B s( )ss is an
effective inertia tensor in the multi-dimensional space of
collective coordinates q{ }i :

B s B
q

s

q

s
( )

d

d

d

d
. (10)

k l

kl
k l

ss

,

∑=

Determination of the fission path in the deformation
space plays a crucial role during evaluation of the fission
probability [16]. The action integral (9) should be calculated
along such a path (so-called dynamic), which minimizes its
total value, thereby maximizing fission probability (8) [21]. In
contrast to the static path, the dynamic one (dependent on the
inertia tensor) does not have to lead through the bottom of the
fission valley, as one can see in figure 4. The comparison of
the fission barrier and effective inertia, corresponding to the
dynamic and static fission paths for 250Fm is shown in
figure 5. The collective potential V(s), corresponding to the
dynamic path, is larger than in the case of the static one, but
the dynamic inertia is smaller. It might be roughly approxi-
mated by the so-called phenomenological inertia fitted to the

Figure 3. The same as in figure 1, but for isotopes with 102 ⩽
Z ⩽ 110.

Table 1. Root-mean-square deviations of Tlog ( )10 1 2
α calculated using

equation (6) with the radius constant r0 = 1.23 fm.

Z Nπ π− n h r.m.s.

e-e 127 0 0.39
e-o 97 0.25 0.66
o-e 82 0.25 0.54
o-o 54 0.5 0.79

Figure 4. A contour plot of the energy surface for 252Fm is shown in
the two-dimensional quadrupole ( )ϵ and hexadecapole ( )4ϵ defor-
mation parameter space. The dashed line is the path of steepest
descent from the saddle points to the ground state and to the scission
line, the thick line is the minimal-action path. After [20].
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observed spontaneous fission half-lives [22]:

k a R1
17

15
exp

3

4
. (11)R R

phen
1212 12

⎜ ⎟
⎛
⎝⎜

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎞
⎠⎟μ= + − −

Here μ is the reduced mass, corresponding to the relative
distance between fragments (R12 = 3/4 for a sphere) and
a = 2.452 is a numerical constant, determined from a fit to the
exact irrotational flow inertia [24] for k = 1. It was found in
[22] that the phenomenological inertia obtained with the
constant k = 11.5 reproduces well the systematics of the
known spontaneous fission half-lives.

Spontaneous fission half-lives of even–even transacti-
nides evaluated in [21] are presented in figure 6. The esti-
mates correspond to the least-action trajectories (dynamic
path to fission). The WKB approximation (8) and the
cranking inertia tensor were used. The two-dimensional
potential energy surfaces for each isotope were obtained
within the macroscopic-microscopic model using the Nilsson
potential and the droplet energy for the macroscopic part. The

effects of the axial asymmetry as well as the reflection
asymmetry were taken into account.

Usually, calculations of spontaneous fission half-lives are
performed with an assumption, that the collective potential is
equal to the Hartree–Fock–Bogolubov (HFB) binding energy
or its macroscopic-microscopic approximation. The zero-
point energy corrections are often ignored in papers dealing
with similar problems. We shall discuss this point later.
Moreover, one assumes, that the ground state is located at

E 0.5Δ ≈ MeV above the minimum of the HFB potential. As
a justification of such a choice of EΔ one refers to experi-
mental values of the average quadrupole phonon energy,
which is about 1 MeV for actinides. Several authors even treat

EΔ as a free parameter. It should be stressed, that the HFB
theory, as each variational method, gives the upper limit of
the ground-state energy, so the zero-point correction energy at
the equilibrium point is approximately equal to the difference
of the ground-state and the potential energy at the minimum
(see [26]). It can be easily shown, that the zero-point energy
of harmonic oscillations is equal to half of the corresponding
phonon energy, i.e. (1

2
ω) [27], what is consistent with result,

obtained in [28], where the coupled quadrupole and octupole
vibrations in the region of Ra–Th nuclei were analyzed. This
conclusion is also valid even for strongly anharmonic motion
such as pairing vibrations [29].

The number n of the collective degrees of freedom
depends much on the value of the zero-point energy correc-
tion. Namely, the 0ε is proportional to n · ω. Thus, when the
HFB equations are solved in the whole n-dimensional space
of collective coordinates, all zero-point corrections should be

Figure 5. Collective potential (top) and inertia Beff (bottom) along
the static (thick solid line) and the dynamic (thin solid line) path to
fission as a function of the relative distance between the fragment
mass centres s R R12 0= . The reduced (μ), irrotational flow and
phenomenological inertias [22] are shown for comparison.
After [23].

Figure 6. Spontaneous fission half-lives of even–even transactinides
and their shape isomers (II) obtained with the WKB approximation
(8) along the least action (dynamical trajectory). After [21].
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substracted from the energy to obtain the collective potential:

V s E s s( ) ( ) ( ), (12)HFB 0
fissε= −

where 0
fissε is the zero-point energy related to the fission mode

(see [19]).
In the case of the one-dimensional fission barrier pene-

tration given by the equation (9), the oscillations perpendi-
cular to the fission path are not included during evaluation of
tunnelling probability (8). In this direction the zero-point
energy corrections will be approximately cancelled by the 1/2
of the corresponding phonon energy.

In figure 7 the potential and the binding energy along the
fission path are plotted. As one can observe, the zero-point
corrections may affect the fission barrier height.

The determination of the least action path in deformation
space is not a trivial task (see [16] for further discussion). The
approach, which is worth mentioning in this context, is the
dynamical programming method [20, 21]. Nevertheless,
applying this method one should choose the optimal distance
between the mesh points to avoid large numerical errors. That
is because the accuracy of calculations of the partial deriva-
tives

q

s
i∂

∂
, which depend much on the effective mass parameter

(10) as well as the zero-point energy correction (see e.g. [19])
along the fission path, strongly depends on the grid size. The
von Ritz implementation (see appendix of [30]) might be
useful as an alternative for practical calculations of the
spontaneous fission probability. The main advantage of this
method is that the influence of the zero-point energy correc-
tion along the dynamical paths might easily be taken into
account.

Typically the mass yield of the spontaneous fission
fragments of the actinide nuclei is spread between 70 and 180.
Usually, except for the bimodal fission of 258Fm and neigh-
bouring nuclei, the asymmetric fission is more probable than
the symmetric one and the most populated mass of the heavier
fragment is around 140. A very mass asymmetric spontaneous
fission process, when the mass of the lighter fragment is
around 20, is already considered as a cluster emission. This
type of radioactivity was predicted in 1980 by Sandulescu and
co-workers [31] and four years later it was discovered by
Rose and Jones [32], who observed the spontaneous emission

of 14C from 223Ra. The cluster emission is a very rare process.
Its relative branching ratio to the α-decay is of the order 10−10

to 10−17. Nevertheless, in the last two decades one has
observed clusters from 14C to 34Si emitted by actinide nuclei
from 221Fr to 242Cm. In all cases the residual nucleus was
always close to the double magic 208Pb.

In general, there are two alternative theoretical descrip-
tions of the spontaneous cluster decay. One can use a fission-
like mechanism to reproduce the main features of the process
[31, 33–36] or one assumes, in close analogy to the α-decay,
that a cluster, performed by a nonadiabatic mechanism inside
nucleus, penetrates the potential barrier created by the Cou-
lomb and nuclear interaction with a daughter nucleus [37–40].
The potential energy landscape of 230Th obtained by the HFB
calculation with the Gogny D1S force [33] is presented in
figure 8 as a function of quadrupole (Q2) and octupole (Q3)
moments. Two valleys leading to the cluster emission (CE,
solid line) and to the asymmetric fission (AF, dashed line) are
visible in the plot.

The above theoretical models, which describe the
cluster-radioactivity, are rather complex and contain
adjustable parameters. Last year we showed in [6], that
within a simple Gamow model with only one adjustable
parameter (radius constant) common for the α-decay and
the cluster emission one can describe with good accuracy
the experimental systematics of half-lives for the cluster
radioactivity of even–even nuclei. An additional hindrance
constant was introduced in [6] to describe the cluster
emission probability from odd–even, even–odd and odd–
odd isotopes.

4. Simple phenomenological formula for the
spontaneous fission half-lives

Encouraged by the good result for T1 2
α obtained in the

Gamow theory, we are going in the following to describe in
another simple model the spontaneous fission half-lives of

Figure 7. Collective potential V(s), binding energy E s( )HFB and
ground-state energy Egs of a nucleus along the fission path s.

After [23].
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Figure 8. The HFB potential energy of 230Th as a function of
quadrupole and octupole moments. The thick solid line shows the
path to cluster emission (CE) while the dashed one is drawn along
the valley to asymmetric fission (AF). After [33].
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transactinide nuclei. Namely, we shall adopt the Świaţecki
idea from 1955 [12], who found a simple relation between the
spontaneous fission half-lives and the experimental mass
deviations from their liquid drop estimates. The crucial
ingredient of the model is the liquid drop formula which is
described in the next subsection.

4.1. The liquid drop model

In our analysis we decided to use the modern version of the
macroscopic-microscopic model [13]. The macroscopic part
of this Lublin–Strasbourg Drop (LSD) mass formula (in MeV
units) is as follows:

( )
( )

( )

M Z N

Z N Z

I A

I A B

I A B

Z A B Z A

I B E

( , , def)

7.289034 · 8.071431 · 0.00001433 ·

15.4920 1 1.8601

16.9707 1 2.2938 (def)

3.8602 1 2.3764 (def)

0.70978 (def) 0.9181

10 exp ( 4.2 ) (def) . (13)

LSD

2.39

2

2 2 3
surf

2 1 3
cur

2 1 3
Coul

2

cong o e

= + −
− −

+ −

+ +

+ −
− − + −

where the odd–even energy term Ee o− is given in [41]. In
equation (13) A Z N= + denotes the mass number,
I N Z A( )= − reduced isospin and Bsurf , Bcur, BCoul and Bcong

are relative to the sphere: surface, curvature, Coulomb and
congruence (see [41]) energies. The parameters in the first and
the last row in Equation (13) are taken from [42], while the
remaining eight parameters were fitted to the data.

4.2. Simple model à la Świa̧tecki

Following the idea presented in [12], we are going to find an
approximative functional dependence of the logarithms of
spontaneous fission half-lives, corrected by mass shifts k Mδ ,
on proton Z and neutron N numbers:

f Z N T( , ) log y k M(Z, N). (14)10 1 2
sf⎡⎣ ⎤⎦ δ= +

The Mδ is a ground-state microscopic energy, defined as:

M Z N M Z N M Z N( , ) ( , ) ( , , 0), (15)micr
exp

exp LSDδ = −

where M Z N( , )exp is a measured mass of isotope, taken
from [43] and M Z N( , , 0)LSD were calculated using for-
mula (13).

Fitting procedures included 35 fissioning even–even
isotopes (Z 102⩽ ) with measured masses and half-lives. The
smooth dependence for even–even isotopes was achieved for
factor k 7.7 MeV 1= − , as is shown in figure 9. The curves,
fitted for odd–A and odd–odd nuclei are shifted by a constant-
hindrance factor. It is equal to h = 2.5 for odd–A isotopes and
doubled for odd–odd systems. Formula for spontaneous

fission half-lives in years is given by:

( )T Z

M Z N A

log y 4.1 · min ( , 103) 380.2

7.7 ( , )
0 for even even,
2.5 for odd ,
5 for odd odd.

(16)

10 1 2
sf

⎧
⎨⎪
⎩⎪

δ

= − +

− +
−

−
−

Spontaneous fission half-lives, calculated using formula
equation (16) are presented and compared with the data in
figure 10. Isotopes which for masses are still not measured are
marked with open symbols. In these cases the empirical mass
corrections, given by equation (15) were replaced by the
theoretical ones, taken from [42]. A very good accuracy was
achieved in the actinides region, where the root-mean-square
deviation of Tlog 1 2

sf is equal to 1.18 and it grows to 1.57
when odd–A and odd–odd nuclei are taken into account. The
r.m.s. deviation reaches 1.96, when one includes in the ana-
lysis the super-heavy isotopes, for which the liquid drop
barrier vanishes. The quality of reproduction of known life-
times by this simple model is even better than that presented
in figure 6 obtained in the macroscopic-microscopic model
with the cranking inertia [21]. Also more advanced modern
calculations based on the HFB theory with the Skyrme (see
e.g. [44, 45] or Gogny force [46] did not bring better esti-
mates for large sample of isotopes than the simple formula
presented above. It raises a question: why does the simple
Świaţecki model work? To understand it, one has to recall
Świaţeckiʼs topographical theorem and the results obtained
using dynamic (least action) trajectories to fission described in
section 3.

4.3. The topographical theorem

It was shown in [13, 30, 47] that the LSD model (13), whose
parameters were fitted to the experimental ground-state
masses only, is able to reproduce well the fission barrier
heights of light, medium and heavy nuclei, when the micro-
scopic part of the ground-state binding energy is taken into
account. According to the topographical theorem, proposed
by Myers and Świaţecki [41], the mass of a nucleus in a

Figure 9. Logarithms of the observed spontaneous fission half-lives
corrected with masses “shifts” k Mδ as a function of proton number.
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saddle-point is mostly determined by the macroscopic part of
its binding energy. The influence of the shell effects on the
saddle-point energy is rather weak and in the first approx-
imation might be ignored. So, one can evaluate the fission
barrier height as a difference between the macroscopic (here
LSD) and the experimental mass:

V Z N M Z N M( , ) ( , , saddle) , (17)B
g s

LSD exp
. .= −

where M Z N( , , saddle)LSD is a macroscopic part of LSD
mass formula (13) taken in a saddle point.

The comparison of the experimental fission barrier height
of actinide nuclei with their estimates, evaluated according to
the topographical theorem of Świaţecki using the LSD mac-
roscopic energy, is presented in figure 11. The r.m.s. devia-
tion of the estimates from the data for all 18 considered fission
barriers’ heights is 0.31MeV only, which proves that the
topographical theorem really works [49]. All estimates do not
exceed 0.67MeV and lie below the experimental values
(except 250Cf), which give a place for not washed out shell
effects around the saddle point energy.

4.4. Justification of the simple formula for T sf

Let us consider a one-dimensional fission barrier along the
least-action (dynamic) trajectory described in section 3.

Assuming, that the fission path is parameterised by the col-
lective coordinate s, one can evaluate the potential V(s) and
the mass parameter Bss(s) corresponding to this path. The
fluctuations of the inertia Bss along the least-action trajectory
becomes smaller and smaller, when one increases the number
of collective coordinates. In particular, the collective pairing
degrees of freedom significantly wash out the fluctuations of
the inertia function [50].

A simple transformation:

x s
B s s

m
s( )

( )
d , (18)

s

s s

sadd
∫=

′
′

brings us to the new coordinate x(s), in which the inertia
becomes constant B mxx = . The lower integration limit in
equation (18) is chosen at point x = 0, corresponding to the
saddle point ssadd. The collective potential in the new coor-
dinate, schematically plotted in figure 12, can be approxi-
mated by two inverted parabolas of different stiffnesses

Figure 10. Spontaneous fission half-lives of even–even (a) and odd
(b) nuclei, calculated using formula (16) (triangles) in comparison to
the experimental values [14] (dots).

Figure 11. Experimental fission barrier heights compared with their
estimates evaluated according to the topographical theorem of
Świaţecki and the LSD macroscopic energy. After [49].

Figure 12. Schematic plot of a fission barrier in the form of two
inverted parabolas smoothly joined at the scission point.
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Cl and Cr having the maximum at the saddle point:

V x
V C x x

V C x x
( )

1

2
for 0,

1

2
for 0,

(19)
l

r

sadd
2

sadd
2

⎧
⎨
⎪⎪

⎩
⎪⎪

=
− <

− >

∼

The stiffnesses of the V
∼

potential are chosen in such a way
that the action-integral S (9) becomes equal:

[ ]m
V x E x

m
V x E x

2
( ) d

2
( ) d (20)

x

x

x

x

2 0

2 0

l

r

l

r ⎡⎣ ⎤⎦




∫

∫

−

= −∼
− ′

′

−

where pairs ( x x,l r− ′ ′) and ( x x,l r− ) are classical left and right
turning points for the true and approximative potential
respectively. The last integral in equation (20) can be
rewritten as

S
m

V
C x

x V
C x

x
2

2
d

2
d ,

x

B
l

x

B
r

2
0

2

0

2l r⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∫ ∫= − + −

where V V EB sadd 0= − is the fission barrier height. After a
little algebra the action integral becomes

S V
m

C

m

C
V

2 2
, (21)B

l r
B

l r

l r

⎛
⎝⎜

⎞
⎠⎟ 

π π ω ω
ω ω

= + =
+

where C ml lω = and C mr rω = are frequencies of the
left and right (inverted) oscillator respectively. Introducing
the average oscillator frequency

2
, (22)l r

l r
ω

ω ω
ω ω

=
+

∼

one can bring the action integral to the following form:

S
V2

. (23)B

ω
= ∼

In our approximation the action integral is proportional to the
fission barrier height measured in the energy quanta of the
harmonic oscillator, which approximates the fission barrier
form. For the action-integral S 1> the logarithm of the
spontaneous fission half-lives (7) can written as

( )Tlog y 2 S log (n) 0.3665 (24)1 2
sf = − −

where the constant 0.3665=log[ln(2)] and n is the number of
assaults of nucleus on the fission barrier per year. Having in
mind that according to the topographical theorem the fission
barrier height is V M MB exp

gs
LSD
sadd= − and making use of the

relation (23), one can rewrite the last equation as follows:

( )Tlog y
4 M

˜

4V

˜
log (n) 0.3665,(25)B

1 2
sf micr

exp LSD

 
δ

ω ω
+ = − −

where Mmicr
expδ was defined in equation (15) and

V M MB
LSD

LSD
sadd

LSD
sph= − is the liquid drop fission barrier

height. The right hand side of equation (25) is a very smooth
function of nucleon numbers as it is defined only by global

properties of the nucleus. Note, that the derived equation has
the same structure as the phenomenological formula of
Świaţecki (14), which proves his Ansatz.

The liquid drop barrier height of actinides decreases
almost linearly in function of Z from 4.3 MeV for Z = 90 to 0
for Z 103⩾ [47]. The fission barrier of finite height appears
in the super-heavy nuclei mostly due to the shell effects in the
ground state. The smooth dependence of logarithms of
spontaneous fission half-lives, corrected by the ground state
shell-plus-pairing effects, on the LSD fission barrier heights,
shown in figure 13 for even–even (e–e), odd A (o–A) and
odd–odd (o–o) nuclei. The data for e–e isotopes lie very close
to the straight line, which validates Equation (25). The data
for o–A and o–o are above this line, which is due to the
specialization energy, which increases the fission barrier
heights. As was mentioned before, stability of super-heavy
nuclei is determined by shell effects. The liquid drop barrier
of these isotopes vanishes, which is visible in figure 13 for
nuclei with Z 103⩾ .

5. Conclusions

The following conclusions can be drawn from our
investigation:

• A simple, consistent model was applied to reproduce
alpha-decay half-lives in 360 nuclei with atomic number
52⩽ Z 110⩽ .

• The model reproduces α-decay half-lives with quite good
accuracy; the root-mean-square deviation of log (T )10 1 2

α

for even–even isotopes is equal to 0.39.
• Large underestimations in half-lives of N = 127 isotopes
arises from strong shell effects, which are not considered
in this simple model.

• Semi-empirical formula for the spontaneous fission half-
lives, depending on proton number and the ground state
microscopic corrections, reproduces data for even–even
super-heavy nuclei with reasonable accuracy.

Figure 13. Logarithms of the observed spontaneous fission half-lives
corrected with M7.7δ as a function of liquid drop barrier height.
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• Quality of spontaneous fission half-lives evaluation
breaks down for nuclei with not measured yet masses.

• The logarithms of the spontaneous fission half-lives,
corrected by the ground state shell-plus-pairing effects,
are roughly proportional to the macroscopic barrier
heights in nuclei up to Z = 102.
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