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Abstract
Fission-barrier heights of nuclei in the Po isotopic chain are investigated in several macroscopic–
microscopic models. Using the Yukawa-folded single-particle potential, the Lublin–Strasbourg
drop (LSD) model, the Strutinsky shell-correction method to yield the shell corrections and the
BCS theory for the pairing contributions, fission-barrier heights are calculated and found in quite
good agreement with the experimental data. This turns out, however, to be only the case when
the underlying macroscopic, liquid-drop (LD) type, theory is well chosen. Together with the
LSD approach, different LD parametrizations proposed by Moretto et al are tested. Four
deformation parameters describing respectively elongation, neck-formation, reflectional-
asymmetric, and non-axiality of the nuclear shape thus defining the so called modified Funny
Hills shape parametrization are used in the calculation. The present study clearly demonstrates
that nuclear fission-barrier heights constitute a challenging and selective tool to discern between
such different macroscopic approaches.

Keywords: macroscopic–microscopic model, deformation energies, fission process, nuclear
shape parametrization

(Some figures may appear in colour only in the online journal)

1. Introduction

Recent experimental studies [1–4], and in particular the dis-
covery of an asymmetric splitting in the low-energy fission of
180Hg clearly show that the competition between pre-
dominantly symmetric and asymmetric fission depends on
both the atomic number Z (or the fissility) and the N/Z ratio of
the fissioning system. To further study these dependences, the
polonium (Z = 84) isotopic chain, situated mid-way between
mercury and the actinide region as such, seems to us of
particular interest. In addition, while actinide low-energy
fission is primarily determined by the microscopic shell
effects in the nascent fragments at large elongation, the mass
partition results from a more subtle interplay between the
macroscopic and microscopic contributions to the total energy
in the considered region. In order to be able to make reliable
predictions on the nature of the fission process (symmetric
versus asymmetric) it seems of capital interest to rely on a
nuclear model that is able to produce a very precise

description of nuclear deformation energies. We have there-
fore investigated the deformation properties along the Po
isotopic chain in several macroscopic–microscopic models,
using, together with different liquid-drop (LD) models, such
as the Lublin–Strasbourg drop (LSD) model [5], different LD
type parametrizations recently proposed by Moretto and co-
workers [6], as well as by Royer [7] and finally the LD model
proposed by Wang [8, 9], the Yukawa-folded single-particle
potential [10], together with the Strutinsky shell-correction
method [11] and the BCS theory [12] to yield the shell and
pairing contributions. It turns out that one is able to generate
fission-barrier heights that are in a quite good agreement with
the experimental data, as long as the underlying macroscopic,
LD type, theory is well chosen. Four deformation parameters
describing, respectively, the elongation, neck-formation,
reflectional-asymmetric, and non-axiality of the nuclear shape
are used in the calculation. This so called modified Funny
Hills (MFH) shape parametrization was proposed in [13]. It
was also shown that the forms of fissioning nuclei obtained
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using Strutinsky’s theory of optimal LD shapes [15] can be
well reproduced within this MFH shape parametrization. We
are thus going to show in the present contribution that nuclear
fission-barrier heights constitute a challenging and selective
tool to discern between such different macroscopic
approaches.

2. Macroscopic and microscopic nuclear energy

The total energy of even–even nuclei is determined in our
approach on a deformation grid by the macroscopic–micro-
scopic method [12, 16] as the sum of the macroscopic energy
Emac and the shell and pairing corrections

E E E E . (1)tot mac shell pair= + +

The microscopic correction to the LD energy consists of the
proton shell and pairing energies E p

shell
( ) and E p

pair
( ) and the

corresponding contributions for neutrons:

E E E E E . (2)p n p n
micr shell

( )
shell
( )

pair
( )

pair
( )= + + +

The shape of the axially deformed nucleus is described in our
MFH shape parametrization in cylindrical coordinates by

( ) ( )z u B( ) 1 1 e , (3)s
B u2 2 3 ( )2⎡

⎣⎢
⎤
⎦⎥ρ = − − α− − −

where z( )sρ is the distance of the nuclear surface to the
symmetry axis and u z z z( )sh 0= − . Here the elongation of
the shape in z-direction is given by z2 0 and one defines a
dimensionless elongation parameter c z R0 0= with
R A1.2 fm0

1 3= . The coordinate zsh is defined in such a
way that the centre of mass of the distribution is located at
z = 0. The normalization  finally ensures that the density

z( )sρ corresponds to the desired (neutron or proton) particle
number. The parameters c, B and α describe the elongation,
neck and reflection asymmetry of the nucleus. Note that the
deformation c = 1 with B = 0 represents the spherical shape,
while the neck parameter B = 1 corresponds to a scission
configuration. We restrict ourselves here to axial symmetric
shapes. Triaxial shapes have to be considered at smaller
deformations, but play a less important role [17] for very
elongated shapes for which the present investigation is carried
out (see [13] for the inclusion of the non-axiality degree of
freedom).

In order to reduce the numerical effort and eliminate
points which, in the deformation plane spanned by the c and B
parameters, are far from the fission valley, we have intro-
duced the following grid on this plane [13]:

B c1 e cos , 1 e sin . (4)ψ ψ= − = +κ κ

The relation between the new radial coordinates ,κ ψ and the
c B, parameters is shown in figure 1 and a small sample of
nuclear shapes that can be obtained in this way are displayed
in figure 2, with oblate shapes for negative and prolate shapes
for positive ψ values. One can identify the spherical shape that
is obtained for c = 1 and 0ψ = , in which case the κ parameter
corresponds to the neck degree of freedom. For large

deformations close to the scission configuration (where
2ψ π= ), it is, however, κ that corresponds to the elongation

and ψ to the neck parameter as can clearly be seen from
figure 2.

Single-particle levels and deformation energies with their
macroscopic and microscopic, shell and pairing, contributions
for protons and neutrons are calculated in every grid point
[14]. The potential energy surfaces in the c B( , , )α or
( , , )ψ κ α deformation space are then analysed around the
saddle-point configuration, the location of which might

Figure 1. Relation between the elongation and neck parameters c and
B of equation (3) and the parameters ψ and κ introduced through
equation (4).

Figure 2. Variety of shapes that are obtained for different ( , )ψ κ
values in the left–right symmetric (α = 0, upper part) and asymmetric
(α = 0.3, lower part) case.
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slightly vary along the Po isotopic chain studied in the present
work. The results are presented in the next section.

Such an investigation is carried out for the LSD model
[5], but also for the four different Moretto parametrizations of
[6]. The LSD model is a LD type parametrization of the
macroscopic nuclear energy, including in particular a curva-
ture correction of power A1 3 and a deformation dependent
congruence-energy term

E a k I A

a k I A B

a k I A B a
Z

A
B

a
Z

A
a I B

1

1

1

exp[ 4.2 ] , (5)

B v v

s s s

c c c c

c

(LSD) 2

2 2 3

2 1 3
2

1 3 coul

2

cg cg

1

2

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

= −

+ −

+ − +

+ + −

where the last term is the so-called congruence energy
introduced by Myers and Świaţecki [18] to take into account
the extra binding appearing near the N = Z line (caused
essentially by I = 0 pairing correlations). Here I Z A1 2= −
is the nuclear isospin and the shape functions Bs, Bc are
obtained as the ratio of the nuclear surface and curvature of
the deformed shape relative to the corresponding spherical
shape. The Coulomb shape function Bcoul is defined in a
analogue way and Bcong is specified in [18]. The parameters
entering the LSD are given as The LSD approach has been
shown, not only to yield an excellent description of nuclear
ground-state masses, but to be also able to reproduce fission-
barrier heights quite precisely [5].

The LD binding energy proposed by Moretto and co-
workers [6] is of the form

E a A a A a A

k
J J

A
a

Z Z

A
1

( 2) ( 1)
(6)

B
M

v s c
( ) 2 3 1 3

2 coul 1 3

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

= + +

× − + + −

with J = N − Z = I A, arguing that, when interpreting the
asymmetry term as an isospin dependence, the term quadratic
in J should be treated as T 2, with T N Z J2 2= ∣ − ∣ = ∣ ∣
which then leads to a T T T J J( 1) ( 2) 42 = + = ∣ ∣ ∣ ∣ +
dependence. In this way a term linear in J∣ ∣ is introduced
without an additional parameter, as this would be the case
with a Wigner term. Let us also note that volume, surface and
curvature term carry here the same isospin parameter k. The
four different parameter sets proposed by Moretto are given in
the table 2 where the last column gives the rms deviation of
the different Moretto parametrizations from the experimental
nuclear masses taking into account the microscopic correc-
tions as determined in [18], values to be compared to a rms
deviation of 0.70 obtained in the LSD for a sample of 2766
nuclear masses. For that same sample of nuclei the Moretto
parametrizations yield rms deviations of the order of 0.80 in
the most favourable case.

To test the capacity of the Moretto parametrizations to
give a fair description of nuclear fission-barrier heights, we
need to generalize equation (6) by introducing shape

functions Bs, Bc and Bcoul, like this has been done in the
LSD model (see equation (5)). Such a calculation has been
carried out and the results are compared below to the ones
obtained in LSD model for nuclei along the Po isotopic
chain.

We have also included in our study a series of LD
parametrizations proposed by Royer [7]. The investigation
carried out by Royer analyses 38 different LD mass formulae,
selectively including or not a curvature term, a diffuseness
and/or an exchange correction term to the Coulomb energy,
different forms of the Wigner term and different powers of the
isospin parameter I Z A1 2= − . In its most general form the
Royer LD mass formula can be written as

( )

E a k I k I k I A

a k I k I k I A B

a k I k I k I A B

a A a
Z

A
B a

Z

A
a

Z

A

a I B E N Z

1

1

1

exp[ 4.2 ] , , (7)

B
R

v v v v

s s s s s

c c c c c

c c c

( ) 2 4

2 4 2 3

2 4 1 3

0
0

2

1 3 coul

2 4 3

1 3

cg cg w

1 2 3

1 2 3

1 2 3

1 2 3

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

= − − −

+ − − −

+ − − −

+ + + +

+ − +

where Ew is the Wigner energy that depends on I and that is
supposed to describe the kink that appears in the nuclear
binding energy along the N = Z line. Its effect is to decrease
the binding energy when N Z≠ . Different expressions have
been used in the different Royer parametrizations:

[ ]

( )

( )

E W I

E W N Z A A

E W N Z A A

E
W N Z

A A

,

exp ,

exp ,

1
.

w
(1)

1

w
(2)

2 0
2

w
(3)

3 0

w
(4) 4

0
2

⎡⎣ ⎤⎦
=

= − −

= − −

=
−

+

There is, of course, no question of displaying the results for
all of the 38 LD parametrizations proposed by Royer. These
are given in [7] in the form of four tables that selectively test
the importance on the quality of the nuclear-mass fit of
different terms, like the curvature energy, the different powers
of the isospin parameter I, the Wigner term of different form
and the Coulomb exchange correction term. That is why we
have selected among each of the four tables the one
parametrization that yields the best rms deviation for the
masses. The parameters of these four LD models are given in
table 3 below.

The results of these calculations will be shown below
together with those obtained with the LSD and the different
Moretto parametrizations.

To complete our investigation on the capacity of different
LD parametrizations to reproduce at the same time nuclear
ground-state masses and fission-barrier heights, we test the
parameter set proposed by Wang and collaborators [8, 9], and
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which is of the form

( )}

E a A a A a
A

I

I A
I A E

E E B

1

2

2

def , (8)

B
W

v s
( ) 2 3

sym 1 3

2
Coul

pair W

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

κ

ξ

= + + −

+ −
+

+

+ +

where E E,Coul pair and EW are respectively the contribution to
the LD energy coming from the Coulomb interaction between
protons, the pairing correlations and the Wigner term (see
above). These terms, as evaluated by Wang [8, 19], are given
by

E a
Z

A
Z

E a A I N Z

E a

Z N

Z

1 0.76 ,

[2 ], for , even,

e e , with

, (9)

c

I

m

Coul

2

1 3
2 3

pair pair
1 3

W W

⎡⎣ ⎤⎦
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η Δ Δ

= −

= −

= −

=

η

−

−

−

where Zm denotes the proton number of the most stable
nucleus of a given isotopic chain and, similarly one can define
a value Nm as the neutron number of the most stable nucleus
of a given isotonic chain, whereas ZΔ and NΔ are given by
the distance of the considered nucleus from the thus defined
stability line. The whole expression in equation (8) is
multiplied by a single shape function B (def), contrary to
the common believe that, working in an approach where the
nuclear volume is considered as incompressible, the LD
volume energy should be deformation independent, that and
terms like the nuclear surface and Coulomb energy carry a
different deform dependence [20]. The shape function B (def)
in the Wang model is given as an expansion in Legendre-
polynomial deformation parameters kβ

( )B b

b
k

g A
k

g A

(def) 1 , with,

2 2
. (10)

k

k k

k

2

2

1
1 3

2

2
1 3⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

∏ β= +

= +

⩾

−

The parameters entering the Wang LD model are displayed in
table 4 below.

3. Results

Let us start with the deformation energy given in figure 3 for
the nucleus 212Po within the LSD model in the ( ,ψ κ) sub-
space (for axially and left–right symmetric shapes). One
identifies the LD saddle point around ( 1.15, 0.20)ψ κ= = −
which is almost 9 MeV high, which is in fairly good agree-
ment with the experimental value which can be extracted
from figure 5 below to be around 10MeV.

This barrier is now compared to what is obtained in the
Moretto model. We display in figure 4 the deformation
energies obtained for the same nucleus 212Po with the four
different Moretto parametrizations.

One immediately notices that, with the noteworthy
exception of the Mi parametrization, none of the other Mor-
etto LD models is able to give a fair description of the fission
energy landscape of the considered 212Po nucleus, by
underestimating the barrier height by almost 4.5 MeV for Miii

and Miv and by even more for Mii.
The question now arises whether the Mi parametrization

is also doing a reasonable job when studying the fission
barriers of other nuclei. To investigate the isospin behaviour
of that LD parametrization, the fission-barrier heights of the
Po isotopes between 188Po and 212Po have been determined
and are compared with the corresponding barrier heights
obtained with the LSD parametrization. This comparison is
shown in figure 5.

The analysis of the four here investigated Royer para-
metrizations gives the following results as shown in figure 6.
One notices that whereas the Royer parametrizations extrac-
ted from tables 1 and 2 of his paper [7] yield quite reasonable
fission barriers for the nucleus 212Po studied here, with barrier
heights of respectively 10.15 and 9.3 MeV, the LD parameter
set of table 3 (bottom left part of figure 6), which turns out to
be the one LD parametrization with the best rms value, yields
a much too large barrier height of 15.5MeV. The barrier
corresponding to the LD parametrization of table 4 on the
bottom right of figure 6, finally, is with 6.65MeV much
too low.

The very best reproduction of the experimental masses is,
according to [8, 9], obtained in the Wang approach with a rms
deviation of only 336 keV. It will be therefore interesting to
study the deformation dependence of such a LD model. When
calculating the expansion coefficients bk, according to
equation (10), that define the shape function B (def) to
determine the deformation behaviour of the Wang LD model,
it turns out, however, that the b b b, ,2 4 6 are all negative for
the nucleus 212Po that we would like to study, which simply
means that instead of having a minimum at the spherical
shape, as it should, the Wang LD model yields a maximum,
and such a LD will not produce a stable solution. It turns out,
in fact, that one has to go to mass numbers of the order of
A 350≈ to find positive b2 values. It is a mystery to us how
stable solutions could have been obtained in such a model.

Figure 3. Macroscopic energy obtained for 212Po in the LSD model.
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The theoretical macroscopic barriers along the polonium
isotopic chain have been compared to the experimental ones,
as estimated by Sagaidak and Andreyev (see [21] and refer-
ences therein). Due to the moderate fissility of polonium
nuclei, the determination of the experimental fission barrier
can be rather involved. Indeed, to make a Po isotope fission

with reasonable (i.e. measurable) probability, some amount of
either thermal or rotational excitation energy has to be
imparted to the system. This can be most efficiently achieved
by means of a heavy-ion fusion reaction. For nuclei with low
to moderately fissility, experimental fission barriers are
therefore commonly determined by a statistical-model ana-
lysis of evaporation-residue and/or fission cross sections, as
measured in heavy-ion collisions around the Coulomb barrier.
The de-excitation of the compound nucleus is then described
with a statistical-model code using standard evaporation
theory, taking into account the competition between neutron,
proton, alpha and gamma decays, as well as fission. The
fission-barrier height is calculated in such a code with an
expression of the form:

B ℓ B ℓ E( ) ( ) , (11)f LD expδ= +

where B ℓ( )LD is the macroscopic fission-barrier height
including the influence of rotation, and Eexpδ is the ground-
state shell-correction energy. The macroscopic fission barrier
is treated as a free parameter, and extracted from the best
description of the experimental cross sections.

It is well admitted that there are a number of uncertain
parameters in such a statistical model analysis (see discussion in
[21]). Let us simply mention here among others: the nuclear
level-density parameter (known as the a af n ratio), the

Figure 4. As figure 3 but obtained in Moretto’s parametrizations.

Figure 5. Comparison between barrier heights obtained along the Po
isotopic chain with the LSD (upper blue) and Moretto Mi (lower red)
LD parametrization.
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damping of shell effects with temperature, and the influence on
angular momentum. With very massive collision partner, there
is an additional uncertainty related by the onset of quasi-fission
reactions. All these uncertainties taken together, makes the
extraction of a so-called experimental fission-barrier height
quite model-dependent. One is therefore confronted with an
intricate interplay of various poorly known influences, which
can lead to more or less un-controlled compensation effects. As
a consequence, the experimental fission-barrier heights can

often be hardly determined with an accuracy better than about
2MeV in the polonium region (see e.g. [21]).

For the n-deficient 188Po, the theoretical barrier extracted
within the LSD model is about 5 MeV. That compares well
with the experimental one which is around 4.5 MeV. A
similarly good agreement is obtained along the whole isotopic
chain: for the N = 126 isotope 212Po, the theoretical barrier of
9 MeV is close to the 10.5 MeV deduced from the experi-
ment. Due to the model-dependence of the experimental
barrier as extracted from heavy-ion fusion reactions, a more
precise comparison of theoretical and experimental macro-
scopic barriers is irrelevant, and the theoretical barrier heights
obtained here can be considered reliable. Any more accurate
analysis awaits improvements in the ability of extracting
precise fission barrier from the experiment.

To get a more complete picture of the capacity of the
different LD models to reproduce the experimental fission
barriers, we compare in figure 7 the experimental barrier

Figure 6. Same as figures 3 and 4 but obtained with Royer’s LD parametrizations. Note the change of scale in the barrier in the bottom
left part.

Table 1. LSD model parameters with the ai values in MeV.

av as ac kv ks kc acg ac1 ac2

−15.4920 16.9707 3.8602 1.8601 2.2938 −2.3764 −10.0 0.7010 0.9181

Table 2. LD parameters of the Moretto model.

Fit av as ac k acoul rms

Mi −15.597 17.32 0.0 1.8048 0.7060 0.76
M ii −14.843 14.843 0.0 1.7196 0.6585 2.06
M iii −15.25 15.17 3.8 1.779 0.6932 0.73
M iv −15.264 15.264 3.6 1.7805 0.6938 0.73
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Table 3. LD parameters of the Royer LD model.

av kv1 kv2 kv3 as ks1 ks2 ks3 ac kc1 kc2 kc3 a0 ac1 ac2 ac3 acg W1 W2 W3 W4

R1 −15.5494 0.0 1.8406 0.0 17.9723 0.0 2.077 0.0 0.0 0.0 0.0 0.0 −4.130 0.0 2.077 0.0 0.0 26.08 0.0 0.0 0.0
R2 −15.7016 0.1622 1.351 0.0 19.6025 1.223 −1.445 0.0 −15.7016 0.1622 1.351 0.0 19.6025 1.223 −1.445 0.0 0.0 0.0 0.0 0.0 0.0
R3 −15.8011 0.0752 1.5133 0.0 20.0578 0.466 −0.223 0.0 −15.8011 0.0752 1.5133 0.0 20.0578 0.466 −0.223 0.0 0.0 0.0 0.794 0.0 0.0
R4 −15.1174 0.0 1.7910 0.0 16.6395 0.0 1.803 0.0 −15.1174 0.0 1.7910 0.0 16.6395 0.0 1.803 0.0 0.0 0.0 0.0 1.514 0.0
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heights with those obtained in the LSD and the Moretto
model Mi, the one that yields the best barrier heights. These
barrier heights are obtained as the difference between the
macroscopic saddle-point energy and the experimental
ground-state energy (i.e. including the experimental micro-
scopic energy corrections). Indeed, due to the topographical
theorem of Świaţecki [22], the total barrier height is just given
as this difference. It is precisely this fact of the quasi absence
of microscopic energy corrections at the LD saddle that
explains why the study of the LD barrier height yields phy-
sically relevant informations on the fission property of a
nucleus (see also [23]). As one can notice from the figure, the
LSD model is very close to the experimental data throughout
the mass region between 200–250, whereas the Moretto
parametrizations yield too low fission barriers by about

1 MeV, at the best (although still within the experiemental
uncertainty range).

To complete our study on the stability of nuclei in the
polonium region we show in figure 8 the proton and neutron
drip lines, as well as the line corresponding to a generalized
fissility parameter, i.e. including the curvature term, x = 1, i.e.
the line at which the LD fission barrier vanishes.

4. Conclusions

The following conclusions can be drawn from our analysis:

• When performing macroscopic–microscopic calculations
to determine the nuclear deformation properties, there is
no guarantee that a macroscopic model that yields
excellent ground-state masses, will also be able to
produce reasonable deformation properties, in particular
fission-barrier heights.

• The LSD has been shown to yield not only excellent
ground-state properties, in particular masses, but also to
produce fission-barrier heights that are in good agreement
with the experimental data.

• Out of the four LD-type parametrizations recently
proposed by Moretto and co-workers, only Mi gives a
fair description of fission-barrier heights, quite close in
fact to the ones obtained in the LSD model.

• Other LD type parametrizations like the ones by Royer
[7] have also been tested. They yield, at best, barrier
heights of the quality of the Mi parametrization
discussed here.

• The Wang LD model that, according to [8] yields the best
agreement with experimental nuclear masses, turns out to
fail to produce any reasonable deformation energy.

One may finally be concerned about the adequacy of the
four-dimensional model space chosen in our MFH shape
parametrization. The simple fact that the results obtained in
this approach are, indeed, extremely close to the ‘optimal LD
shapes’ produced by Strutinsky’s variational method [15],
seems to indicate that our present version of the MFH shape
parametrization must be pretty close to physical reality. Even
if we believe to have taken into account the most essential
degrees of freedom, improvements of our approach are well
concevable. One of them could consist in allowing for dif-
ferent isospin ratios in the two nascent fragments. Tests in
such a direction could well be carried out in the future. Doing
so, one has, however, to keep in mind to keep the deformation
space within reasobale limits to make calculations still
tractable.

Table 4. LD parameters of the Wang LD model.

av as asym ac κ ξ apair aW g1 g2

−15.5485 17.4663 29.1174 0.7128 1.3437 1.1865 −6.2299 1.0490 0.01037 −0.5071

Figure 7. Comparison of fission-barrier heights obtained in the LSD
and the Moretto Mi parametrization with the experiment in the mass
range 200–250.

Figure 8. Comparison of location of the proton and neutron drip
lines obtained in the LSD and Moretto LD models, as well as the
fissility x = 1 line, at which the LD fission barrier vanishes.
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