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Abstract
Static self-consistent methods usually allow one to determine the most probable fission
fragments mass asymmetry. We have applied random neck rupture mechanism to the nuclei in
the configuration at the end of fission paths. Fission fragment mass distributions have been
deduced from the pre-scission nuclear density distribution obtained from the self-consistent
calculations. Potential energy surfaces as well as nuclear shapes have been calculated in the fully
microscopic theory, namely the constrained Hartree–Fock–Bogoliubov model with the effective
Gogny D1S density-dependent interaction. The method has been applied for analysis of fission
of 256,258Fm, 252Cf and 180Hg and compared with the experimental data.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Fission is one of the dominant decay channels of the heaviest
nuclei. Physics of this process is crucial in determining sta-
bility of heavy and super-heavy isotopes. One of the basic
observables of fission, obtained directly in experiment, is
fragment mass distribution. Measured yields allow one to
determine the type of fission as well as to deduce the prop-
erties of the mother nucleus. Prediction of the charge, mass
and total kinetic energy (TKE) distributions of fission frag-
ments is still a challenging task for the theory of nuclear
fission. A number of attempts have been made to describe the
mechanism of sharing nucleons between fission fragments
since the spontaneous fission phenomenon was discovered.

Historically, in the first theoretical description of fission
the macroscopic liquid drop model was used. In this approach
the competition between Coulomb repulsion and surface
energy of deformed charged liquid drop of nuclear matter is
analyzed. The mass distributions calculated within this
method are symmetric, as a consequence of ignoring micro-
scopic effects, that are responsible for octupole deformation
of mother nucleus and deformations of the fragments [1]. The
more sophisticated approach, scission point model [2],

assumes that fission properties can be derived from the scis-
sion point configuration that is well defined in the evolution
of fissioning nucleus. The scission point is described as a
configuration of two deformed touching fragments. The
potential energy is calculated using macroscopic–microscopic
model. The probability of certain fragmentation is in inverse
proportion to the scission point potential energy. This method
allows one to determine the probability, that the certain
number of nucleons will be incorporated into one of the
fragments from the energy of the scission configuration.

Within improved scission point model [3–5] one can
obtain distribution of fission fragments and the mean value of
TKE. In comparison to [2] this model allows one to calculate
the energy of interaction between fragments and deformation
energy at the scission point configuration, which results in
obtained mass and TKE distributions. The main disadvantage
of this treatment is a large number of phenomenological
parameters, e.g. touching distance of fissioning system, sur-
face tension coefficient with parameters fitted to the magic
nuclei.

The authors of the microscopic scission point method [6]
also deduce fission properties as fragment mass and TKE
from the analysis of dinuclear system that may be created

| Royal Swedish Academy of Sciences Physica Scripta

Phys. Scr. 90 (2015) 114003 (10pp) doi:10.1088/0031-8949/90/11/114003

0031-8949/15/114003+10$33.00 © 2015 The Royal Swedish Academy of Sciences Printed in the UK1

mailto:warda@kft.umcs.lublin.pl
http://dx.doi.org/10.1088/0031-8949/90/11/114003
http://crossmark.crossref.org/dialog/?doi=10.1088/0031-8949/90/11/114003&domain=pdf&date_stamp=2015-10-29
http://crossmark.crossref.org/dialog/?doi=10.1088/0031-8949/90/11/114003&domain=pdf&date_stamp=2015-10-29


after scission. Energies of nuclei are obtained in the micro-
scopic self-consistent calculations. Depending on mass
asymmetry and deformation of the fragments, the energy of
the system is calculated and fission probability is determined.
In this approach, strong assumptions on distance between
fragments and deformation of the fragments at scission point
have to be made.

Another approach includes dynamics of fission in the
analysis. It treats the nuclear shape evolution as a Brownian
motion of nuclear system on the potential energy surface
(PES) [7, 8]. The direction of the motion in the five-dimen-
sional deformation space is determined randomly using
Metropolis’ method. The considered PES is calculated within
the macroscopic–microscopic model, where the potential
energy consists of liquid drop part (with deformation-depen-
dent coefficients) and microscopic corrections. During a
‘random walk’ on this surface each shape might be obtained
with accordance to its statistical weight. The dimensional
depletion causes agreement with experimental mass dis-
tribution to get worse. The additional parameter—critical
neck radius was introduced, and its value results much from
the obtained fragment mass yields.

There were also several attempts to describe fragment
mass distribution in a fully microscopic way, i.e. using
Gaussian overlap approximation (GOA) of the time-depen-
dent generator coordinate method (GCM) [9] or Hartree–
Fock–Bogoliubov (HFB) method with Skyrme energy func-
tional [10]. The GCM+GOA approach allows one to include
dynamical effects on the description of the fission process.
The probability of mass division is proportional to the total
flux of the wave function through the scission point in a
particular configuration. Including dynamic effects gives
much better agreement with data in comparison with static
calculations. Especially, the broadness of fragment mass
distribution is closer to the experimental one.

The same formalism (GCM+GOA) was recently applied
to describe low energy fission [11]. The mass and TKE dis-
tributions were calculated and compared to the experi-
mental data.

The HFB method with Skyrme energy functional was
applied for description of the induced fission process [10].
The authors discussed the impact of the triaxiality and dis-
continuity of the PES in the scission point region on the
fragment mass distribution. Quasi-particle occupations in the
nascent fragments were localized and attributed to each
fragment.

Dynamic calculations at low excitation energy were
performed using Langevin approach [12]. Shell and pairing
effects, as well as dissipation and fluctuation were included in
the model. Out of fragment mass distribution it was also
possible to obtain the time scale of fission process. The
authors made a strong assumption, that both nascent frag-
ments have the same deformation, which argues against
several observations of shapes of fission products [13].

Published lastly, GEF code [14] predicts surprisingly
good fission fragment mass yields with a very simple con-
struction of the PES of fissioning nucleus. Namely, macro-
scopic potential is modified by parabolic corrections to

simulate shell effects. Once fitted it reproduces a wide range
of experimental fission results.

The main inspiration for our investigations is the idea
proposed by Brosa et al [15–17]. The authors assume direct
dependence of fragment mass distribution on the random neck
rupture mechanism of mother nucleus in its pre-scission
shape. The method describes splitting of a nucleus as a con-
sequence of hydrodynamic fluctuations induced by random
vibrations of the nuclear surface. The pre-scission deforma-
tion of the fissioning nucleus has a decisive influence on the
fragment mass yield. The probability, that the rupture of the
neck occurs in a certain position, decreases with the radius of
a neck. In this method no assumption on properties of fission
fragments is needed. This simple macroscopic model, allows
one to describe many fission properties such as the TKE
distribution and the dependence of neutron multiplicity on
fragment masses.

We apply the HFB model, employing finite-range Gogny
forces to calculate the PES and mass distribution during fis-
sion. The previous investigations performed with this model
have proven that it describes with reasonable accuracy the
experimental data of the most relevant properties of unstable
nuclei for different decay modes, such as spontaneous [18–
20] and induced [21] fission, and the exotic process of cluster
radioactivity [23]. Also, the asymmetric fission of 180Hg
isotope was successfully explained within the microscopic
approach [24]. In this paper detailed analysis of the scission
point configuration determined in the microscopic calcula-
tions is performed. From the single mass distribution we
deduce possible fragment mass asymmetries.

This paper is constructed as follows: in the second
section details of calculations are described. Results obtained
for four isotopes are presented in the third section. Finally, the
fourth section includes our conclusions and discussion of the
results.

2. Method

The analysis of the scission point configurations requires rea-
listic description of the nuclear matter mass distributions at
large deformations. They may be provided by the calculations
performed within the self-consistent constrained HFB model
with the effective Gogny density-dependent interaction [26].
The popular D1S parametrization [27] was used. The computer
code of [28] was applied for numerical calculations. The PES
was determined in the deformation space of quadrupole and
octupole deformations. In the PES the fission paths were
determined as continuous lines connecting local minima of
energy for fixed value of quadrupole moment. In each point of
the constrained calculations nuclear matter spatial distribution
can be easily derived from the single-nucleon wave functions.

2.1. The pre-scission point configuration

The scission point is defined as the configuration of the nuclear
system in which molecular shape (i.e. two fragments connected
by a thin neck) of a mother nucleus converts into two separate
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fragments. In some simple models it is represented by the
configuration of two touching nascent nuclei. In fact, when a
realistic leptodermous density distribution is taken into
account, one can find that during the splitting nuclear matter,
density in the neck decreases gradually from the bulk value to
zero, while surfaces of the fragments overlap. Thus we cannot
define one scission configuration, but rather a scission region in
which two fragments are being separated.

In the self-consistent calculations of the PES it is easy to
locate the ranges of the scission region. Increasing constraint
on deformation parameter, e.g. quadrupole moment, leads to
more elongated shape of a nucleus with a thinner neck. At
some point sudden change takes place. The energy mini-
mization procedure leads not to molecular shape, but a
solution with two nuclei separated by a few fm distance is
found. Such a dinuclear system usually has energy much
lower than the compound nucleus calculated in the previous
step. Surely, scission take place between these two config-
urations. In this way the last point on the fission valley before
rupture should be called pre-scission point and the next point
with two separated fragments post-scission point. The line
connecting pre-scission points on the PES should be called
scission line (or more precisely pre-scission line), see figure 1.
The binuclear configuration beyond scission line, obtained in
the self-consistent calculations with constraints on quadrupole
and octupole moments, corresponds to its pre-scission
neighbour. Fragment mass asymmetry is not more than a few
nucleons different from the asymmetry of the molecular shape
split in the thinnest neck. Nevertheless, nuclear matter dis-
tribution and deformation of the fragments are very distinct in
both cases and more careful studies should be made to
determine the post-scission configuration [6, 29, 30]. Inter-
mediate configurations of the scission region are hard to
obtain in the self-consistent procedure, as they require mul-
tiple constraints, including e.g. neck parameter [23, 24].

The evolution of shape along fission path goes smoothly
with increase of deformation up to the pre-scission point. It
was found [18, 24], that many fission properties are deter-
mined by the shape of the PES from saddle to scission, where
a nucleus takes a molecular shape. Especially the configura-
tion in the pre-scission point is crucial in the fission process as
no further evolution of a compound nucleus is allowed.

In most cases determination of the scission line is trivial,
as in the constrained calculations many observables essen-
tially change their values: e.g. energy, hexadecapole moment,
neck thickness. Such a line can be easily noticed in figure 1
between Q 130 b2 = and 250 b as rapid change of energy of
the system takes place along scission line.

In the case of symmetric fission path in 258Fm at
Q 0 b3

3 2= it is not so clear as molecular shape converts quite
smoothly into the dinuclear system without a sudden drop of
energy. It can be easily found in the panel (a) of figure 2,
where fission path smoothly converts into hyperbolic decrease
characteristic for Coulomb repulsion between separated
fragments. Thus fall of energy cannot be a criterion to
determine the scission point. Detailed calculations show only
a tiny kink with change of energy derivative when the neck is
about to disappear. To prove that this is the real scission
point, first we calculate neck parameter QN defined as:

Q z r
z

a
z r, exp d d , (1)N

2

0
2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟∫ ρ= ⊥ ⊥

Figure 1. The PES of 258Fm. The white lines correspond to the
fission paths.

Figure 2. The fragment of the compact fission path of 258Fm in the
vicinity of scission point. (a) The energy, (b) the neck parameter QN

and (c) the density distance function Dρρ′ between two neighbouring

configurations as a function of the quadrupole moment Q2.
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where a0 is a parameter describing width of a neck region
with an arbitrary chosen value a 10 = fm. QN describes the
number of particles in the neck region. The middle panel of
figure 2 shows changes of a neck parameter along the fission
path. In the first part of the fission path QN decreases slowly,
whereas beyond Q 129 b2 = it drops down rapidly. It means
that a sudden change in density distribution takes place here.
Neck parameter takes small positive and almost constant
values from Q 130 b2 = . This is characteristic behaviour of
QN for two separated nuclei when only tails of density
distribution of both fragments contribute to QN.

As was mentioned, scission point may be defined as a
configuration, where rapid change of matter distribution from
molecular to dinuclear system occurs. To check discontinuity
in changes of density of nucleons it is useful to follow the
procedure of [31]. We may define the density distance func-
tion D ,ρρ given by:

( ) ( )D r r rd , (2), ∫ ρ ρ= − ′ρρ

where r( )ρ and r( )ρ′ are the the local spatial densities,
calculated in two following steps during the nuclear shape
evolution. This function takes small values during smooth
evolution of nuclear shape. When two different configurations
are compared it is manifested by a sharp single peak.

In the panel (c) of figure 4 we can find again that function
D ,ρρ is four times larger at Q 130 b2 = in comparison to the
neighbouring deformations. We can deduce rapid change of
configuration between solutions at Q 129 b2 = and at
Q 130 b2 = , namely rupture of the neck is observed.

All above-mentioned arguments show that at Q 129 b2 =
pre-scission point can be found on the symmetric fission path
of 258Fm.

2.2. Random neck rupture mechanism

It was proven in [24, 25] that the structure and basic prop-
erties of the nascent fragments are preliminarily determined in
the pre-scission configuration of fissioning nucleus. In the
pre-scission point two fragments are already created in the
form of two nuclei connected by a neck.

The mass numbers A1 and A2 of fragments in molecular
configuration before scission may be obtained in the simple
procedure. First, one has to determine linear density of a

nucleus:

z r z r r( ) 2 ( , )d , (3)
0

∫σ π ρ=
∞

⊥ ⊥ ⊥

where z r( , )ρ ⊥ is the spatial density of nuclear matter.
Referring to figure 3, the positions zi

half indicate the average
value between i

maxσ in the fragment and minσ in the neck.
There are two points, that fulfill this condition for each
fragment: inner (zi,in

half) and outer (zi,out
half). The sections of the

nucleus between these points are well established central parts
of the nascent fragments. The outer parts (z z (out)1

half< and
z z (out)2

half> ) also belong to the fragments. The central part
of the pre-scission nucleus contains both the neck nucleons as
well as nucleons associated with the each side of a nucleus.
Therefore, to get the size of a fragment one has to simulate the
inner tip of a fragment by the outer one (marked by dashed
lines in figure 3) and integrate the volume of the pre-scission
nucleus between zi,out

half and zi,in
half and double of the outer part.

Numbers of neutrons and protons are the integers closest to
the obtained values.

This method is similar to the scheme described in [24].
Most of the nucleons of the pre-scission configuration are

Figure 3. Linear density of 258Fm in its pre-scission shape.

Figure 4. The upper panel shows the shape of the 258Fm at a density
of 0.08 fm0

3ρ = − in the pre-scission point on the symmetric path.
The number of nucleons as a function of symmetry axis z (middle
panel) and the probability of division of nucleons between nascent
fragments, depending on the cross section of the neck in a certain
position calculated using equation (7) (lower panel).
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localized in the fragments, while a few of them (up to 20)
create the neck. They will be incorporated to the nascent
fragments during scission. Usually it is assumed, that the neck
is ruptured in its thinnest place. In this way one can calculate
how the neck nucleons are shared and the most probable mass
asymmetry can be found.

Nevertheless, following the idea presented in [16, 17],
the probability P of rupture of a neck depends on the energy
Ecut needed to create a cut in the considered position z along
the symmetry axis. For each position z we can calculate
particular fragment mass asymmetry.

The probability P of the rupture of a neck, leading to
fragment mass asymmetry A A1 2 reads:

P A A E T( , ) exp( ), (4)1 2 cut∼ −

where T E A12 sc= is temperature of the pre-scission
deformation. Excitation energy at scission:

E E E , (5)sc
g.s. def

sc= −

which was gained during the evolution from the ground state
to the pre-scission deformation. Ecut depends on the linear
density z( )σ of a neck in a position of z that corresponds to
required fragment mass asymmetry. Note that two values of z
give the same mass asymmetry but with lighter and heavier
fragment placed at opposite sides. Cut energy is defined as:

E z z( ) 2 ( ). (6)cut γσ=

The expression for surface tension coefficient
Z A0.9517[1 1.7826(1 2 ) ]2γ = − − was taken from [32]

and the linear density of a neck is given by equation (3).
Finally, the probability for the rupture, with corresponding
division of nucleons between fragments, takes the form:

P A A z T( , ) exp[ 2 ( ) ]. (7)1 2 γσ= −

This method is visualized in figure 4, where the case of
258Fm symmetric mode is considered. The top panel shows
the shape of the nucleus at the half-bulk density 0.08ρ =
fm−3 in the pre-scission point [18]. Each neck’s rupture
position at the z axis is correlated with specific mass division
between fragments shown in the middle panel of figure 4. The
probability of the rupture decreases strongly, while the neck
becomes thicker, according to equation (7). In consequence,
mass yield presented in the lower panels of figure 4 is quite
narrow with the most probable position of a rupture, corre-
sponding to the equal split into two 129Sn isotopes.

3. Results

It was shown, that fission in 258Fm represents specific,
bimodal character [33]. Its mass yield is very narrow with a
single peak. The TKE distribution is compounded of the low
and high energy modes with equal abundance. They can be
linked to the theoretically described asymmetric and sym-
metric fission channels on the PES, respectively [18], which

Figure 5. (a) Density distribution of 258Fm in configuration close to
the scission on the symmetric fission path (Q 129 b20 = ,
Q 0 b30

3 2= ) compared with the density distribution of 124Cd
(spherical shape). (b) Linear density of 258Fm in its pre-scission
shape (continuous line) and 124Cd (dotted lines). Profiles of density
for cross sections taken in (c) r 0=⊥ fm (total, neutron and proton
density) and (d) z 7.1= − fm, z = 7.1 fm.
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are visible on the PES in figure 1. A nucleus in its ground
state is quadrupole deformed (Q 16 b20 = ). The symmetric
path goes along reflection symmetric shapes and terminates at
deformation close to Q 129 b20 = , as was discussed in the
previous section. The density distribution corresponding to
this pre-scission configuration is shown in the upper part of
figure 5(a). The shape of a nucleus can be described as a
molecular system of two spherical 124Cd isotopes connected
by a thin neck containing four protons and six neutrons. The
fragments conserve N Z ratio of mother nucleus and repro-
duce the shape and mass of the outer part of the fragments
before scission. In panels (c) and (d) of figure 5 density
profiles of 258Fm and two 124Cd are compared along z axis
and along perpendicular axis at the thickest part of the frag-
ments. Out of the neck region very good agreement can be
noticed.

The alternative asymmetric path arises behind the barrier
from Q 90 b20 ≈ and Q 20 b30

3 2≈ and leads towards con-
figuration close to Q 239 b20 = , Q 67 b30

3 2= . The analysis
of density profile of asymmetric pre-scission deformation is
shown in figure 6(a). This molecular configuration consists of
spherical double-magic 132Sn and prolate 106Mo. In this case,
a neck contains eight protons and twelve neutrons. Again, in
panels (c) and (d) of figure 6, nice reproduction of the density
profiles of mother nucleus by nascent fragments can be found.

In the symmetric mode ten neck nucleons should be
shared between fragments in the scission point. The most
probable split of symmetric pre-scission shape leads to the
production of two 129Sn isotopes. In the asymmetric fission
channel 143Cs and 115Rh isotopes are most likely created. If
we assume, that neck does not have to be cut in the thinnest
place, these numbers would convert into stretched fragment
mass distribution. To this end the procedure presented in the
previous section is applied twice, both for symmetric and
asymmetric pre-scission shapes. From the density distribution
linear density is calculated in each case, which can be seen in
figures 5(b) and 6(b). Next, fission probability as a function of
mass asymmetry is calculated from equation (7). The results
are combined with assumption of equal abundance of both
modes and plotted in figure 7 by a dotted line. In the same
figure experimental results taken from [33] are shown. One
can find that symmetric peak is much narrower than the
experimental one. Asymmetric mode produces two additional
side peaks at A A143, 115H L≈ ≈ which are not visible in
the experimental data. Nevertheless asymmetric peaks fit in
the region of the tail of mass yield of 258Fm.

The main reason of inconsistency is lack of dynamic
effects in the present analysis. In the final part of evolution of
a nucleus, the PES is quite soft in Q3 direction and wide
fission valleys are developed (see figure 1). Up to now we
have focused only on two pre-scission configurations at the
end of symmetric and asymmetric fission paths, but one may
also consider other scission points, deviated from the ener-
getically most favourable. Such configurations give fragment
mass distributions slightly shifted in comparison to the one of
the most probable mass fragment (see figure 8). Analysis of
the potential energy along scission line as a function of the

Figure 6. Similar as in figure 5 but for pre-scission configuration on
asymmetric path (Q 238 b20 = , Q 66.7 b30

3 2= ). Density distribu-
tion and profiles are compared with 132Sn (in its spherical ground
state) and 106Mo (Q 6 b20 = ).
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mass fragment (figure 9) shows that changes of energy are
rather small in the close neighbourhood of these points, with
non-negligible shifts of the most probable fragmentation. That
is consistent with results presented in [11]. One may expect,
that the probabilities of shape evolution towards these scis-
sion points should be comparable. Combining results along
the whole scission line with weights corresponding to the
probability of reaching given scission configuration should
allow one to reproduce experimental data. The exact prob-
ability may be obtained in dynamical calculations described
e.g. in [9]. From each pre-scission shape fragment mass dis-
tribution can be deduced. It is planned to involve a combi-
nation of these two effects in our future investigations, which
should allow us to obtain broader mass yield.

The fission properties of 256Fm differ substantially from
its neighbour isotope with two more neutrons. Its spontaneous
fission half-life is seven orders of magnitude longer and
symmetric fission channel is not active. The detailed expla-
nation of these facts can be found in [18]. In 256Fm only the
asymmetric channel of fission is visible in the experiment.
Analysis of the density profile of the pre-scission configura-
tion (figure 10) indicates that the nascent fragments are close
to the 134Te and 108Mo with six protons and eight neutrons in
a neck region. From the linear density function z( )σ presented
in figure 10(b) the fission fragment mass distribution are
obtained within the presented method. The results are shown

Figure 7. Fragment mass distribution for the spontaneous fission of
258Fm obtained within presented method. The sum of distributions
(dotted line), corresponding to the symmetric and asymmetric paths
is compared with the experimental yield, taken from [33].

Figure 8. Fragment mass distributions deduced from the pre-scission
configurations at the end of symmetric and asymmetric path (solid
lines) and in neighbourhood (dashed lines).

Figure 9. The potential energy of 258Fm along the scission line as a
function of the most probable fragmentation. The blue squares
correspond to the distributions plotted in figure 8.

Figure 10. Similar as in figure 5 but for pre-scission configuration of
256Fm (Q 230 b20 = , Q 68 b30

3 2= ). Density distribution and
profiles are compared with 134Te (Q 1 b20 = ) and 108Mo (Q 6 b20 = ).
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in figure 11 together with experimental mass yields. The most
probable mass of light fragment is reproduced with good
accuracy. The heavy fragment peak is slightly shifted in
comparison to the experimental one. The broadness of cal-
culated distribution is reduced.

The 252Cf represents nuclei that decay through the asym-
metric fission mode (see [29, 30]). In figure 12 the density
profile of 252Cf in its pre-scission deformation is shown, as well

as its linear density function. The fragment mass distribution is
presented in figure 13. In this case, the most abundantly pro-
duced fission light fragment is not reproduced within the pre-
sented method. The predicted mass distribution of the lighter
fragment is shifted towards heavier masses in comparison to
the experimental data. Probable explanation of these dis-
crepancies comes from the fact, that post neutron emission
measurements are presented [34] and average neutron multi-
plicity is larger in the region of the most probable lighter
fragment [35]. Similar to the results of 256Fm, theoretical mass
distribution is too narrow in comparison to the observed yield.

The recent experimental studies have brought unexpected
observations of β-delayed fission of 180Hg [36, 37]. The most
abundantly produced fission fragments have fragment mass
asymmetry A A 100 80H L = instead of expected fragmen-
tation leading to two magic 90Zr isotopes. Detailed micro-
scopic analysis [24] explained the dominant character of
asymmetric fission valley. The 180Hg, as a product of electron
capture in 180Tl, is created with excitation energy not larger
than 10.44 MeV. In this nucleus the pre-scission point is in
the vicinity of a saddle around 12MeV above the ground
state. Scission point excitation energy should be taken equal
to maximal energy available for the nucleus in its ground
state. Density distribution in the pre-scission point as well as
function z( )σ are plotted in figure 14. Fragment mass dis-
tribution is compared with experimental data in figure 15. The
most probable heavy and light masses (AH = 100 and AL = 80)
are well reproduced. Calculated yield is too narrow in com-
parison with the observed one. The peak-to-valley ratio is not
reproduced as well.

4. Summary

The presented results confirm that microscopic description of
the pre-scission configuration provides a lot of information
about physics of fission. Applying the macroscopic method
proposed by Brosa to the self-consistently calculated nuclear
matter density distribution, we have deduced ambiguous

Figure 11. Fragment mass distribution for the spontaneous fission of
256Fm isotope in comparison to the experimental data, taken
from [34].

Figure 12. Similar as in figure 5 but for pre-scission configuration of
252Cf (Q 217 b20 = , Q 66.5 b30

3 2= ). Density distribution and
profiles are compared with 102Zr (Q 5.5 b20 = ) and 130Sn (spherical).

Figure 13. The same as in figure 11 but for 252Cf isotope.
Experimental data were taken from [34].
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fragment mass yield. The major characteristics of experi-
mentally measured mass distributions, i.e. the most probable
masses of heavy and light fragment are reproduced with
reasonable accuracy.

The broadness of yields is too narrow as dynamics of the
process was omitted in current investigation. The value of
temperature used in our studies may also affect the results.

Between pre- and post-scission configuration energy usually
significantly decreases. In consequence one may assume lar-
ger values of excitation energy and temperature, which leads
to broadening peaks of mass distribution. In the neck rupture
mechanism we have also ignored quantal properties of
nucleons, which may impact on fragment mass distribution.
We have shown that even in asymmetric fission one of the
fragments is close to spherical double-magic nucleus. Strong
shell effects in the fragments as well as quantal nature of the
neck nucleons may modify the macroscopic model of random
neck rupture. All presented distributions, deduced from our
static calculations, are much narrower in comparison with
experimental ones. Further investigations require inclusion of
dynamical effects. It would allow one to reproduce required
broadness of mass yields.

Acknowledgments

This work is partially supported by National Science Center
in Poland by grant No. 2013/11/B/ST2/04087.

References

[1] Nix J R and Swiatecki W J 1965 Nucl. Phys. 71 1
[2] Wilkins B D, Steinberg E P and Chasman R R 1976 Phys. Rev.

C 14 1832
[3] Andreev A V, Adamian G G, Antonenko N V, Ivanova S P and

Scheid W 2004 Eur. Phys. J. A 22 51
[4] Andreev A V, Adamian G G, Antonenko N V and Ivanova S P

2005 Eur. Phys. J. A 26 327
[5] Andreev A V, Adamian G G, Antonenko N V and

Andreyev A N 2013 Phys. Rev. C 88 047604
[6] Panebianco S, Sida J-L, Goutte H, Lemaître J-F, Dubray N and

Hilaire S 2012 Phys. Rev. C 86 064601
[7] Randrup J and Möller P 2011 Phys. Rev. Lett. 106 132503
[8] Randrup J, Moller P and Sierk J 2011 Phys. Rev. C 84

034613
[9] Goutte H, Berger J, Casoli P and Gogny D 2005 Phys. Rev. C

71 024316
[10] Schunck N, Duke D, Carr H and Knoll A 2014 Phys. Rev. C 90

054305
[11] Younes W, Gogny D and Schunck N 2013 Proc. 5th Int. Conf.

on Fission and Properties of Neutron Rich Nuclei (Sanibel
Island, FL, USA) ed J H Hamilton and A V Ramayya
(Singapore: World Scientific) p 605

[12] Arimoto Y and Chiba Y 2013 Phys. Rev. C 88 044614
[13] Johansson S 1965 Nucl. Phys. 64 147
[14] http://hal.in2p3.fr/in2p3-00976648
[15] Brosa U and Grossmann S 1983 Z Phys. A 310 177
[16] Brosa U 1988 Phys. Rev. C 38 1944
[17] Brosa U, Grossmann S and Müller A 1990 Phys. Rep. 197 167
[18] Warda M, Egido J L, Robledo L M and Pomorski K 2002

Phys. Rev. C 66 014310
[19] Warda M and Egido J L 2012 Phys. Rev. C 86 14322
[20] Dubray N, Goutte H and Delaroche J P 2008 Phys. Rev. C 77

014310
[21] Berger J F, Girod M and Gogny D 1984 Nucl. Phys. A 428 23c
[22] Egido J L and Robledo L M 2000 Phys. Rev. Lett. 85

1198
[23] Warda M and Robledo L M 2011 Phys. Rev. C 84 044608
[24] Warda M, Staszczak A and Nazarewicz W 2012 Phys. Rev. C

86 24601

Figure 14. Similar as in figure 5 but for pre-scission configuration of
180Hg (Q 130 b20 = ,Q 30 b30

3 2= ). Density distribution and profiles
are compared with 90Zr (spherical) and 72Ge (Q 8 b20 = ).

Figure 15. The same as in figure 11 but for 180Hg isotope.
Experimental data were taken from [37].

9

Phys. Scr. 90 (2015) 114003 M Warda and A Zdeb

http://dx.doi.org/10.1016/0029-5582(65)90038-6
http://dx.doi.org/10.1103/PhysRevC.14.1832
http://dx.doi.org/10.1140/epja/i2004-10017-9
http://dx.doi.org/10.1140/epja/i2005-10179-x
http://dx.doi.org/10.1103/PhysRevC.88.047604
http://dx.doi.org/10.1103/PhysRevC.86.064601
http://dx.doi.org/10.1103/PhysRevLett.106.132503
http://dx.doi.org/10.1103/PhysRevC.84.034613
http://dx.doi.org/10.1103/PhysRevC.84.034613
http://dx.doi.org/10.1103/PhysRevC.71.024316
http://dx.doi.org/10.1103/physrevc.90.054305
http://dx.doi.org/10.1103/physrevc.90.054305
http://dx.doi.org/10.1103/PhysRevC.88.044614
http://dx.doi.org/10.1016/0029-5582(65)90847-3
http://hal.in2p3.fr/in2p3-00976648
http://dx.doi.org/10.1007/bf01415223
http://dx.doi.org/10.1103/PhysRevC.38.1944
http://dx.doi.org/10.1016/0370-1573(90)90114-H
http://dx.doi.org/10.1103/PhysRevC.66.014310
http://dx.doi.org/10.1103/PhysRevC.86.014322
http://dx.doi.org/10.1103/PhysRevC.77.014310
http://dx.doi.org/10.1103/PhysRevC.77.014310
http://dx.doi.org/10.1016/0375-9474(84)90240-9
http://dx.doi.org/10.1103/PhysRevLett.85.1198
http://dx.doi.org/10.1103/PhysRevLett.85.1198
http://dx.doi.org/10.1103/PhysRevC.84.044608
http://dx.doi.org/10.1103/PhysRevC.86.024601


[25] Younes W and Gogny D 2011 Phys. Rev. Lett. 107 132501
[26] Decharge J and Gogny D 1980 Phys. Rev. C 21 1568
[27] Berger J F, Girod M and Gogny D 1991 Comput. Phys.

Commun. 63 365
[28] Egido J L, Robledo L M and Chasman R R 1997 Phys. Lett. B

393 13
[29] Warda M, Pomorski K, Egido J L and Robledo L M 2005

J. Phys. G: Nucl. Part. Phys. 31 S1555
[30] Warda M, Pomorski K, Egido J L and Robledo L M 2005 Int.

J. Mod. Phys. E 14 403

[31] Dubray N and Regnier D 2012 Comput. Phys. Commun.
183 2035

[32] Blocki J, Randrup J, Swiatecki W J and Tsang C F 1977 Ann.
Phys., NY 105 427

[33] Hulet E K et al 1986 Phys. Rev. Lett. 56 313
[34] http://ie.lbl.gov/fission/endf349.pdf
[35] Zeynalov S, Hambsch F J and Obertstedt S 2011 J. Korean

Phys. Soc. 59 1396
[36] Andreyev A N et al 2010 Phys. Rev. Lett. 105 252502
[37] Elseviers J et al 2013 Phys. Rev. C 88 044321

10

Phys. Scr. 90 (2015) 114003 M Warda and A Zdeb

http://dx.doi.org/10.1103/PhysRevLett.107.132501
http://dx.doi.org/10.1103/PhysRevC.21.1568
http://dx.doi.org/10.1016/0010-4655(91)90263-K
http://dx.doi.org/10.1016/S0370-2693(96)01602-4
http://dx.doi.org/10.1088/0954-3899/31/10/031
http://dx.doi.org/10.1142/S0218301305003193
http://dx.doi.org/10.1016/j.cpc.2012.05.001
http://dx.doi.org/10.1016/0003-4916(77)90249-4
http://dx.doi.org/10.1103/PhysRevLett.56.313
http://ie.lbl.gov/fission/endf349.pdf
http://dx.doi.org/10.3938/jkps.59.1396
http://dx.doi.org/10.1103/PhysRevLett.105.252502
http://dx.doi.org/10.1103/PhysRevC.88.044321

	1. Introduction
	2. Method
	2.1. The pre-scission point configuration
	2.2. Random neck rupture mechanism

	3. Results
	4. Summary
	Acknowledgments
	References



