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Performance of the Fourier shape parametrization for the fission process
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The availability of realistic potential energy landscapes in restricted deformation space is the prerequisite
starting point for modeling several nuclear properties and reactions, namely large-amplitude phenomena. The
achievement of a macroscopic-microscopic approach, employing an innovative four-dimensional (4D) nuclear
shape parametrization based on a Fourier expansion, and a realistic potential-energy prescription, is presented. A
systematic analysis of the 4D deformation energy landscapes over an extended region of the nuclear chart from Pt
to Pu is performed, searching for fission valleys, as well as exotic ground and metastable states. The significance
of the approach for predicting mass partitioning in low-energy fission is demonstrated. The ability of the model
to address shape-driven effects, like stable octupole and very elongated isomeric configurations, is discussed,
too. The proposed approach constitutes an efficient framework for an extended model of fission dynamics over a
wide range of fissioning mass, excitation energy, and angular momentum.
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I. INTRODUCTION

Nuclear fission involves the decay of an initially compact
compound system into two distinct fragments. The intricate
re-arrangement of the nucleons which occurs along the
evolution of the shape from the mononuclear to the di-nuclear
configuration represents a process difficult to model. At the
same time, it is a rich laboratory for learning about fundamental
nuclear properties [1]. In spite of the impressive theoretical
progress made in recent years, guided by increasingly inno-
vative experiments, a unified theoretical framework for fission
has not emerged yet. Powerful models do yet exist. Their
validity is, in a vast majority of cases, limited to a specific
range in either fissioning mass, excitation energy, or angular
momentum. This range depends on the specific assumptions
used to make the calculation tractable. Indeed, accounting
simultaneously and in detail for all features entering into
play when a nucleus goes to fission is extremely challenging,
and computation-wise prohibitive. It is the goal of this work
to make a step into the direction of the development of an
efficient, as realistic as possible, unified model of fission, in
particular, and large-amplitude phenomena, in general.

To address the physics of fission, three main ingredients are
required: a parametrization of the nuclear shape, a prescription
for the energy of the nucleus as a function of its deformation,
and the equations governing its evolution with time. The
validity range of the model is determined by the specific
choices made for these ingredients. As an obvious example, we
mention the account of quantum effects in the potential energy
calculation: While it is justified to neglect these for describing
fission at high excitation energy, they are indispensable for
understanding low-energy fission. This paper focuses on the
first two ingredients entering the theoretical description of
fission, first introduced in Ref. [2]. An innovative model
is presented, employing (i) a particularly flexible 4D shape
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parametrization, and (ii) an accurate prescription for the
calculation of the potential energy within the macroscopic-
microscopic approach. Although of purely static nature,
deformation energy landscapes are the necessary starting point
for modeling many nuclear properties and reactions. The
quality of the landscape has a direct impact on the predictive
power of any model based on it [3]. The achievement of
the present model is studied in detail in this work, and
confronted wherever possible, to experimental observations,
over an extended region of the nuclear chart. Its potentiality
for describing large-amplitude phenomena, and its subsequent
extension to the modeling of fission dynamics is discussed.

In Sec. II the theoretical framework is presented with special
emphasis on the innovative shape parametrization, probing
its convergence and deriving optimal collective coordinates.
The macroscopic-microscopic method employed to calculate
the potential energy is then outlined. Results are reported
in Sec. III. The properties of the identified fission valleys,
and their evolution with neutron and proton numbers of the
fissioning nucleus, are first presented. The occurrence of
exotic ground-state and exotic isomeric states, corresponding
to very deformed configurations, are next examined in detail.
A comparison with experiment or predictions by other models
is used to assess the relevance and accuracy of the proposed
framework. Summary and conclusions are drawn in Secs. IV
and V. Preliminary results of the present study have been
reported in Refs. [4–6].

II. THEORETICAL FRAMEWORK

A. The Fourier shape parametrization

A precise description of nuclear shapes involving as few
variables as possible is a demanding task, in particular in con-
nection with fission. Several powerful shape parametrizations
have been developed [7]. We employ here a recently proposed
parametrization which allows one to cover a rich variety of
shapes with four collective deformation parameters only. This
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FIG. 1. Schematic visualization in cylindrical coordinates of the
parameters entering the definition of the profile function defined with
Eqs. (1)–(4). The quantities zl and zr localize the mass centers of left
and right nascent fragment entering the definition of R12 = zr − zl .

parametrization is able to overcome some of the limitations
encountered with previous prescriptions [2]; it is very rapidly
converging and easy to handle, as will be demonstrated below.

1. Description

The profile function of the nuclear shape is expanded, in
cylindrical coordinates, in a Fourier series [2]:

ρ2
s (z)

R2
0

=
∞∑

n=1

[
a2n cos

(
(2n − 1)π

2

z − zsh

z0

)

+ a2n+1 sin

(
2nπ

2

z − zsh

z0

)]
, (1)

where ρ2
s (z) is the distance from a surface point at coordinate

z to the symmetry axis (z axis in Fig. 1) and R0 is the radius
of the corresponding spherical shape having the same volume.
The extension of the shape along the symmetry axis is 2z0 with
left and right ends located at zmin = zsh − z0 and zmax = zsh +
z0, where ρ2

s (z) vanishes, a condition which is automatically
satisfied by Eq. (1). The length of the nucleus is given by
2z0 = 2cR0, and can be obtained from volume conservation:

π

3c
=

∞∑
n=1

(−1)n−1 a2n

2n − 1
. (2)

Let us note that the above relation establishes a fast connection
of the Fourier and the famous Funny-Hills parametrization [9],
where c is the elongation parameter, that is equal to unity
for the sphere, smaller (larger) than 1 for oblate (prolate)
deformations.

The shift coordinate zsh is chosen such that the center of
mass of the nuclear shape is located at the origin of the coor-
dinate system. The parameters a2,a3,a4 describe, respectively,
quadrupole, octupole, and hexadecapole deformations, which
in the context of fission, are related to elongation, left-right
asymmetry, and neck thickness, respectively.

To describe nonaxial shapes, the profile function, Eq. (1),
is factorized [8]:

�2
s (z,ϕ) = ρ2

s (z)
1 − η2

1 + η2 + 2η cos(2ϕ)
, (3)

TABLE I. Values of Fourier expansion coefficients for a spherical
shape. Odd coefficients are zero.

2n 2 4 6 8 10

a
(0)
2n 1.03205 −0.03822 0.00826 −0.00301 0.00142

where ϕ is defined as usual in cylindrical coordinates (see
Fig. 1). The nonaxiality parameter η is the relative difference of
the half axis of the cross section perpendicular to the symmetry
axis, assumed to be of ellipsoidal form,

η = b − a

b + a
, (4)

where the condition ab = ρ2
s ensures volume conservation for

the nonaxially deformed nucleus. This definition, together with
the expressions for the semiaxis,

a(z) = ρs(z)

√
1 − η

1 + η
and b(z) = ρs(z)

√
1 + η

1 − η
, (5)

shows that η is independent of z. This prescription can be gen-
eralized to a z-dependent η, and nonellipsoidal cross sections,
what may lead to energetically more favored configurations
when approaching scission. Such an extension is beyond the
scope of the present study and will be the subject of a future
investigation.

The different quantities entering Eqs. (1)–(4) can be
visualized in Fig. 1. There, the distance R12 between the centers
of mass of the left and right nascent fragments is also shown,
because this quantity is quite convenient and popular for fission
studies. It reads

R12 = π
∫ zmax

zneck
ρ2

s (z) z dz

π
∫ zmax

zneck
ρ2

s (z) dz
− π

∫ zneck

zmin
ρ2

s (z) z dz

π
∫ zneck

zmin
ρ2

s (z) dz
, (6)

where zneck determines the location of the plane which
separates the two nascent fragments, corresponding usually
to a minimum of ρs(z). For more compact shapes which
feature no neck, the value of zneck can be determined with
a suitable procedure that will be explained in Appendix 4. In
the Fourier parametrization, the distance R12 can be calculated
analytically, and, for left-right symmetric shapes, is given by

R12 = 2 R0 c

[
1 − 6

π2
c
∑
n=1

a2n

(2n − 1)2

]
. (7)

Additional quantities useful for nuclear reaction and structure
studies are derived in the Appendix.

2. Convergence

An advantage of the Fourier parametrization, Eq. (1), is
that it can be carried to any desired order, i.e., to any precision,
and therefore its convergence can be studied. The latter is
illustrated for the spherical shape in Table I, where the values
of the first a2n coefficients are given (the a2n+1 for left-right
symmetric shapes are zero). Hereafter, the coefficients for the
spherical shape will be referred to as a

(0)
2n . The Fourier series is

seen to converge extremely rapidly, with, e.g., the parameter
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FIG. 2. Relative importance of the contributions to the shape
function ρ2

s (z), Eq. (1), from different orders an of the Fourier series,
for the left-right asymmetric shape given in the top part of the
picture. Profiles are plotted as a function of the reduced variable
u = (z − zsh)/z0. The shape of the nucleus obtained within the
Strutinsky optimal shapes theory [13] is shown as well with the thick
dashed line.

a
(0)
6 being down by more than two orders of magnitude with

respect to the leading-order parameter a
(0)
2 .

For well-deformed, necked-in shapes, the convergence is
illustrated in Fig. 2. The contributions from the different
orders of the expansion are plotted separately, for a left-right
asymmetric shape. It is seen that the lowest order a2 coefficient
determines essentially the elongation, and the next one, a4,
the neck formation. The additional inclusion of a3 creates a
left-right asymmetry, on the top of which inclusion of the
next a5 parameter generates only some minor distortions. The
change in shape introduced by higher orders (even or odd) is
generally small, if not negligible.

To assess the precision of the Fourier parametrization with
a limited number of coefficients, we consider the liquid drop
(LD) saddle-point configurations obtained with the three-
quadratic-surface parametrization [3,10,11] which involves
five shape degrees of freedom. These saddle-point shapes are
displayed in Fig. 3 for fissility (x = Z2/49A) values typical of
light 40Ca (x ≈ 0.2) up to very heavy 278Ds (x ≈ 0.9) nuclei
with black full contours. For each fissility, the shape profile

FIG. 3. Comparison of liquid drop three-quadratic saddle-point
shapes (black full contours) for different values of the nuclear fissility
x, and shapes generated through the Fourier series, Eq. (1), limited
to a4 (blue dotted) or a6 (red dashed).

that can be generated by the expansion in the Fourier series,
Eq. (1), is also shown when terms up to a4 (blue dotted lines)
and a6 (red dashed lines) are included. It is observed that,
in all cases, already the expansion limited to a4 provides a
very faithful description of the three-quadratic saddle-point
shapes. Additional shapes generated with the three-quadratic
parametrization, including left-right asymmetric ones typical
of the local potential-energy extrema generated by shell effects
[12], are found to be reproduced well, too, by the Fourier ex-
pansion limited to order n = 6. A similarly good agreement is
obtained when the Fourier shapes are compared to the so-called
optimal Strutinsky shapes [13], as what can be seen in Fig. 2.

One of the essential benefits of the Fourier expansion is its
fast convergence. This is further demonstrated in Fig. 4, where
the Lublin-Strasbourg-drop (LSD) deformation energy (see
Sec. II B) is shown for 232Th as a function of the elongation
variable R12 in units of R0. Here and throughout this work
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FIG. 4. LSD deformation energy relative to the spherical ground
state as a function of R12/R0 for 232Th with the Fourier series limited
up to a4 (blue dotted), a6 (red dashed), and a8 (black full line).
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FIG. 5. LSD potential energy relative to the spherical ground
state, in units of the surface energy in the (a2, a4) deformation plane
for a nucleus with fissility x=0.8. The LSD fission path runs from
the top right to the bottom left end. Corresponding values of the
Funny-Hills elongation variable c [9] are indicated along the path.

potential energies are given relative to the spherical LSD
minimum. The height of the macroscopic fission barrier BLSD

f

is seen to be decreased by about 100 keV when a6 is included in
addition to a2 and a4. Inclusion of higher-order terms decreases
BLSD

f further by a few tens of keV at most.

3. Collective coordinates

In spite of their connection to fissioning shapes, the meaning
of the Fourier coefficients an remains limited as far as physics
intuition is concerned. For example, when the nucleus gets
more elongated along a typical path to fission, the value of
a2 is decreasing instead of increasing. This is illustrated in
Fig. 5 for a nucleus with fissility x = 0.8 (e.g., 216U), where
the LSD potential energy, relative to the spherical ground state
and given in units of the surface energy, is shown in the (a2, a4)
plane (all other coefficients are set to zero for simplicity). As a
guidance, the value of the Funny-Hills elongation parameter c
[9] is indicated along the fission path. Rather than discussing
fission in the space of the original Fourier coefficients an,
we propose thus to define new “collective” coordinates qn as
linear combinations of the an and analyze the fission process
in the space of these new coordinates. We shall demonstrate
that this will allow for an optimal and efficient presentation
of the potential energy in the deformation space most relevant
for large-amplitude phenomena, and in particular for fission.

According to the convergence properties discussed above,
only the first six orders were retained here as a starting point,
and the following optimal collective deformation coordinates
were determined as

q2 = a
(0)
2

/
a2 − a2

/
a

(0)
2 , q3 = a3,

q4 = a4 +
√(

(q2/9)2 + (
a

(0)
4

)2)
,

q5 = a5 − (q2 − 2)a3/10,

q6 = a6 −
√(

(q2/100)2 + (
a

(0)
6

)2)
, (8)

where the a(0)
n are the values of the Fourier coefficients for

the spherical shape, as given in Table I. The resulting LSD
deformation energies are shown in Fig. 6 in various (qi, qj )

subspaces for a nucleus with fissility x = 0.8. They exhibit a
pattern which is ideally suited for modeling fission trajectories.

The above study shows that the higher-order coordinates
q5 and q6 are, indeed, very small all along the path to fission,
and that within the accuracy of the present approach, they
can be set to zero. This approximation permits to parametrize
analytically the higher-order Fourier coefficients as functions
of the lower-order ones, with

a5 = (q2 − 2)
a3

10
,

a6 =
√(

q2

100

)2

+ (
a

(0)
6

)2
. (9)

All things put together, we are then able to work within
a nuclear deformation space of only four dimensions with
collective coordinates (η, q2, q3, q4) related in a direct way
to nonaxiality, elongation, left-right asymmetry, and neck
thickness, respectively. For each combination of these four
collective variables, the coefficients a2, a3, and a4 are deter-
mined by solving the first three expressions of Eq. (8); the
coefficients a5 and a6 are then calculated from Eq. (9), and
the shape profile is finally determined through Eq. (1). Unless
otherwise specified, the results presented here were obtained
on the following grid:

η ∈ [0, 0.21] with �η = 0.03,

q2 ∈ [−0.5, 2.5] with �q2 = 0.05,

q3 ∈ [0, 0.21] with �q3 = 0.03,

q4 ∈ [−0.25, 0.25] with �q4 = 0.05.

Within this “hypercube,” the potential energy is calculated
in a total of 42 944 points, among which only a few at largest
deformations q2 � 2 have to be excluded from the analysis
as they do not correspond to compact (mononuclear) shapes.
The number of points is increased for specific investigations,
whenever a more dense mesh is required. The parametrization
is easily expendable to higher orders, by means of the
introduction of additional Fourier coefficients an. This has
no impact on the definition of the collective coordinates
which remain at the number four. It simply makes their
numerical value more and more precise. We emphasize that
the parametrization is an expansion in terms of an, which
constitutes a basis of independent deformation parameters.
Convergence is to be discussed in terms of these coefficients,
and not in terms of the qi’s.

B. Potential energy

The potential energy of the system is calculated within
the macroscopic-microscopic approach. The total energy
Etot(η, q2, q3, q4) of a nucleus with a given deformation is
calculated as

Etot = Emac + Emic, (10)

where each contribution depends, although not explicitly
specified, on deformation. The macroscopic part Emac = ELSD

is calculated within the LSD model [14] which is a liquid-
drop-type parametrization of the nuclear energy including
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FIG. 6. LSD potential energy in the (q2, q4) (top left), (q2, q3) (top right), (q2, q6) (bottom left), and (q2, q5) (bottom right) deformation
subspaces for a nucleus with fissility x=0.8. In each (qi, qj ) plot, the collective coordinates qk with k �= i,j are set to zero.

a curvature A1/3 term in the leptodermous expansion and
a deformation-dependent congruence energy term [15]. The
LSD prescription has shown to yield a good description of
both nuclear ground-state masses and fission-barrier heights.
The microscopic part consists of the proton and neutron shell
and pairing corrections [16–18]:

Emic = Eshell + Epair. (11)

For each kind of particle, shell corrections are obtained by
subtracting the average energy from the sum of the single-
particle (s.p.) energies:

Eshell =
∑

k

ek − Ẽ. (12)

The smooth energy Ẽ is evaluated using the Strutinsky
prescription [17,18]. Pairing corrections are obtained as the
difference between the BCS [16] energy and the s.p. energy
sum, minus the average pairing energy [16,19].

Epair = EBCS −
∑

k

ek − 〈Epair〉. (13)

The s.p. wave functions and s.p. energies ek are obtained as
the eigenstates and eigenvalues of the Yukawa-folded mean-
field potential [20,21] at given (η, q2, q3, q4) deformation. An
approximate particle-number projection was included when
solving the BCS equations [22].

The potential energy with its macroscopic and microscopic
contributions is calculated on each mesh point of the aforemen-
tioned grid. Unless explicitly specified, and to limit computing
time, the proton and neutron s.p. levels were calculated exactly
for a number of “seed” nuclei, only, and suitably scaled [17],

for calculating those of the neighboring nuclei with N and Z
up to Nseed ± 2 and Zseed ± 2, where Nseed and Zseed are the
neutron and proton number of the seed nucleus, respectively.
This scaling was checked to give results that differ from the
exact solution by a few hundreds of keV at most.

The macroscopic-microscopic approach outlined above,
but used with different shape parametrizations, has shown
successful in understanding the gross evolution of fission
properties over a large domain by our collaboration [17,23,24].
The relevance of the calculation of the microscopic energy
was recently demonstrated in an independent work [25]
focusing on the detailed description of fission modes in Th
and U nuclei. Further improvement can be envisaged, with
the implementation of the alternative Strutinsky method of
Ref. [26] and by using a surface-dependent pairing, rather
than a constant pairing strength [27]. This is beyond the scope
of the present investigation.

III. RESULTS

Calculations along isotopic and isotonic chains of around
100 even-even nuclei between Pt (Z = 78) and Pu (Z = 94)
have been performed with the macroscopic-microscopic model
presented in Sec. II. The topography of the 4D landscapes was
analyzed in detail. Depending on the specific phenomenon
under study, minimization with respect to one or the other
coordinate was carried out. Extrema (absolute and local
minima, as well as saddles), ridges, and valleys were searched
for. Because the main interest of the present paper is on fission,
the presentation of the results starts with fission properties,
before discussing exotic stable and metastable configurations.
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FIG. 7. Macroscopic-microscopic potential energy as a function
of q2 for the nucleus 240Pu after minimization with respect to the other
deformation parameters. The lowest-energy left-right asymmetric
path (solid line) as well as the path imposing left-right symmetry
(dashed line) are shown.

A. Fission barriers

A careful research of absolute and local extrema was carried
out using the approximation procedure of Ref. [28], yielding
the location of the stable ground state, possible metastable
fission isomeric states, as well as the saddles separating them.
Different specific paths to fission (e.g., left-right symmetric
or asymmetric) can be investigated, as a function of differ-
ent collective coordinates, applying a suitable minimization
procedure with respect to the remaining coordinates. The
resulting 1D potential energy is shown in Fig. 7 as a function
of the elongation parameter q2 for the nucleus 240Pu along the
energetically most favorable asymmetric path with the solid
line, while the symmetric path is given by the dashed line. One
observes the well-known features in this mass region: namely,
a double-humped barrier with a left-right symmetric first
saddle, and a second saddle which is left-right asymmetric. The
magnitude of the effect depends on the specific nucleus under
consideration, as it is widely connected to the microscopic
contribution to the potential energy. A critical influence of
nonaxiality was observed in our work in the vicinity of the
ground state, only. Several models have predicted a nonaxial
first saddle point (see, e.g., Ref. [29]). The present model
does, however, not exhibit such an instability with respect to
η. Within the accuracy of the present calculation, we estimate
the influence of nonaxiality in lowering the first barrier up to a
few 100 keV at most, for elements up to Pu, in accordance
with Ref. [30]. The fact that other studies found a larger
influence was recently connected [31] to the specificities of
the “traditional” β,γ [32] shape parametrization used there.
We emphasize that it is only thanks to the properties of the
four collective coordinates constructed for, and defining, the
present shape parametrization that this limitation of the β,γ
parametrization could be revealed. We emphasize again the
fact that the four coordinates are of equal importance for our
analysis, and that it is only after a careful inspection of their re-
spective contribution to a specific property that a given collec-
tive variable (i.e., nonaxiality, here) can possibly be neglected.

The height of inner and outer fission barriers obtained
with the above presented prescription for the potential-energy

calculation, but different shape parametrizations, was dis-
cussed in Refs. [30,33] and found in good agreement with
the experiment. The barrier heights obtained with the Fourier
parametrization agree, within the accuracy of the models (a
few hundred keV), with the ones obtained in Refs. [30,33], and
therefore, are not discussed here again (we refer to Table III
in Ref. [30] and Fig. 2 in Ref. [33]). Barrier heights emerge
from a one-dimensional representation (after minimization)
which somehow hides the richness of the multidimensional
deformation space. Other fission properties, in particular the
path in this multidimensional landscape, depend more strongly
on the shape parametrization. Hence, we will focus on this
aspect in the next sections.

B. Fission valleys

We identify as a fission valley a continuous path, or
“tunnel,” running through the 4D space, with the criterion of
slowly varying values along each coordinate. The same applies
for the identification of the ridge separating two valleys, which
can be seen as a sequence of neighboring saddles.

Since the early times of fission discovery, experiments
established that low-energy fission is strongly asymmetric in
the heavy U (Z = 92) region. It fast became an admitted
fact that this asymmetry originates from the influence of
shell effects in the nascent fragments. With increasing atomic
and mass numbers, symmetric fission is somewhat abruptly
recovered for the nucleus 258Fm (Z = 100). Here, again, it
was interpreted as being caused by shell effects, namely the
proximity of an energetically favored partitioning into two
closed-shell 132Sn fragments. For elements lighter than U, a
progressive transition from asymmetric to symmetric splitting
was established by the seminal experiment of Schmidt et al.
[34]. The transition was found located around 226Th (Z = 90).
Schematically, heavier nuclei fission predominantly asymmet-
rically, while lighter systems fission symmetrically. In this
context, the recent experimental observation of Andreyev et al.
[35] of asymmetric low-energy fission of 180Hg (Z = 80) came
as a surprise: According to the understanding acquired with
actinides, it was expected that this nucleus would preferentially
split into two shell-stabilized 90Zr fragments. The discovery
by Andreyev et al. triggered intense theoretical effort, and
advanced models offer different interpretations (see, e.g.,
Refs. [36–39]). Independently of the disagreement between
different theories, the now-available data strongly suggest that
an interesting evolution of driving forces in fission occurs
between Hg and the trans-actinides. Unfortunately, almost no
data exist on low-energy fission of elements situated midway.
In parallel to the theoretical effort, tremendous experimental
research activity in the region was thus initiated at various
laboratories around the world (see, e.g., Refs. [40–45]).

By studying the region from Pt (Z = 78) to Pu (Z = 94),
the ability of the proposed model to describe the robust
evolution established in the actinides, on one side, and the
striking difference exhibited by the neutron-deficient Hg,
on the other side, can be probed. A comparison with the
experiment permits one to benchmark the model. This is a
necessary request to give credit to its predictions in the still
poorly known intermediate territory. In this respect, the Po
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FIG. 8. (Top) Macroscopic-microscopic potential energy in the (q2, q3) plane for 228Ra. The two identified fission paths are paved by dashed
and solid curves. (Bottom) Sequence of (q3, q4) potential energy maps for selected values of q2 along the fission paths identified in the top
panel: q2 = 0.2 (b), q2 = 0.7 (c), q2 = 1.0 (d), q2 = 1.3 (e) and (h), q2 = 1.7 (f) and (i), q2 = 2.0 (g) and (j). Representative shapes along the
asymmetric and symmetric paths are displayed in the top and bottom of the upper figure, respectively, and labeled with small letters along the
paths (a)–(j).

(Z = 84) isotopic chain constitutes a particularly relevant
case, as it is ideally situated on the way between Hg and
traditional actinides, and experimental data, although of very
low statistics, are becoming available [40,46].

The method used to determine fission valleys is illustrated
by taking 228Ra as an example in Sec. III B 1. The system-
atic analysis, with presentation and discussion of potential
energy landscapes (PEL) over the extended region, follows in
Sec. III B 2. Finally, the Pu chain is discussed separately in
Sec. III B 3.

1. Example of a PEL analysis: The case of 228Ra

The potential energy landscape in the (q2,q3) plane, as
obtained after minimization with respect to η and q4, is shown
in the upper part of Fig. 8 for 228Ra. On top of the map, the two

fission paths which we have identified, leading to symmetric
(dashed line) and asymmetric fragment-splitting (solid line),
are drawn. Around these two paths, the nonaxiality coordinate
η was found to evolve smoothly, and to be small beyond the first
barrier, as discussed in Sec. III A. Hence, nonaxiality plays no
role in the emergence of two distinct paths beyond the second
(isomeric state) minimum. On the contrary, the evolution of
q4 is crucial in explaining the splitting of the initially common
path into two. This is demonstrated in the lower part of Fig. 8,
where the potential energy, prior minimization with respect to
q4, is displayed in the (q3, q4) plane for specific q2 values. It
is seen that, up to q2 ≈ 1.25, a single minimum in the (q3, q4)
plane exists: The shapes b, c, d correspond, respectively, to
the single minimum seen in the (q3, q4) plane at q2 = 0.2,0.7,
and 1.0. Beyond the isomeric state, the path is found to
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FIG. 9. Macroscopic-microscopic potential energy in the (q2, q3) plane for several isotopes of Hg (left column), Po (middle column), and
Th (right column). The identified fission paths are indicated by a solid black line. Insets show, where available, experimental data [34,40,46,50]
on fission-fragment mass or charge distribution at low excitation energy.

split because of the appearance of two separate minima
in the (q3, q4) plane: the shapes e, f, g, and, h, i, j, refer,
respectively, to these two minima along the asymmetric and
symmetric paths at q2 = 1.3,1.7, and 2.0. Distinct outer saddle
points for the symmetric and asymmetric channels are thus
observed in this example of 228Ra. The representative shapes,
obtained along each path for the corresponding (q2, q3, q4)
combinations, show a clear difference in the profile function:
The asymmetric channel is observed to be more compact than
the symmetric one. The location of the asymmetric valley
in the 4D deformation space corresponds to a mass partition
for the nascent fragments of 94/134. This result is in good
agreement with the experimental mass split [47].

The above analysis illustrates how “tunnels” related to
different channels can progressively develop across the 4D
deformation space, and finally lead to different exit valleys.
One further notices that, at the largest elongations, it is the
asymmetric valley that is lowest in energy, thus suggesting the
dominance of asymmetric over symmetric fragment partition
in the low excitation-energy fission of 228Ra. This is in
accordance with the experimental observation [47], where a

triple-humped fragment-mass distribution was measured with
the asymmetric contribution being most intense.

2. Extended overview from Hg to actinides

As mentioned earlier, a systematic analysis of the 4D
landscapes was carried out for around 100 even-even nuclei
between Pt and Pu. A selection of 2D (q2, q3) maps obtained
after minimization with respect to η and q4 are presented in
Fig. 9. Isotopes of Hg, Po, and Th have been chosen because
they allow one to scan the main trends in fission properties
over the more extended region, and they also permit relevant
confrontation with experiment in several cases. The fission
paths revealed in our analysis are superimposed on the maps
with thick lines.

Figure 9 shows that, depending on the isotope, either a
single (symmetric or asymmetric) fission path is observed, or
two distinct paths coexist. We note that, in the latter situation,
the two paths separate from one another at, or slightly beyond,
the outer saddle point. The maps also suggest that, while
the dependence of landscape and fission path on the neutron
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number N of the fissioning nucleus is obvious and substantial,
the dependence on the proton number Z is even stronger. This
was confirmed by the systematic survey over the entire region
which we have performed [6]. In the same line, when two
valleys coexist, their relative depth depends more on Z than
on N .

Quantitative predictions of the fission-fragment mass or
charge distribution would require one to add the dynamics on
top of the so-far static picture. This is beyond the scope of the
present work. Nevertheless, because a realistic potential energy
landscape is an indispensable ingredient in any dynamical
calculation [48,49], a qualitative comparison of the 2D maps of
Fig. 9 with the low-energy fission experiment is already worth
the effort. The fragment mass or charge distributions as mea-
sured for several cases have thus been added to Fig. 9 as insets.
It is observed that the properties of the calculated fission paths
are in direct line with the profile of the experimental distribu-
tion in all these cases. One notices in particular the following:

(i) Exclusively asymmetric fission for 180Hg with the
identification of a single asymmetric path.

(ii) Symmetric fission for 218Th with the identification of
a single symmetric path.

(ii) A coexistence of asymmetric and symmetric fission for
226Th with the identification of two valleys.

This consistency between our potential energy maps and
the experimental data thus gives confidence into the realistic
character of the proposed 4D approach, and makes promising
its use in dynamical simulations.

Finally, we draw special attention to the Po isotopic chain,
because it seems to exhibit a large variety of fission properties,
similarly to, e.g., the Th isotopes, but in a reversed manner with
increasing N value. While the mass distribution in low-energy
fission of 210Po was measured to be broad and predominantly
symmetric [50], the low-statistics data that became available
very recently [46] for the most neutron-deficient Po isotopes
suggest a possible triple-humped distribution (see the corre-
sponding insets in Fig. 9). Recall that along the Th chain,
the distribution changes from symmetric to triple-humped
when N is increasing (and not decreasing like for Po). The
energy landscapes obtained in our theoretical approach are
thus in agreement with the experimental conjecture, supporting
a reversed trend along the Po and Th chains, as seen in
the last second and third columns of Fig. 9. To further
support this expectation we recall that for fission of 228Ra
as a typical actinide, we noticed in the previous section a
good agreement between the mass split corresponding to the
asymmetric valley and the experimental result. Extending here
the comparison to the pre-actinide region, the expected most
favorable mass partition for 180Hg and 196Po is 100/80 and
109/87, respectively, in somewhat remarkable agreement with
the experimental estimate of 100/80 and 108/88 [40].

3. The Pu chain

An interesting evolution of the fragment mass distribution
was evidenced in spontaneous fission along the Pu chain [51].
The heavy-fragment mass peak, consisting of two components
centered, respectively, at A ≈ 134 and 140, exhibits a change

of the relative weight of these two components when the
neutron number N is varied. Namely, the most intense of
the two contributions moves from 140 to 134 when the Pu
mass increases from 236 to 246. An attempt to address this
observation is made in this section, by looking in detail at
the structure of the asymmetric fission valley. We emphasize
that, for this specific purpose, no scaling was used to compute
the single-particle levels entering the calculation of Emic; they
were computed explicitly for every isotope. On the other hand,
nonaxiality was not accounted for, as it has no influence, as we
have seen before, in the vicinity and beyond the outer barrier
[29], which is the range of interest here.

The potential energy landscape in the (q2,q3) plane, after
minimization with respect to q4, is shown in Fig. 10 for three
isotopes of Pu. The asymmetric valley (q3 � 0.05) clearly
exhibits some structure for 1.5 � q2 � 2, what we connect
to the existence of two asymmetric components in our model
[52], one centered around 134, and the other around 142, for
the heavy fragment mass. Interestingly, with increasing Pu
mass, the valley gets more structured, and the 134 component
starts at shorter elongation. Although we tentatively anticipate
that this change in structure of the valley can yield a more
intense contribution from the 134 channel for the heaviest Pu
isotopes, this conjecture remains speculative and needs more
advanced dynamical calculations to be verified. The difference
in the shapes associated with the two asymmetric components
is sketched for 246Pu in the bottom right panel of Fig. 10. For an
elongation coordinate fixed here at q2 = 2.0, the 134 channel
is characterized by a shorter, more compact shape (because of
different q3 and q4 values), as compared to the 142 channel, in
accordance with expectation.

The shape of the heavy fragment in the 134 channel is
observed to be less compact than it should ideally be to
prefigure a close-to-spherical nascent fragment. This shows the
limitation of the proposed parametrization when approaching
scission, and is because of the fact that it does not explicitly
allow for independent deformations of the left and right
halves. However, this limitation has only minor consequences
for the present goal, because, in spite of it, two distinct
asymmetric channels do emerge as expected. In addition, the
fissioning configurations in the 134 and 142 channels have
the expected properties, with the former being less elongated
than the latter. That is, the collective coordinates selected in
the present parametrization gather the main essence of the
physics, and are fully suited for our goal. Going beyond
requires introducing an additional coordinate, what would
make dynamical calculations less tractable.

C. Stable octupole configurations

In addition to the power of the model for discussing large
deformations involved in the fission process, we propose to
investigate also the smaller-deformation region. We are in
particular interested in the ground-state shapes in the actinide
region where octupole configurations have been either ev-
idenced in experiment, or are expected as highly probable
[53]. The calculated ground-state q3 values are displayed as
a function of neutron number in Fig. 11 for the elements
Ra, Th, and U. The model is found to predict a specific
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FIG. 10. Macroscopic-microscopic potential energy in the (q2, q3) plane for the isotopes 238,242,246Pu. The shapes close to scission (q2=2.0)
in the two asymmetric channels are shown for 246Pu in the bottom right panel.

window in N where static octupole deformation characterizes
the ground state. This window with N ∈ [130,140] depends
to some extent on the element, and is in reasonable agreement
with experiment, though, the value of N where a maximum
in octupole deformation is predicted slightly differs from the
experimental value N ≈ 136. Because pairing correlations
have a large influence on the energy of octupole configurations
[54], the accuracy of the model may be improved on this aspect
by implementing a more advanced pairing prescription.

D. Very deformed isomers and the debated existence
of a third minimum

The macroscopic (LSD) fission barrier can be somewhat
broad in the Pt-Pu region under consideration here. Hence, the
inclusion of shell effects can produce local minima which
we may identify as isomeric states. The careful survey of

FIG. 11. Predicted octupole deformation coordinate q3 for the
ground states of Ra (red full), Th (blue dashed), and U (green dotted
line) isotopes as a function of neutron number.

the 4D potential energy landscapes outlined above suggests
that shell effects at large deformations can indeed yield local
minima corresponding to super- and hyper-deformed shapes.
A few such minima could already be guessed in the maps of
Fig. 9, namely for some Po isotopes in the region q2 ≈ 0.6.
Several strongly deformed isomers are thus predicted by the
calculation. A detailed discussion of these super- and hyper-
deformed states, which may trigger experimental investigation,
was reported in Refs. [31,55] and is thus not repeated here.

In the present study we instead propose to address the vivid
debate about the possible existence of a third minimum in
the actinide region at very large deformation [56–58]. To that
purpose, the evolution of the 2D potential energy landscape for
four Th isotopes is presented in Fig. 12 in the (q2,q4) plane.
Left-right asymmetry and nonaxiality have been set to zero.
A shallow, 0.8 MeV (0.5 MeV when left-right asymmetry is
included) deep, third minimum is observed for the lightest Th
isotopes at q2 ≈ 1.5, but disappears with increasing neutron
number. This result is in agreement with conclusions based
on macroscopic-microscopic models of higher dimensionality
[56,57], and self-consistent models [58], thus invalidating
experimental claims (see [59] and references therein). It further
illustrates the power of the present approach limited to only
four dimensions, and this up to very large elongations.

IV. DISCUSSION

In this section we propose to shortly discuss the approach
proposed in this work, and this as a very valuable complement
to (sometimes more) elaborate models in the field.

It was demonstrated that the rich variety of possible nuclear
shapes requires one to consider the following degrees of
freedom: elongation, neck thickness, left-right asymmetry,
and deformation of left, respectively, right, nascent fragment.
That implies in principle five collective coordinates [3].

034612-10



PERFORMANCE OF THE FOURIER SHAPE . . . PHYSICAL REVIEW C 95, 034612 (2017)

FIG. 12. Macroscopic-microscopic potential energy in the (q2, q4) plane for four isotopes of Th for q3 = 0 and η = 0.

Unfortunately, a complete dynamical calculation in five (or
more) dimensions is still difficult in practice, and models
based on five shape variables, either use a simplified equation
of motion [48,60], or assume as constant values some of
the collective coordinates [49]. The difficulty increases with
raising excitation energy, because the dynamics has to be
coupled to light-particle emission [61]. Overcoming the
technical and computing-time aspects remains, of course, a
challenge. Yet, it is a prerequisite for the emergence of a
unified framework for fission and large-scale calculations over
an extended range of the nuclear chart, in excitation energy
and angular momentum.

According to the results obtained in this work, the innova-
tive Fourier parametrization of nuclear shapes, combined with
LSD + Yukawa-folded macroscopic-microscopic potential
energy prescription, with only four collective coordinates,
turns out to be very efficient, because it explains in a
reasonable manner the experimentally observed evolution of
fission valleys as function of the Z and N numbers of the
fissioning nucleus. Hence, the four coordinates constructed
from the Fourier expansion coefficients gather the essential
features of the shapes involved up to the scission configuration.
This investigation has also shown its capacity to address the
existence of exotic configurations.

A quantitative assessment of the performance of the
approach still awaits extended dynamical calculations, which
will finally determine the yield of populated fragments and
their properties. Similarly, the purely static picture, which we
restrict on here, requires one to be developed further to allow
quantitative predictions for the probability of populating (and
thus observing) exotic deformed states. The outcome of the
present work constitutes a solid basis for subsequent evolution
of the current (static) model.

As emphasized along the paper, the achievement of the
approach relies for a large part on the assets of the Fourier
parametrization. Nonetheless, we would like to stress, too,

that it is really the combination of the specificities of the shape
parametrization and the potential-energy prescription which
determines the performance of the model. The former enables
one to explore the whole variety of possible deformations for
a nucleus (small-to-large), where the latter mass prescription
has shown to be suited for a wide region on the nuclear chart.
Hence, a unified framework is made available, using a single
shape parametrization and a single potential-energy formalism
over a wide range in nuclear systems and deformations. These
two aspects are not always met by available models. For
example, some shape parametrizations, that are very powerful
around the ground state, turn out to be much less suited for
fission, and vice versa. Similarly, some mass models are better
suited in specific regions of the chart of nuclides.

The capability of the present approach of being able to cover
a large spectrum of physics in a consistent way makes it, in our
opinion, particularly attractive. Other elaborate models devel-
oped in the field may be more accurate for specific purposes,
and/or over restricted domains. The compromise proposed here
is nonetheless worth attempting, offering an efficient approach
for realistic-enough predictions and tractable simulations.

V. CONCLUSIONS

Within the macroscopic-microscopic approach, an inno-
vative efficient model is proposed to address in a unified
framework various large-amplitude phenomena. The recently
developed four-dimensional shape parametrization based on
an expansion in terms of Fourier series is combined to the
potential-energy prescription using the LSD macroscopic en-
ergy and microscopic corrections obtained from the eigenstates
of a Yukawa-folded single-particle mean field.

Precise potential energy landscapes are a necessary starting
point for modeling many nuclear properties and reactions in
a realistic way. A detailed analysis of the 4D potential energy
landscapes is thus proposed in this work and summarized for
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about 100 even-even isotopes between Pt and Pu. A variety
of physics aspects that can be addressed through the analysis
of such landscapes is illustrated to probe the accuracy of the
approach. Fission paths are identified, and their evolution with
Z and N is found to match experimental observations over the
extended range of fissioning systems. The approach is further
used to investigate the possible existence of exotic, i.e., very
deformed, shape isomers, which are predicted in the Po to
Th region. The presence of a very deformed third minimum in
heavy actinides is also discussed, and observed to be consistent
with most recent calculations.

The various investigations carried out in this work demon-
strate the performance of the proposed approach. It permits one
to study large-amplitude phenomena in a reasonably accurate
manner, when compared with existing often much more
advanced models in the field, and involving usually higher
dimensionality. All this is achieved in a so-far static approach,
which, however, seems to incorporate the essential physics.
This achievement is mostly attributable to the specificities
of the shape parametrization which converges rapidly, and
to a lesser extent also to the reliability of the potential-energy
formalism. The approach is going to be implemented into
extended dynamics calculations, within a Langevin approach,
and coupled with light-particle evaporation (see [61] and
references therein).
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APPENDIX: USEFUL PHYSICS QUANTITIES
IN THE FOURIER PARAMETRIZATION

For the users more familiar with that kind of approach,
several formulas for quantities commonly used in connection
with nuclear reaction and structure studies are elaborated
below.

1. Fourier analysis

The shape coefficients an can be determined, for any
shape, through a Fourier analysis, taking advantage of the
orthogonality relations of the trigonometric functions, leading
to

a2n =
∫ 1

−1
ρ2

s (u) cos

(
2n − 1

2
π u

)
du, (A1)

and

a2n+1 =
∫ 1

−1
ρ2

s (u) sin(nπ u) du, (A2)

where u is the dimensionless variable u=(z-zsh)/z0.

2. Volume conservation

Because of incompressibility of nuclear matter one assumes
that the volume of a deformed nucleus is the same as for the

corresponding spherical shape:

V = 4π

3
R3

0 =
∫ 2π

0
dϕ

∫ zmax

zmin

dz

∫ ρs (z)

0
ρ dρ

= π

∫ zmax

zmin

ρ2
s (z) dz. (A3)

This gives the following relation between the elongation
parameter c [9] and all even coefficients a2n:

π

3c
=

∞∑
n=1

(−1)n−1 a2n

2n − 1
. (A4)

This relation allows one to evaluate a2 as a function of the
elongation c and the higher order (n > 1) a2n.

3. Fixing the center of mass

By convention the position zcm of the center of mass of the
deformed nucleus is set at the origin of the coordinate system;
see Fig. 1. For left-right symmetric shapes this is automatically
achieved by choosing the shift coordinate zsh = 0. For left-
right asymmetric shapes zsh has to be defined differently.

Imposing

zcm =
∫
V

z d3r∫
V

d3r
= π

∫ zmax

zmin
ρ2

s (z) z dz

π
∫ zmax

zmin
ρ2

s (z) dz
= 0, (A5)

one obtains, after evaluation, the following expression:

zsh = −z0

2

∑
n (−1)n−1 a2n+1

n∑
n (−1)n−1 a2n

2n−1

= 3c2

2π
R0

∑
n

(−1)n
a2n+1

n
,

(A6)

where Eq. (A4) was used. For left-right symmetric shapes,
zsh = 0 and the above equation implies

∞∑
n=1

a2n

n
= 0. (A7)

4. Distance between the nascent fragments

The distance between the centers of mass of left and right
fragments is given by Eq. (6). For left-right symmetric shapes,
all odd coefficients a2n+1 vanish, and zneck = 0. Then

R12 = 2π
∫ zmax

0 ρ2
s (z) z dz

2π
3 R3

0

= 3

R0

∑
n

a2n

∫ z0

0
cos

(
2n − 1

2
π

z

z0

)
z dz, (A8)

which, after evaluation of the integrals and when using
Eq. (A4), leads to Eq. (7). In the case of left-right asymmetric
shapes, all the Fourier coefficients contribute and the distance
between the mass centers of left and right fragments takes the
more general form of Eq. (6). In this situation, we define the
neck coordinate zneck as the location where the shape ρ2

s (z)
has an extremum. Such an extremum—generally a minimum
in the case of a fissioning nucleus close to the scission
point—always occurs, even for reasonably strong asymmetry,
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close to the center of the shape. One can then determine the
coordinate uneck = (zneck − zsh)/z0 by a Taylor expansion of
the sine and cosine functions around u = 0. From the condition
dρ2

s (z)/dz = 0 one obtains

uneck = 4

π

∑
n n a2n+1∑

n(2n − 1)2 a2n

, (A9)

and zneck = zsh + z0 uneck. This procedure was tested for a
large variety of shapes and turns out to work very accurately
as long as the shapes are not pathological.

The distance of nascent fragments R12 can always be written
in the form,

R12 = NR

DR

− NL

DL

, (A10)

with

NR =
∫ zmax

zneck

ρ2
s (z) z dz and NL =

∫ zneck

zmin

ρ2
s (z) z dz,

(A11)

DR =
∫ zmax

zneck

ρ2
s (z) dz and DL =

∫ zneck

zmin

ρ2
s (z) dz. (A12)

In the numerators N and in the denominators D of the above
expressions appear a certain number of integrals involving
trigonometric functions, and one of the integration limits is
the neck parameter uneck. These integrals can be evaluated
exactly, giving access to the most general expression for R12.
Specific situations are addressed below.

In the case of a left-right symmetric shape, zsh = 0, all
odd shape coefficients vanish and the quantities NR,NL and
DR,DL take on the simple form,

NR = −NL = R2
0 z2

0

∞∑
n=1

a2n

[
2

π

(−1)n−1

2n−1
−

(
2

π

1

2n−1

)2
]
,

(A13)

and

DR = DL = R2
0 z0

∞∑
n=1

2

π

a2n

2n − 1
(−1)n−1, (A14)

and consequently

R12 = 2 z0

∑
n a2n

[ (−1)n−1

2n−1 − 2
π

1
(2n−1)2

]∑
n a2n

(−1)n−1

2n−1

. (A15)

In the case of a left-right asymmetric shape, according to
the fast convergence of the Fourier expansion, approximate
but accurate analytical expressions are already obtained when
the expansion is restricted to the first leading orders a2, a3, and
a4. Then

NR = c2R4
0

π

[
a3 − 3ca3

2

(
2a2

π
− a2uneck + 2a3

π

− a4uneck − 2a4

3π

)
+ 2a2 − 4a2

π
− πa2u

2
neck

− 2a4

3
− πa4u

2
neck − 4a4

9π

]
,

NL = c2R4
0

π

[
a3 − 3ca3

2

(
2a2

π
+ a2uneck − 2a3

π

+ a4uneck − 2a4

3π

)
− 2a2 + 4a2

π
+ πa2u

2
neck

+ 2a4

3
+ πa4u

2
neck + 4a4

9π

]
,

DR = 2cR3
0

π

[
a2 − πa2uneck

2
+ a3 − πa4uneck

2
− a4

3

]
,

DL = 2cR3
0

π

[
a2 + πa2uneck

2
− a3 + πa4uneck

2
− a4

3

]
.

For the dimensionless neck coordinate uneck and the shift
coordinate zsh that enter the integrals, one obtains

uneck = 4

π

a3

a2 + 9a4
, (A16)

and

zsh = −3c2

2π
R0a3, (A17)

which then allow one to give an estimate for R12 through
Eq. (A10).

5. Fragment-mass asymmetry

In the Fourier parametrization, reflection-asymmetric
shapes are controlled by the coefficients a2n+1. For the
description of the nuclear fission problem, it would now be
very useful to have at hand a quantity that is directly connected
to the asymmetry of the deformed nucleus along its path
to the scission configuration. To this purpose one therefore
introduces a mass-asymmetry parameter α that is defined
as the mass difference between the two nascent fragments,
normalized to the total mass of the fissioning system:

α = AR − AL

A
, (A18)

where AL + AR = A. Assuming the nucleus to be incompress-
ible and the partition into two pieces to take place through a
sharp cutoff at the location of the neck coordinate zneck, one
obtains

α = π
∫ zmax

zneck
ρ2

s (z) dz − π
∫ zneck

zmin
ρ2

s (z) dz

4πR3
0/3

= 3

4R3
0

[DR − DL].

(A19)
As noted above, DR and DL can be calculated by evaluating the
required integrals. The derivation finally yields the following
expression for the mass asymmetry:

α = −3c

π

∞∑
n=1

{
a2n

2n − 1

[
sin

(
2n − 1

2
π uneck

)]}

− 3c

π

∞∑
n=1

{
−a2n+1

2n
[cos(nπuneck) + (−1)n−1]

}
. (A20)

Note that, for left-right symmetric shapes, all a2n+1 vanish,
uneck becomes zero, yielding obviously α = 0.
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For the left-right asymmetric case, restricting the expansion
to the leading orders gives the approximate expressions,

α = −3c

π

{
a2 sin

(
πuneck

2

)
− a3

2
[cos(πuneck) + 1]

}
− 3c

π

{
a4

3
sin

(
3πuneck

2

)
− a5

4
[cos(2πuneck) − 1]

}
,

(A21)

with

uneck = 4

π

a3

a2 + 9a4
. (A22)

That leads to

α = 3ca3

π

{
1 − 2(a2 + a4)

(a2 + 9a4)

}
. (A23)

The masses of the left and right nascent fragments can then
be easily evaluated for any value of the mass-asymmetry α
according to

AL = 1 − α

2
A and AR = A − AL = 1 + α

2
A. (A24)

6. Multipole moments

In what follows, we propose expressions for the multipole
moments,

Qn0 =
∫ ∫ ∫

Pn(cos θ ) r2 d3r, (A25)

where Pn are the Legendre polynomials.
For the quadrupole moment Q20 one obtains

Q20 =
∫ ∫ ∫

P2(cos θ ) r2 d3r

= 1

2

∫ ∫ ∫
[3 cos2 θ − 1 ]r2 d3r

= 1

2

∫ ∫ ∫
[2z2 − ρ2]ρ dρ dϕ dz

= π

4

[
4
∫

ρ2
s (z) z2 dz −

∫
ρ4

s (z) dz

]
, (A26)

which yields

Q20 =
√

5π
c R3

0

2

∑
n

{
a2n

[
z2
sh I

(n)
c0 + z2

0 I
(n)
c2

]}
+

√
5π

c R3
0

2

∑
n

{
2 a2n+1 z0 zsh I

(n)
s1

}
−

√
5π

c R3
0

2

∑
n

{
R2

0

4

[
a2

2n + a2
2n+1

]}
. (A27)

The trigonometrical integrals I are written in Appendix 8.
In a similar way one determines the higher order multipole
moments.

7. Moments of inertia

The rigid-body moments of inertia, Jz for rotation around
the symmetry axis, and Jy for rotation around an axis
perpendicular to the symmetry axis, will also be calculated,
where

Jz = μ

∫ ∫ ∫
r2
⊥ d3r = μ

∫ ∫ ∫
ρ2 d3r

= μπ

2

∫ zmax

zmin

ρ4
s (z) dz, (A28)

and, for instance,

Jy = μ

∫ ∫ ∫
(x2 + z2) d3r

= μ

∫ ∫ ∫
[ρ2 cos2 ϕ + z2] d3r, (A29)

which is identical to Jx , where μ is the mass per unit volume.
For the calculation of the moments of inertia Jz and Jy , one
has

Jz = μπ

2
c R5

0

∑
n

[
a2

2n + a2
2n+1

]
, (A30)

and

Jy = μπ

4
c R3

0

∑
n

{
R2

0

(
a2

2n + a2
2n+1

)}
+ μπ

4
c R3

0

∑
n

{
4a2n

[
z2
sh I

(n)
c0 + z2

0 I
(n)
c2

]}
+ μπ

4
c R3

0

∑
n

{
8 a2n+1 z0 zsh I

(n)
s1

}
. (A31)

The different trigonometric integrals I that appear in the above
moments can be evaluated numerically.

8. Some auxiliary Fourier integrals

For evaluating the quadrupole moment Q20 in Eq. (A27)
as well as the moments of inertia in Eq. (A31) the following
integrals are needed:

I
(n)
c0 =

∫ 1

−1
cos

(
2n − 1

2
πx

)
dx = 4

(2n − 1) π
(−1)n−1,

I
(n)
c2 =

∫ 1

−1
x2 cos

(
2n − 1

2
πx

)
dx

=
[

1 − 2

π2

(
2

2n − 1

)2
]
I

(n)
c0 ,

and

I
(n)
s1 =

∫ 1

−1
x sin

(
2n

2
πx

)
dx = 2

nπ
(−1)n−1.

034612-14



PERFORMANCE OF THE FOURIER SHAPE . . . PHYSICAL REVIEW C 95, 034612 (2017)

[1] H. J. Krappe and K. Pomorski, Theory of Nuclear Fission,
Lecture Notes in Physics 838 (Springer-Verlag, Berlin, 2012).

[2] K. Pomorski, B. Nerlo-Pomorska, J. Bartel, and C. Schmitt,
Acta Phys. Pol. B 8, 667 (2015).

[3] P. Moller, D. G. Madland, A. J. Sierk, and A. Iwamoto,
Nature (London) 409, 785 (2001).

[4] J. Bartel, K. Pomorski, and B. Nerlo-Pomorska, Acta Phys. Pol.
B Sup. 10, 17 (2017).

[5] B. Nerlo-Pomorska, K. Pomorski, J. Bartel, and C. Schmitt,
Acta Phys. Pol. B (to be published) (2017).

[6] B. Nerlo-Pomorska, K. Pomorski, J. Bartel, and C. Schmitt,
Acta Phys. Pol. B Sup. 10, 173 (2017).

[7] R. W. Hasse and W. D. Myers, Geometrical Relationships of
Macroscopic Nuclear Physics (Spinger-Verlag, Berlin, 1988).

[8] J. Bartel, F. Ivanyuk, and K. Pomorski, Int. J. Mod. Phys. E 19,
601 (2010).

[9] M. Brack, J. Damgaard, and A. S. Jensen, Rev. Mod. Phys. 44,
320 (1972).

[10] J. R. Nix, Nucl. Phys. A 130, 241 (1969).
[11] P. Moller and J. R. Nix, Nucl. Phys. A 229, 269 (1974).
[12] P. Moller (private communication).
[13] F. A. Ivanyuk and K. Pomorski, Phys. Rev. C 79, 054327

(2009).
[14] K. Pomorski and J. Dudek, Phys. Rev. C 67, 044316 (2003).
[15] P. Moller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data

Nucl. Data Tables 59, 185 (1995).
[16] S. G. Nilsson et al., Nucl. Phys. A 131, 1 (1969).
[17] B. Nerlo-Pomorska, K. Pomorski, and C. Schmitt, Phys. Scr.

154, 014026 (2013).
[18] V. M. Strutinsky, Nucl. Phys. A 95, 420 (1967).
[19] P. Moller, Nucl. Phys. A 192, 529 (1972).
[20] A. Dobrowolski, K. Pomorski, and J. Bartel, Comput. Phys.

Commun. 199, 118 (2016).
[21] K. T. R. Davies and J. R. Nix, Phys. Rev. C 14, 1977 (1976).
[22] A. Gozdz and K. Pomorski, Nucl. Phys. A 451, 1 (1986).
[23] B. Nerlo-Pomorska, K. Pomorski, C. Schmitt, and J. Bartel,

Phys. Scr. 89, 054031 (2014).
[24] B. Nerlo-Pomorska, K. Pomorski, C. Schmitt, and J. Bartel,

Phys. Scr. 90, 114010 (2015).
[25] I. V. Ryzhov et al., Phys. Rev. C 83, 054603 (2011).
[26] K. Pomorski, Phys. Rev. C 70, 044306 (2004).
[27] K. Pomorski and F. Ivanyuk, Int. J. Mod. Phys. E 18, 900 (2009).
[28] K. Pomorski, Comput. Phys. Commun. 174, 181 (2006).
[29] B. N. Lu, E. G. Zhao, and S. G. Zhou, Phys. Rev. C 85,

011301(R) (2012).
[30] A. Dobrowolski, K. Pomorski, and J. Bartel, Phys. Rev. C 75,

024613 (2007).

[31] B. Nerlo-Pomorska, K. Pomorski, J. Bartel, and C. Schmitt,
Eur. Phys. J. A (to be published) (2017).

[32] A. Bohr, Kgl. Danske Vid. Selsk. Mat. Fys. Medd. 26, 14 (1952).
[33] P. Jachimowicz, M. Kowal, and J. Skalski, Phys. Rev. C 85,

034305 (2012).
[34] K.-H. Schmidt et al., Nucl. Phys. A 665, 221 (2000).
[35] A. N. Andreyev et al., Phys. Rev. Lett. 105, 252502 (2010).
[36] T. Ichikawa, A. Iwamoto, P. Moller, and A. J. Sierk, Phys. Rev.

C 86, 024610 (2012).
[37] A. V. Andreev, G. G. Adamian, N. V. Antonenko, and A. N.

Andreyev, Phys. Rev. C 88, 047604 (2013).
[38] S. Panebianco, J. L. Sida, H. Goutte, J. F. Lemaitre, N. Dubray,

and S. Hilaire, Phys. Rev. C 86, 064601 (2012).
[39] J. D. McDonnell, W. Nazarewicz, J. A. Sheikh, A. Staszczak,

and M. Warda, Phys. Rev. C 90, 021302 (2014).
[40] L. Ghys et al., Phys. Rev. C 90, 041301 (2013).
[41] E. Prasad et al., Phys. Rev. C 91, 064605 (2015).
[42] K. Ramachandran et al., EPJ Web of Conf. 63, 02017 (2013).
[43] K. Nishio et al., Seminar at the INT 13-3 Workshop, Seattle

(2013).
[44] K. Nishio et al., Phys. Lett. B 748, 89 (2015).
[45] A. Chatillon et al., Studies On Fission with Aladin,

NUFRA2013, Kemer, Turkey (2013).
[46] V. L. Truesdale et al., Phys. Rev. C 94, 034308 (2016).
[47] J. Weber et al., Phys. Rev. C 13, 2413 (1976).
[48] J. Randrup and P. Moller, Phys. Rev. Lett. 106, 132503 (2011).
[49] Y. Aritomo, S. Chiba, and F. Ivanyuk, Phys. Rev. C 90, 054609

(2014).
[50] M. G. ltkis et al., Yad. Fiz. 53, 1225 (1991) [Sov. J. Nucl. Phys.

53, 757 (1991)].
[51] L. Dematte et al., Nucl. Phys. A 617, 331 (1997).
[52] K. Pomorski, B. Nerlo-Pomorska, J. Bartel, and C. Schmitt,

Acta Phys. Pol. B Supl. 10, 183 (2017).
[53] P. A. Butler and W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996).
[54] S. E. Agbemava, A. V. Afanasjev, and P. Ring, Phys. Rev. C 93,

044304 (2016), and references therein.
[55] B. Nerlo-Pomorska, K. Pomorski, and J. Bartel, Acta Phys. Pol.

B 47, 1001 (2016).
[56] M. Kowal and J. Skalski, Phys. Rev. C 85, 061302 (2012).
[57] T. Ichikawa, P. Moller, and A. J. Sierk, Phys. Rev. C 87, 054326

(2013).
[58] J. D. McDonnell, W. Nazarewicz, and J. A. Sheikh, Phys. Rev.

C 87, 054327 (2013).
[59] L. Csige et al., Phys. Rev. C 85, 054306 (2012).
[60] J. Sadhukhan, W. Nazarewicz, and N. Schunck, Phys. Rev. C

93, 011304 (2016).
[61] K. Pomorski et al., Nucl. Phys. A 679, 25 (2000).

034612-15

https://doi.org/10.1038/35057204
https://doi.org/10.1038/35057204
https://doi.org/10.1038/35057204
https://doi.org/10.1038/35057204
https://doi.org/10.5506/APhysPolBSupp.10.17
https://doi.org/10.5506/APhysPolBSupp.10.17
https://doi.org/10.5506/APhysPolBSupp.10.17
https://doi.org/10.5506/APhysPolBSupp.10.17
https://doi.org/10.5506/APhysPolBSupp.10.173
https://doi.org/10.5506/APhysPolBSupp.10.173
https://doi.org/10.5506/APhysPolBSupp.10.173
https://doi.org/10.5506/APhysPolBSupp.10.173
https://doi.org/10.1142/S0218301310015011
https://doi.org/10.1142/S0218301310015011
https://doi.org/10.1142/S0218301310015011
https://doi.org/10.1142/S0218301310015011
https://doi.org/10.1103/RevModPhys.44.320
https://doi.org/10.1103/RevModPhys.44.320
https://doi.org/10.1103/RevModPhys.44.320
https://doi.org/10.1103/RevModPhys.44.320
https://doi.org/10.1016/0375-9474(69)90730-1
https://doi.org/10.1016/0375-9474(69)90730-1
https://doi.org/10.1016/0375-9474(69)90730-1
https://doi.org/10.1016/0375-9474(69)90730-1
https://doi.org/10.1016/0375-9474(74)90788-X
https://doi.org/10.1016/0375-9474(74)90788-X
https://doi.org/10.1016/0375-9474(74)90788-X
https://doi.org/10.1016/0375-9474(74)90788-X
https://doi.org/10.1103/PhysRevC.79.054327
https://doi.org/10.1103/PhysRevC.79.054327
https://doi.org/10.1103/PhysRevC.79.054327
https://doi.org/10.1103/PhysRevC.79.054327
https://doi.org/10.1103/PhysRevC.67.044316
https://doi.org/10.1103/PhysRevC.67.044316
https://doi.org/10.1103/PhysRevC.67.044316
https://doi.org/10.1103/PhysRevC.67.044316
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1006/adnd.1995.1002
https://doi.org/10.1016/0375-9474(69)90809-4
https://doi.org/10.1016/0375-9474(69)90809-4
https://doi.org/10.1016/0375-9474(69)90809-4
https://doi.org/10.1016/0375-9474(69)90809-4
https://doi.org/10.1088/0031-8949/2013/T154/014026
https://doi.org/10.1088/0031-8949/2013/T154/014026
https://doi.org/10.1088/0031-8949/2013/T154/014026
https://doi.org/10.1088/0031-8949/2013/T154/014026
https://doi.org/10.1016/0375-9474(67)90510-6
https://doi.org/10.1016/0375-9474(67)90510-6
https://doi.org/10.1016/0375-9474(67)90510-6
https://doi.org/10.1016/0375-9474(67)90510-6
https://doi.org/10.1016/0375-9474(72)90090-5
https://doi.org/10.1016/0375-9474(72)90090-5
https://doi.org/10.1016/0375-9474(72)90090-5
https://doi.org/10.1016/0375-9474(72)90090-5
https://doi.org/10.1016/j.cpc.2015.09.020
https://doi.org/10.1016/j.cpc.2015.09.020
https://doi.org/10.1016/j.cpc.2015.09.020
https://doi.org/10.1016/j.cpc.2015.09.020
https://doi.org/10.1103/PhysRevC.14.1977
https://doi.org/10.1103/PhysRevC.14.1977
https://doi.org/10.1103/PhysRevC.14.1977
https://doi.org/10.1103/PhysRevC.14.1977
https://doi.org/10.1016/0375-9474(86)90237-X
https://doi.org/10.1016/0375-9474(86)90237-X
https://doi.org/10.1016/0375-9474(86)90237-X
https://doi.org/10.1016/0375-9474(86)90237-X
https://doi.org/10.1088/0031-8949/89/5/054031
https://doi.org/10.1088/0031-8949/89/5/054031
https://doi.org/10.1088/0031-8949/89/5/054031
https://doi.org/10.1088/0031-8949/89/5/054031
https://doi.org/10.1088/0031-8949/90/11/114010
https://doi.org/10.1088/0031-8949/90/11/114010
https://doi.org/10.1088/0031-8949/90/11/114010
https://doi.org/10.1088/0031-8949/90/11/114010
https://doi.org/10.1103/PhysRevC.83.054603
https://doi.org/10.1103/PhysRevC.83.054603
https://doi.org/10.1103/PhysRevC.83.054603
https://doi.org/10.1103/PhysRevC.83.054603
https://doi.org/10.1103/PhysRevC.70.044306
https://doi.org/10.1103/PhysRevC.70.044306
https://doi.org/10.1103/PhysRevC.70.044306
https://doi.org/10.1103/PhysRevC.70.044306
https://doi.org/10.1142/S0218301309013026
https://doi.org/10.1142/S0218301309013026
https://doi.org/10.1142/S0218301309013026
https://doi.org/10.1142/S0218301309013026
https://doi.org/10.1016/j.cpc.2005.09.009
https://doi.org/10.1016/j.cpc.2005.09.009
https://doi.org/10.1016/j.cpc.2005.09.009
https://doi.org/10.1016/j.cpc.2005.09.009
https://doi.org/10.1103/PhysRevC.85.011301
https://doi.org/10.1103/PhysRevC.85.011301
https://doi.org/10.1103/PhysRevC.85.011301
https://doi.org/10.1103/PhysRevC.85.011301
https://doi.org/10.1103/PhysRevC.75.024613
https://doi.org/10.1103/PhysRevC.75.024613
https://doi.org/10.1103/PhysRevC.75.024613
https://doi.org/10.1103/PhysRevC.75.024613
https://doi.org/10.1103/PhysRevC.85.034305
https://doi.org/10.1103/PhysRevC.85.034305
https://doi.org/10.1103/PhysRevC.85.034305
https://doi.org/10.1103/PhysRevC.85.034305
https://doi.org/10.1016/S0375-9474(99)00384-X
https://doi.org/10.1016/S0375-9474(99)00384-X
https://doi.org/10.1016/S0375-9474(99)00384-X
https://doi.org/10.1016/S0375-9474(99)00384-X
https://doi.org/10.1103/PhysRevLett.105.252502
https://doi.org/10.1103/PhysRevLett.105.252502
https://doi.org/10.1103/PhysRevLett.105.252502
https://doi.org/10.1103/PhysRevLett.105.252502
https://doi.org/10.1103/PhysRevC.86.024610
https://doi.org/10.1103/PhysRevC.86.024610
https://doi.org/10.1103/PhysRevC.86.024610
https://doi.org/10.1103/PhysRevC.86.024610
https://doi.org/10.1103/PhysRevC.88.047604
https://doi.org/10.1103/PhysRevC.88.047604
https://doi.org/10.1103/PhysRevC.88.047604
https://doi.org/10.1103/PhysRevC.88.047604
https://doi.org/10.1103/PhysRevC.86.064601
https://doi.org/10.1103/PhysRevC.86.064601
https://doi.org/10.1103/PhysRevC.86.064601
https://doi.org/10.1103/PhysRevC.86.064601
https://doi.org/10.1103/PhysRevC.90.021302
https://doi.org/10.1103/PhysRevC.90.021302
https://doi.org/10.1103/PhysRevC.90.021302
https://doi.org/10.1103/PhysRevC.90.021302
https://doi.org/10.1103/PhysRevC.90.041301
https://doi.org/10.1103/PhysRevC.90.041301
https://doi.org/10.1103/PhysRevC.90.041301
https://doi.org/10.1103/PhysRevC.90.041301
https://doi.org/10.1103/PhysRevC.91.064605
https://doi.org/10.1103/PhysRevC.91.064605
https://doi.org/10.1103/PhysRevC.91.064605
https://doi.org/10.1103/PhysRevC.91.064605
https://doi.org/10.1051/epjconf/20136302017
https://doi.org/10.1051/epjconf/20136302017
https://doi.org/10.1051/epjconf/20136302017
https://doi.org/10.1051/epjconf/20136302017
https://doi.org/10.1016/j.physletb.2015.06.068
https://doi.org/10.1016/j.physletb.2015.06.068
https://doi.org/10.1016/j.physletb.2015.06.068
https://doi.org/10.1016/j.physletb.2015.06.068
https://doi.org/10.1103/PhysRevC.94.034308
https://doi.org/10.1103/PhysRevC.94.034308
https://doi.org/10.1103/PhysRevC.94.034308
https://doi.org/10.1103/PhysRevC.94.034308
https://doi.org/10.1103/PhysRevC.13.2413
https://doi.org/10.1103/PhysRevC.13.2413
https://doi.org/10.1103/PhysRevC.13.2413
https://doi.org/10.1103/PhysRevC.13.2413
https://doi.org/10.1103/PhysRevLett.106.132503
https://doi.org/10.1103/PhysRevLett.106.132503
https://doi.org/10.1103/PhysRevLett.106.132503
https://doi.org/10.1103/PhysRevLett.106.132503
https://doi.org/10.1103/PhysRevC.90.054609
https://doi.org/10.1103/PhysRevC.90.054609
https://doi.org/10.1103/PhysRevC.90.054609
https://doi.org/10.1103/PhysRevC.90.054609
https://doi.org/10.1016/S0375-9474(97)00032-8
https://doi.org/10.1016/S0375-9474(97)00032-8
https://doi.org/10.1016/S0375-9474(97)00032-8
https://doi.org/10.1016/S0375-9474(97)00032-8
https://doi.org/10.5506/APhysPolBSupp.10.183
https://doi.org/10.5506/APhysPolBSupp.10.183
https://doi.org/10.5506/APhysPolBSupp.10.183
https://doi.org/10.5506/APhysPolBSupp.10.183
https://doi.org/10.1103/RevModPhys.68.349
https://doi.org/10.1103/RevModPhys.68.349
https://doi.org/10.1103/RevModPhys.68.349
https://doi.org/10.1103/RevModPhys.68.349
https://doi.org/10.1103/PhysRevC.93.044304
https://doi.org/10.1103/PhysRevC.93.044304
https://doi.org/10.1103/PhysRevC.93.044304
https://doi.org/10.1103/PhysRevC.93.044304
https://doi.org/10.5506/APhysPolB.47.943
https://doi.org/10.5506/APhysPolB.47.943
https://doi.org/10.5506/APhysPolB.47.943
https://doi.org/10.5506/APhysPolB.47.943
https://doi.org/10.1103/PhysRevC.85.061302
https://doi.org/10.1103/PhysRevC.85.061302
https://doi.org/10.1103/PhysRevC.85.061302
https://doi.org/10.1103/PhysRevC.85.061302
https://doi.org/10.1103/PhysRevC.87.054326
https://doi.org/10.1103/PhysRevC.87.054326
https://doi.org/10.1103/PhysRevC.87.054326
https://doi.org/10.1103/PhysRevC.87.054326
https://doi.org/10.1103/PhysRevC.87.054327
https://doi.org/10.1103/PhysRevC.87.054327
https://doi.org/10.1103/PhysRevC.87.054327
https://doi.org/10.1103/PhysRevC.87.054327
https://doi.org/10.1103/PhysRevC.85.054306
https://doi.org/10.1103/PhysRevC.85.054306
https://doi.org/10.1103/PhysRevC.85.054306
https://doi.org/10.1103/PhysRevC.85.054306
https://doi.org/10.1103/PhysRevC.93.011304
https://doi.org/10.1103/PhysRevC.93.011304
https://doi.org/10.1103/PhysRevC.93.011304
https://doi.org/10.1103/PhysRevC.93.011304
https://doi.org/10.1016/S0375-9474(00)00327-4
https://doi.org/10.1016/S0375-9474(00)00327-4
https://doi.org/10.1016/S0375-9474(00)00327-4
https://doi.org/10.1016/S0375-9474(00)00327-4



