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B decay of >2Cf in the transition from the exit point to scission
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Upon increasing significantly the nuclear elongation, the 8-decay energy grows. This paper investigates within
a simple yet partly microscopic approach, the transition rate of the 8~ decay of the *>2Cf nucleus on the way to
scission from the exit point for a spontaneous fission process. A rather crude classical approximation is made for
the corresponding damped collective motion assumed to be one dimensional. Given these assumptions, we only
aim in this paper at providing the order of magnitudes of such a phenomenon. At each deformation the energy
available for B8~ decay, is determined from such a dynamical treatment. Then, for a given elongation, transition
rates for the allowed (Fermi) 0% — 0% B decay are calculated from pair correlated wave functions obtained
within a macroscopic-microscopic approach and then integrated over the time corresponding to the whole descent
from exit to scission. The results are presented as a function of the damping factor (inverse of the characteristic
damping time) in use in our classical dynamical approach. For instance, in the case of a descent time from the
exit to the scission points of about 1072° s, one finds a total rate of 8 decay corresponding roughly to 20 events
per year and per milligram of *2Cf. The inclusion of pairing correlations does not affect much these results.
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I. PURPOSE

Due to the decrease of the Coulomb energy and the increase
of the surface energy, upon strongly deforming a nucleus, it
may happen that a nucleus which is 8~ stable at equilibrium
deformation gets a positive Q(B7) = (M(Z,A) — M(Z +
1,A) —m,)c? at large deformation. This is exemplified in
Fig. 1 within a liquid drop model (LDM) approach [1],
where the masses of A = 252 isobars (from plutonium to
kurchatovium) are plotted for various deformations (defined
as the ratio p = Rjp/Ry of the distance R, between the
mass centers of nascent fragments and the radius Ry of
the corresponding spherical nucleus). One sees clearly that
the B stability valley shifts from californium almost to
nobelium when the nuclear shape varies from a sphere to
configurations close to the scission point where one has
typically in such very heavy nuclei p &~ 2.5.

This result could be also attained upon considering the
opposite behavior of proton and neutron separation energies
as could be seen from an extremely crude liquid drop
approach. Indeed, let us consider a liquid drop energy formula
comprising merely volume, surface, direct Coulomb, and
volume symmetry terms. For a spherical shape, one gets
for the (positive) separation energies for protons (S,) and
neutrons (S,) with a usual notation and approximating the
energy differences as differentiable quantities (i.e., making a
continuous approximation for the variables Z or N):

4 1
S, =804 1y 72473 _ 24, A3 —2a, ZA7S,
P p 3 3 (1)

4 _1
Sy = S,(lo) + %ac ZPA73 — %as A3,

where S;,O) and S are deformation independent terms given,
e.g., for the protons by

(N —Z)Z +3N)

It appears clearly that upon deforming the nuclear shape,
both the surface (a,) and Coulomb (a.) deformation-dependent
terms present in S, will contribute to its decrease. These terms
are also present in S, but are supplemented by a term which
increases with the deformation. We thus conclude that the
difference S, — S, is increasing with deformation from about
zero for the ground state of a 8 stable nucleus to a value
which could be of the order of some MeV. Resorting now to
state of the art macroscopic-microscopic calculations (using
the LDM model of Ref. [1] and the Yukawa folded potential
of Ref. [2] with the parameters given in Ref. [3]), including
pairing correlations using a seniority pairing force, one gets
an inversion of the relative position of neutron and proton
Fermi levels of the 2>2Cf g stable nucleus upon increasing the
elongation, the latter becoming larger than the former. This
is illustrated in Fig. 2 showing the neutron and proton single
particle (s.p.) spectra around the Fermi levels for p & 0.9 and
p ~ 2.8 corresponding, respectively, to the ground state and
the scission point solutions.

We are therefore considering the following 8~ decay during
the spontaneous fission process (beyond the exit point):

P2Cfy5y — " Bsis3+e + D 3

In the present approach intending merely to provide order
of magnitudes, we limit ourselves to allowed transitions.
The spin and parity of the compound nucleus are conserved
during the fission process (in the assumed absence of particle
emission). We are thus first led into considering 07 — 0T
Fermi transitions. The Gamow-Teller transitions (0T — 1)
are a priori possible. Yet, according to Ref. [4], they are on
the average 1.5 orders of magnitude less probable than the
Fermi ones. So, in our simplified approach we are thus left

0
S;, ) — —ay + Agym A2 @) with Fermi transitions only.
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FIG. 1. Mass excess of Pu-Ku nuclei with A = 252 evaluated
within the LSD model [1]. Each curve corresponds to different
elongation of nuclei p defined in the text. These values are reported

on the r.h.s. side of the every second curve. The upper curve (labeled
as “sph.”) presents the mass excesses calculated for spherical nuclei.

II. APPROXIMATIONS

The macroscopic-microscopic calculations of the potential
energy surface of 2>Cf are performed in a four-dimensional
deformation parameter space consisting of elongation, neck,
nonaxiality, and reflectional asymmetry parameters as de-
scribed in Ref. [5]. This parametrization approximates very
well the optimum in energy shapes of fissioning nuclei [6].
The potential energy surface, the Strutinsky shell, and the
pairing energies as well as the liquid drop deformation energy
are presented in Fig. 3 on a plane (R, k), where R, is the
relative distance between the fragments and « is the neck
parameter. The figure is drawn for the nonaxiality (1) and
the reflectional asymmetry (o) parameters equal to zero. All
parameters of the macroscopic-microscopic calculations are
those of Ref. [7]. One can see that the amplitude of the shell
and the pairing energies in the vicinity of the fission path are
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FIG. 2. (Color online) Proton (p) and neutron (n) single-particle
levels of 232Cf in the ground state (1.h.s.) and at the scission point
(r.h.s.).
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of the order of a few MeV but both corrections are almost
opposite in phase, so the total microscopic effect modifies
only slightly the average behavior of the nuclear energy given
by the liquid-drop model. It is also seen in Fig. 3 that in
both the liquid-drop and the macroscopic-microscopic models
the exit from the barrier appears around an elongation given
by Rj2/Ro = 1.5. The slope of the potential energy towards
scission is so large that the scission configuration appears at
an energy which is more than 20 MeV below the ground state
while the fission barrier height is about 5 MeV only. Such a
large energy a priori (contingent about the amount of friction
in the dynamical collective process) available for the 8 decay
will enhance this process.

At this very preliminary stage of our study, we make
the following approximations pertaining to the static and
dynamical calculations as well as to the evaluation of transition
rates.

(a) We consider only a single fission path assumed to be
the most probable one out of static macroscopic-microscopic
calculations of the above discussed type. Pairing is included,
as it should, to define adequately this optimal path. In Fig. 4,
we have plotted the corresponding fission barrier down to the
scission point, along with the underlying LDM one.

As a result we find that apart from the ground state region,
and in particular at large deformations (namely Rj> /Ry > 1.5),
the LDM energy curve represents a reasonable approximation
of the results, where shell and pairing effects are taken
into account. However, for the calculated ground state one
has definitely to make a choice about its exact definition.
One may rule out the LDM solution since shell and pairing
effects increase its height. As a good approximation of the
macroscopic-microscopic exit point, as can be seen in Fig. 4,
is the exit point on the LDM fission barrier (on the side
of the descent towards fission) which is located at exactly
4.8 MeV below the saddle point. This value corresponds to the
experimental fission barrier height (noting in passing that our
macroscopic-microscopic calculations do reproduce it quite
well).

In what follows we will use also, instead of the ratio p =
R12/ Ry, a collective variable g obtained by a translation of
p such that g = 0 at the exit point. We define in a somewhat
arbitrary fashion a single scission point. It corresponds to the
point on the LDM fission path, where the nuclear liquid drop
ceases to consist of one single piece (it is obtained here for p ~
2.9). It corresponds to a gain in energy of AEy,x ~ 28 MeV
with respect to the exit point energy (or the ground state one,
since they are of course the same).

In Fig. 4 we have also plotted the LDM Q(87) value as a
function of p. It varies from —1.2 MeV at sphericity to enter the
instability region for p &~ 1.5 which happens coincidentally, to
be very close to the exit point to reach ~ 2.5 MeV around the
scission point.

(b) In the present approach, which aims only at providing
orders of magnitude, we make the following approximations
for the collective dynamics:

(i) As a function of the collective coordinate g, one
may approximate reasonably (see Fig. 4) the potential
energy E,(q) as alinearly decreasing function when ¢
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FIG. 3. (Color online) Shell (top, 1.h.s), pairing (top, r.h.s.), liquid drop (bottom, Lh.s.), and total deformation energy of *>Cf as function
of the relative distance between the fission fragments (o) and the neck parameter (k).

varies from zero to ¢, which the value of this parameter
at scission. One has thus

E)q)=—-aqg a~20 (0<q <qy). 4)

(ii) We approximate the mass parameter m(g) as being
constant m(q) = p during the descent from the exit
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FIG. 4. Macroscopic (solid line) and macroscopic-microscopic
(dashed line) fission barriers and the S-decay energy Q(B~) (dotted
line) of **>Cf as a function of nuclear elongation.

point to scission and equal to the reduced mass be-
tween the two final fragments (to assess the relevance
of this approximation see Ref. [8]).

(iii) We assume that the damping of the motion results
from a simple friction force —kg with k > 0.

Then the equation of motion yields the following trivial
solution (introducing of course a vanishing collective velocity
at the exit point):

g="[r-2(1-e), 5)

which could be numerically inverted to get the time 7(g) as
a function of the deformation g. Then the collective kinetic
energy will be given by

2

B2 (e i) (6)

1
Ex(q) = T

The available energy is
AE(q) = —Ep(q) = aq, 0
from which one gets the excitation energy E*(q) as
2

1
E@) =5 [x — () - Eg(xf] , @®)
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where the dimensionless quantity x is defined by

x:E ©)]
m

and with
gx)=1—¢". (10)

(c) To compute S-decay rates, the effect of pairing corre-
lations will be taken into account. For the sake of clarity we
will first discuss our approach without them and in a separate
section the modifications brought in by their inclusion.

The conservation of the axial symmetry is assumed along
the path. Each s.p. state is thus defined in particular by the
usual angular momentum projection K quantum number.

We will assume that there is no polarization, i.e., that the s.p.
wave functions in the 23>Cf or 2>’Es mean fields are the same
and furthermore that one has, with a transparent notation, the
following relation between the binding energies of the parent
and daughter nuclei (Koopmans approximation):

E(*?Es) = E(**Cf) + e, — en, an

where e, and e, are the proton and neutron single-particle
energies, respectively.

III. EFFECTIVE Qz VALUES AND AVAILABLE
PHASE-SPACE

At a given elongation g or at given time #(g), the parent
nucleus has an excitation energy of £*(q). The effective Qg(q)
value for a transition from a neutron single particle state i to a
proton single particle state f is thus given by

04 7(q) = E*(q) + eai) — e,(f) + 078 MeV ., (12)

where the last constant originates from the mass difference of
the neutron and proton plus the electron mass. Defining the
neutron Fermi level A, and similarly for protons A ,, one will
consider an effective neutron Fermi level as Af,ff(q) as

A(q) = An + E*(g) + 0.78 MeV . (13)

Possible transitions between neutron s.p. states and proton s.p.
states will require the following conditions to be satisfied:

Kao(i) = Kp(f), Ap < ep(f) < eni) < AM(g). (14)

IV. TRANSITIONS RATES

The nuclear matrix element for such a (i, f) Fermi transition
is given with a usual notation by

My = / / / ) Pui D). (15)

A special note is to be made here, about the intrinsic parity
breaking. Let us call | V) the intrinsic wave function breaking
the left-right symmetry, either for the parent or the daughter
states. One should project a positive parity state out of it, as

W) = iuwn + 11|w)), (16)
V2

where IT is the parity operator.
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The above nuclear matrix element will thus comprise two
parts corresponding to the two overlaps (W(i)|W(f)) and
(W(@H)|TT|W( f)). However it is known from parity projection
calculations of the fission barrier of heavy nuclei, see Ref. [9],
that somewhere before the second fission barrier and beyond,
the intrinsic parity breaking deformation is so large that the
overlap between the corresponding wave function and its parity
image is negligible. We are just left here with the (W (@)W ( f))
overlap as in the nonparity breaking case. Yet, in this case
one cannot, of course, apply a selection rule on the quantum
number m which is not conserved but only on the angular
momentum projection K which we have assumed to be a good
quantum number.

The associated transition rate is [10]

Ri = Gz—|Mi’f|2mzC4
273h

which after inserting of the week interaction coupling constant
(G) and other constants values takes the following form:

f(z=9.03"). (17

Rip = 1.105107|M; s f(Z = 99.0%7). (18)

A rough estimate of the function f as a function of the effective
Q value Ql(g"f)(q) is given for Z = 99 by

log;o(f) = 3.5logy, (057" (q)) + 3, (19)

G.f)

where Q4" '(¢) is expressed in MeV.

V. INCLUDING PAIR CORRELATED NUCLEAR STATES

When pairing correlations are included in both the parent
and daughter nuclear states (assuming again no polarization
effects, i.e., taking the s.p. wave functions, occupation prob-
abilities, and quasiparticle energies as obtained in the parent
nucleus) one has just to multiply the overlaps M; ; by the BCS

factor u p( ryva) while the effective Q;‘f .(q) becomes

04(q) = E*(q) — [EX (D) + EP ()] + (hn — )
+0.78 MeV, (20)

where E/”(i) and E}'(f) are the initial neutron and the final
proton quasiparticle energies.

In this case, one may consider all transitions from single
neutron to single proton states which satisfy the following con-
ditions beyond the angular momentum component matching
rule [K, (i) = K,(f)]:

(i) the proton state should not be fully occupied (i.e., lying
below the valence space),
(ii) the neutron state should not be fully unoccupied (i.e.,
lying above the valence space),
(iii) the final state energy should be lower or equal to the
initial state energy, i.e., Q'ﬂ’f (@) =0.

VI. TOTAL TRANSITION RATES

At a given time (or at a given elongation) the total rate of
decay will be obtained by summing all individual rates R; s to
get R(q). For the whole descent from exit to scission, one will
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FIG. 5. Collective elongation ¢ = (R, — ng“)/ R, as function
of time [Eq. (5)] for different values of the nuclear damping k /.

get the number of decay for a single fission, i.e., the probability
of decay, by integrating R(q) over the whole time of descent
from the exit to the scission points

9s k _ky 1
Piecay = R(Q);(l —e€ ”) dq. (21
0

This probability, and similarly the pre-scission kinetic energy
E ?( = Ek(qs), are of course strongly dependent on the retained
value for the friction parameter k. In the following we will use
our estimates of Py..qy as a function of the time ;. to evaluate
the number of B decays from a sample of *>2Cf in a given time
period.

VII. RESULTS

Let us first use the results of our simple dynamical
calculations to describe the collective motion from the exit
to the scission points. Our results will be presented for a few
values of the reduced friction parameter k/u, of which the

Ey [MeV]

k=2 MeV/h

x

4
o :
0 5 10 15 20 25 30
t [hW/MeV]

X £va

FIG. 6. Pre-scission kinetic energy for a few values of the reduced
friction (k/w) as function of time. The time at which scission
configuration is reached for a given k/u value is marked by a cross.
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FIG. 7. Number of 8 decays per year for a 1 mg sample of »>Cf
as a function of the descent time z,. from the exit to the scission
points.

inverse is the damping time (5). The damping parameter k/u
is given in units MeV /A ~ 1.5 10*'s71.

As seen in Fig. 5, the collective descent from g = 0 to g ~
1.4 takes from &~ 3.5 102! s for a large dumping time (k/p1 =
1 in the above discussed units) to &~ 18 1072 s for a small
damping time (k/p = 6). In all considered cases the collective
motion is completely damped at scission as exemplified on
Fig. 6. The pre-scission kinetic energy Ex values range from
a couple hundred keV for the large damping case (k/u = 6)
to & 5 MeV for the low damping case (k/p = 1).

The resulting number of 8 decays for a 1 mg sample of
22Cf is given in Fig. 7, as a function of the descent time
tsc from the exit to the scission points (or equivalently as a
function of the damping parameter k/u). It ranges from ~ 6
for the low damping case (k/u = 1) to =~ 46 for the large
damping case (k/u = 6). The range of considered values of
the damping parameter &/ is taken following estimates made
in Ref. [11] (see Fig. 10 of this reference).

The previous figures are given for an evaluation which does
not take into account pairing correlations effects. As seen of
Fig. 7, including these correlations increases slightly the above
given numbers (only by &~ 2% for k/p = 6), this correction
being an increasing function of the damping parameter k/ .

VIII. CONCLUSIONS

This paper aimed at pointing out the strong dependence of
the B-decay stability as a function of the nuclear deformation.
From state of the art macroscopic-microscopic calculations
it has been claimed that a very heavy nucleus like **Cf,
while B stable as is well known in its ground state becomes
instable near the fission exit point. Through a very simple
description of the collective dynamics, the transition rates of
the Fermi B decay during the spontaneous fission process of
this nucleus up to the scission point, have been calculated.
They depend of course on the amount of damping of the
fission collective mode which regulates the excitation energy
available at each time, for such a decay. In so far as
these rates could prove to be experimentally reachable, they
would provide a much needed source of information on the
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pre-scission dynamics, as, .g., the average pre-scission kinetic
energy or the value of the reduced friction parameter. Taking
pairing correlations into account or not is not an important
factor.

As a result a relatively weak number of B decays are
expected from our results during the descent from the exit
to the scission points for standard values of the damping
parameter. The capacity of existing experimental devices
to assess this conclusion for tractable amounts of 22Cf is
questionable. Improving these so far very crude estimates by
a better treatment of the static and dynamic parts of these
calculations as well as exploring this phenomenon for other

PHYSICAL REVIEW C 91, 054605 (2015)

nuclei (involving possibly the inclusion of Gamow-Teller
decays as well) will be undertaken.
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