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Microscopic studies of nuclear fission require the evaluation of the potential-energy surface as a function of
the collective coordinates. A reasonable choice of constraints on multipole moments should be made to describe
the topography of the surface completely within a reasonable amount of computing time. We present a detailed
analysis of fission barriers in the self-consistent Hartree-Fock-Bogoliubov approach with the D1S parametriza-
tion of the Gogny nucleon-nucleon interaction. Two heavy isotopes representing different spontaneous fission
modes, 252Cf (asymmetric) and 258No (bimodal), have been chosen for the analysis. We have shown the existence
of complicated structures on the energy surface that cannot be fully described in two-dimensional calculations.
We analyze apparent problems that can be encountered in this type of calculations: multiple solutions for given
constraints and transitions between various overlapping potential-energy surfaces. These issues may be partially
solved by the analysis of the potential-energy surface spanned by triple constraints, but even in this case one may
find multiple solutions and surface discontinuities. Analysis of the potential-energy surface in two dimensions is
often very successful but it must be carried out with special attention to possible discontinuities.
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I. INTRODUCTION

The accurate description of collective nuclear motion from
the ground state up to the scission point represents a crucial
step to understand the fission of an atomic nucleus. An es-
sential ingredient is the behavior of the binding energy of
the nucleus as a function of the parameters characterizing
the collective degrees of freedom. On its way from the ini-
tial ground state configuration to scission, the nucleus has
to tunnel through a potential-energy barrier determining the
timescale of fission half-lives. Not only the height but also
the width and the shape of the fission barrier are important
for spontaneous fission half-life estimations, while the to-
pography of the potential-energy surface (PES) is essential
to determine fission dynamics. A detailed description of the
theory of fission and challenges in this field can be found in
the review papers [1–3].

Many theoretical papers describing the PES in heavy
actinides have been published recently, improving our knowl-
edge of fission in heavy and superheavy nuclei [4–24]. In
those articles, one can distinguish two different approaches to
describe the evolution of the shape of the nucleus on its way
from the initial configuration towards scission. Both are based
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on the assumption that the most probable (one-dimensional)
path in the considered deformation space is the one connecting
the lowest energy points along the path. In the first approach,
which is mostly used with macroscopic-microscopic theories,
a predefined class of nuclear shapes defined uniquely in terms
of a given set of deformation parameters is used to define the
set of accessible configurations to be used in the characteri-
zation of the energy. The number of deformation parameters
defines the dimensionality of the problem. An increasing
number of dimensions enlarges the variety of shapes used
and, therefore, usually improves the calculation’s quality by
providing lower energy solutions. This flexibility comes at the
expense of calculating the energy for a huge number of points
in the deformation space. On the other hand, the approach
benefits from full control over the shapes characterizing the
evolution of the nucleus from the ground state to scission.
The alternative approach is mostly based on microscopic
self-consistent methods. In the self-consistent procedure, the
wave functions along the fission path are determined by the
minimization of the energy of the nucleus within a given set of
constraints and assumed symmetries. There are many nuclear
density distributions that fulfill the conditions set by the con-
straints and the Hartree-Fock-Bogoliubov (HFB) equations. In
the self-consistent procedure only one shape is selected and
it is the one which fulfills the condition of locally minimal
energy of the nucleus. This approach guarantees that the se-
lected shape is optimal within the given set of constraints,
although nonconstrained degrees of freedom are not fixed.
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In consequence, in this method, the problem of too small
deformation space (too few deformation parameters) does not
exist. Nevertheless, the results provided with this method are
not always unique [25] as one can easily land for a given set of
constraints in one of the local minima. As a consequence, the
self-consistent minimization procedure can produce several
solutions with the same value of the constraints but differ-
ent energies depending, for instance, on the starting wave
function used in the solution of the variational equations.
Those “multivalued” solutions are connected in a higher di-
mensional deformation space by a barrier separating them. A
typical example, often seen in axially symmetric calculation
constraining in the quadrupole moment, is the existence of
two solutions with the same quadrupole moment but different
values of the octupole moment in the region of the second
barrier. The two coexisting minima are linked by a path going
through the octupole moment in the parameter space. One of
the unwanted consequences of this kind of situation is the
possibility to jump between configurations when considering
the behavior of quantities as a function of the current shape
parameter. The leap is unphysical because one is skipping the
path connecting the coexisting minima. When describing this
situation, one talks about jumping from one fission valley to
another. Whether the dynamics of fission justify this transition
or it is just an artifact due to the limited number of constraints
used to describe the fission path is a delicate issue that will be
the subject of the present paper.

When several different solutions exist as local minima of
the potential energy for a given set of constraints, one has to
decide which of them should be considered in the analysis of
fission. We may even encounter situations where, on the edge
between two valleys, a fake or missing saddle can be found
[25]. The first case occurs when two distinct nuclear shape
configurations have the same energy at some coordinate, and
the fission paths are incorrectly linked together. The missing
one means that minimizing the energy with a single constraint
may pass over a saddle leading to another valley. The con-
sequence of a wrong interpretation of the PES may have a
non-negligible impact on the description of fission dynamics.
The barrier heights may be improperly evaluated, and some
fission valleys may be omitted or redundant.

It has been previously shown that nongeometrical con-
straints like the one associated with pairing correlations may
strongly influence the fission dynamics scenario because of
the strong dependence of the collective inertias on the inverse
of the pairing gap [26–31]. As a consequence, the inclusion
of the pairing degree of freedom can substantially modify the
dynamical evolution of a collective wave packet. Moreover,
this kind of constraint can play a central role if the least action
principle is used instead of the least energy one to determine
the fission path. The treatment of spontaneous fission using
the least action principle and including the pairing degree of
freedom leads to a substantial reduction of the spontaneous
fission lifetime [28–31]. However, and despite its relevance,
we are not considering the pairing degree of freedom in the
present study.

This paper is devoted to the discussion of the choice of
the multipole moments to be used as constraints for the cal-
culation of the PES leading to fission in the self-consistent

methods. The primary purpose is to determine which subspace
of collective coordinates in a deformation space is sufficient
for an accurate description of static properties of fissioning
nuclei. We will analyze the mechanism leading to multiple
solutions of the HFB equations with the same values of the
constraints defining the deformation space. The consequences
of this behavior will be discussed. We will indicate regions
where the discontinuity of the PES may be found.

To carry out our investigation, we have chosen two isotopes
representing two different fission modes: asymmetric (252Cf)
[32–34] and bimodal (258No) [35,36]. With this choice, we
cover a broad and representative range of fission modes in
heavy nuclei. The total half-life of the radioactive isotope
252Cf is t1/2 = 2.645(8) yr with alpha decay as the dominant
branch. Only 3.092(8)% of the decaying nuclides undergo
spontaneous fission. On the other hand, 258No has a far shorter
half-life t1/2 = 1.2(2) ms and fission is the principal decay
channel [37].

II. THEORETICAL FRAMEWORK

The present study has been carried out using the
self-consistent constrained Hartree-Fock-Bogoliubov (HFB)
method with the finite-range density-dependent nucleon-
nucleon Gogny interaction. We use the D1S parametrization
[38] that has been extensively used in the literature to de-
scribe many different nuclear structure phenomena [39,40]
including the microscopic description of fission [41–45]. The
latter is not surprising as the D1S parametrization was fitted
to the fission barrier of 240Pu in order to correct for a too
large surface energy of the D1 Gogny force. On the other
hand, D1S is not specially good at binding energies, showing
an unphysical drifting with neutron number for this quantity
[46]. To remedy this situation the parametrization D1M was
proposed in Ref. [47]. As D1M’s surface energy properties
are, by construction, very similar to those of D1S it should
not be surprising that potential-energy surfaces for fission are
very similar with the two parametrizations [16,23].

In the HFB method [2,40], the nuclear states are obtained
as the solutions of the HFB equations, which are derived by
requiring that the mean value of the Routhian is a minimum:

δ

(
〈�|Ĥ − λZ Ẑ − λN N̂ −

∑
i j

λi j Q̂i j |�〉
)

= 0. (1)

Here Ĥ is the microscopic Hamiltonian, λN and λZ are the
Lagrange multipliers used to fix the number of neutrons N
and protons Z , while λi j are the Lagrange multipliers as-
sociated with the average value of the multipole moments
Q̂i j with multipolarity i and projection j. In this work the
quadrupole (Q20), octupole (Q30), hexadecapole (Q40), and
triaxial quadrupole (Q22) deformation parameters are consid-
ered. The equations are solved by expanding the creation and
annihilation quasiparticle operators of the Bogoliubov trans-
formation in a harmonic oscillator basis with oscillator length
parameters optimized for each set of collective deformation
parameters to minimize the binding energy. Most of the results
are obtained in the axial regime with an axially symmetric
deformed oscillator basis with N⊥ = 15 and Nz = 22. This
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basis is well suited to describe elongated shapes along the
z axis such as those typical of fission. Beyond-mean-field
two-body kinetic energy correction and rotational energy cor-
rection are included in the calculation of the binding energy. In
the calculations with nonzero triaxial multipole moment Q22

reflection symmetry is preserved, and therefore odd multipole
moments are zero by construction and not considered in the
discussion. For the “triaxial” calculations an oscillator basis
containing N = 18 shells is used.

The multipole moment operators are defined as

Q̂lm = 1√
2(1 + δm0)

(M̂lm + rm(−1)mM̂l−m) (2)

with rm = 1 if m � 0 and −1 if m < 0. The raw multipole
operators M̂lm are given by

M̂lm =
√

4π

2l + 1
rlYlm(θ, ϕ)

=
√

(l − m)!

(l + m)!
rlPlm[cos(θ )]eimφ, (3)

where Ylm are spherical harmonics and Plm are associ-
ated Legendre polynomials. Using the standard definition of
the spherical harmonics we obtain Q̂20 = z2 − 1

2 (x2 + y2),
Q̂30 = z3 − 3

2 (x2 + y2)z, Q̂40 = z4 − 3(x2 + y2)z2 + 3
8 (x2 +

y2)2, and Q̂22 = √
3/2(x2 − y2).

The computations were performed using the self-consistent
HFB solver HFBAXIAL that uses the approximate second-
order gradient method [48] to solve the HFB equations and
the formulas of [49] for an accurate evaluation of the matrix
elements of the Gaussian central potential for the large basis
required in fission. The program starts from an initial wave
function and iteratively minimizes the energy subject to a
given set of constraints. In this procedure, the shape of the
nucleus is adjusted to fulfill the conditions imposed by the
constraint parameters.

As the initial configuration is expected to be “close” to
the sought solution, this choice represents a way to decrease
the number of iterations required in the minimization process
and, therefore, represents substantial computer time savings.
The final solution may depend on the starting point in spe-
cific cases. This feature will be thoroughly discussed below.
Usually, the initial configuration is taken from a neighboring,
previously computed wave function. In most of the cases we
select the starting configuration from the nearest point with
smaller quadrupole or octupole moment and eventually larger
hexadecapole moment. Sometimes, when it is indicated, we
take the starting configuration from the opposite side. In most
of the cases the choice of the initial configuration is irrele-
vant for the final result. Only in special cases discussed in
Sec. III does it affect the results obtained. As mentioned in
the Introduction, the use of a limited set of constraints always
introduces some uncertainties in which wave functions belong
to the neighborhood of which local minima. To help in the
characterization of the different solutions of the HFB equa-
tions it is convenient to use a technique based on searching for
sharp changes in the matter density distribution all over the
PES. The so-called density distanceDρρ ′ [25] has been used

FIG. 1. Various fission paths for 252Cf (top) and 258No (bottom)
are plotted as a function of Q20. See text for details.

to detect such discontinuities in calculations considering the
pairs of shape parameters Q20-Q30 as well as Q30-Q40. For
given configurations with matter density distributions ρ(r)
and ρ ′(r), the density distance is defined as

Dρρ ′ =
∫

|ρ(r) − ρ ′(r)|dr. (4)

Density distance remains small when nuclear shapes are sim-
ilar, and it increases wherever there is a substantial change of
nuclear shape for the two densities considered.

III. RESULTS

A. The PES in many coordinates

The theoretical description of fission is based on the anal-
ysis of the topography of the PES when represented as a
function of the deformation parameters related to the elon-
gation of the nucleus. More elaborate studies also include
parameters related to reflection asymmetric shapes as they
are required for the description of the asymmetry in fission
fragment mass distribution. The inclusion of several shape
parameters is also helpful in better characterizing not only
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FIG. 2. The PES of 252Cf (top) and 258No (bottom) as a function
of Q20 and Q30 are shown as contour and color plots. Constant energy
contours are plotted every 1 MeV. The asymmetric fission path is
represented by a blue dashed line.

the height but also the shape of the fission barrier.1 The
shape of the fission PESs of 252Cf and 258No are shown
in Fig. 1 as a function of the quadrupole deformation. In
Fig. 2, the PES maps in the quadrupole-octupole plane
are displayed for the same isotopes. The mesh points used
to obtain the maps are calculated every 
Q20 = 5 b and

Q30 = 4 b3/2.

The results presented in Fig. 2 have been calculated in the
axial regime. However, nonaxial shapes are crucial to describe
the region of the first fission barrier correctly, and therefore
we present the influence of triaxial deformations on the PES
in Fig. 3. To simplify the calculation, reflection symmetry is
preserved in these triaxial calculations, and therefore all the
shapes have zero octupole moment. Usually, it is assumed that
the information obtained from the aforementioned one- and
two-dimensional plots together with the collective inertia is

1Please note that the tunneling probability through the fission bar-
rier depends exponentially on the square root of its height times its
width, when approximated by a square potential barrier.

FIG. 3. The PESs in the Q20-Q22 plane for 252Cf (top) and 258No
(bottom) are shown as contour and color plots. The isoenergy contour
lines are plotted every 1 MeV. The dashed line shows the fragment
of the fission path around the first barrier with nonzero triaxial
deformation.

sufficient to describe the details of the fission process from
the ground state till scission. Of course, they contain the key
elements of the fission process like fission barrier heights,
widths and fragment mass asymmetry. Nevertheless, there
are several limitations to this approach. First, the collective
motion explores not only the minimum energy path (or the
minimum action path) but also its neighborhood due to the
inherent quantum nature of the dynamics. There is a finite
probability that the collective wave packet representing the
evolution of the system towards fission explores regions close
to the classical trajectory [50–52]. This exploration of neigh-
boring configurations is also a feature of classical models used
to mimic [53] the quantum mechanical evolution typical of the
fission phenomenon. In this respect, the width of the valley, or,
in other words, the stiffness of the potential energy, affects
the spread of the collective wave packet and therefore the
fragment mass distribution. Departure from the classical least
energy fission path implies considering a broader set of nu-
clear shapes like those obtained by modifying the neck width
and length or the shape of the prefragments. These variations
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can lead to a change of the obtained mass asymmetry at the
scission point. Special care should be taken on a possible
reduction of the neck thickness, as it determines the scission
configuration.

Another problem is that points on the Q20-Q30 map are
defined as local minima of the energy with given constraints
on quadrupole and octupole moments. There is no guaran-
tee that the minimum is unique. In fact, it was shown that
sometimes there might exist multiple local minima in the
energy that create different fission valleys in the same re-
gion of the Q20-Q30 map [54], and the tunneling probability
connecting them should be considered. On the other hand, if
no explicit quantum dynamical treatment is carried out and
the analysis is just restricted to exploring the PES, then, in
order to predict fission observables, one has to decide which
of the paths should be taken under consideration. Finding
a consistent criterion to take a physically correct decision
is not straightforward and, in some cases, it can be very
difficult.

Thus, we observe that other degrees of freedom may affect
some aspects of the theoretical description of fission. It is even
the case when a two-dimensional map in the self-consistent
calculations is created from nuclear shapes optimized in the
procedure of energy minimization, not just created by a two-
parameter formula. To better describe and understand fission,
one has to increase the size of the considered space of con-
straints on which the PES is spanned and look at it from a
broader perspective. In this way, one should be able to com-
pare all the available valleys and deduce which path should be
preferred by the evolving system.

In order to extend the space of deformation, the most
natural and most often used coordinate is the next term in
the multipole expansion: the hexadecapole moment Q40, re-
sponsible for necking [54]. By decreasing the value of the
hexadecapole moment, shapes with a thinner neck are ob-
tained. The alternative option is applying the constraint on the
neck parameter QN [42,55]. It produces the same effect as the
hexadecapole moment, but it is more sensitive at the scission
region and less precise elsewhere.

To visualize a three-dimensional PES is a difficult task that
can somehow be facilitated if one of the variables is kept fixed
and the PES for the remaining two variables is plotted as a
contour plot. Such a procedure has been followed in Fig. 4
for 252Cf and Fig. 5 for 258No, where we show sections of the
PES for fixed values of Q20 as maps in the Q30-Q40 space.
The black, blue, and red dots correspond to the least-energy
fission paths found on the PES spanned on the Q20-Q30 space.
The black dots correspond to the lowest-energy minimum, the
blue ones stand for the next-in-energy local minimum, and the
red dots indicate the post-scission minimum corresponding to
the two-fragment solution. The blue dashed lines show the
results of two-dimensional calculations, where the hexade-
capole moment is self-consistently given by the minimization
of the total HFB energy with double constraints on Q20 and
Q30. The thick black line represents scission configurations
and will be discussed below.

The analysis of the fission barrier in the next subsec-
tions will be based on all the above mentioned plots of the
PES.

B. Detailed description of the PES

The fission barriers and the PESs obtained for the two
nuclei considered agree with the expectations for nuclei in
the heavy-actinides region. Both isotopes are prolate in their
ground states with Q20 = 16 b. On the quadrupole-octupole
map of the PES, one can see a fission valley heading towards
large octupole deformation starting at the ground state. It
describes superasymmetric fission strongly related to cluster
radioactivity [56,57]. The minimum of the energy correspond-
ing to this valley can be seen in Figs. 4 and 5 at Q20 = 30, 40,
and 50 b and large octupole moments. The saddle point in the
super-asymmetric valley reaches over 20 MeV and, in heavy
actinides, leads to an exotic decay mode [57], not observed
experimentally. We will not discuss this type of fission here.

The first reflection-symmetric barrier is located at around
Q20 = 30–35 b. It is well known that triaxial deformation
reduces its height [7,20,43]. In Figs. 1 and 3 we can see that
the barrier width stays unchanged by including triaxiality but
the sharp-peaked summit of the axial barrier is cut off by 4.7
MeV in 252Cf and 3.7 MeV in 258No. The fission barriers
including triaxiallity are 7.0 and 7.3 MeV high, respectively.
The experimental value for 252Cf is 5.3 MeV [58,59]. Triaxial
deformation of the fission path is relatively small, γ � 12◦. At
around Q20 = 50 b the nucleus goes back to fission through
axial shapes, and triaxiality is negligible for larger elonga-
tions.

The modification of the landscape by including triaxial
deformations is non-negligible, but its influence on the spon-
taneous fission half-life depends on the value of the collective
inertia along the triaxial path as compared to the axial one.
There are indications that triaxiality should not affect fission
dynamics since the energy decrement at the saddle is com-
pensated in the calculation of the collective action by the
increase of the collective inertia and, therefore, the tunnel-
ing probability is larger along the axial path [43,60]. Please
note that despite the similarity in barrier heights, the ex-
perimental fission half-lives of the two isotopes differ by
12 orders of magnitude [61]. The key to understanding this
result, implying quite different barrier penetrabilities, is the
existence of a second barrier in 252Cf that disappears in the
258No case, reducing the effective width of the total barrier
dramatically. In consequence, theoretical fission half-lives are
log10(t1/2/s) = 8.74 for 252Cf and log10(t1/2/s) = −1.94 for
258No (calculated in the axial regime). These values are less
than one order of magnitude away from experimental data.

The second minimum can be found at an energy as low as
1.3 MeV above the ground state at Q20 = 50 b in 252Cf and
0.2 MeV below the ground state at Q20 = 55 b in 258No. In
both isotopes, the shapes of the nucleus are axially and reflec-
tion symmetric in the second minimum. A well pronounced
fission valley with nonzero octupole deformation opens up
at larger elongation in both isotopes. The topography of the
PES beyond this point is crucial for determining the fission
fragments’ mass asymmetry and fission half-lives. The key
factor is whether the nucleus would prefer to stay in the
symmetric fission path or rather turn into the octupole valley.
The main distinction between 252Cf and 258No can be found
in the shape of the symmetric fission barrier and the shape
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FIG. 4. The PES of 252Cf in the Q30-Q40 plane is shown as a contour and color plot. Constant energy contours are plotted every 2 MeV.
The energy color scale is the same as in Fig. 2. See text for details.

of the energy surface around Q20 = 100 b for small octupole
deformation. The difference is relatively small in absolute
values but provides important consequences for the fission
properties.

One can notice in the 252Cf PES that around deformation
(Q20, Q30) = (100 b, 0 b3/2) a 4.5-MeV high second barrier
arises, which blocks the symmetric fission channel in this

isotope. In fact, from Q20 = 70 b, there is no local symmetric
minimum on the PES (there is a peak, not a saddle in the
two-dimensional plot), and hence the barrier is plotted with
a dash-dotted line in Fig 1. In this region, remaining at zero
octupole moment is energetically unfavorable as the potential
energy grows 3.2 MeV above the second minimum and the
asymmetric valley is easily reachable with small energy costs.
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FIG. 5. The same as in Fig. 4 but for 258No.

We can see in Figs. 1 and 4 that the asymmetric valley starts
already at Q20 = 70 b and the second saddle is at 3.1 MeV
above the ground state (1.8 MeV above the second minimum).
Moreover, the energy in the asymmetric fission path rapidly
decreases, reducing the barrier width.

In contrast, the second barrier in 258No, located at Q20 =
65 b, is flat with a height which is only 0.7 MeV above the sec-
ond minimum (0.3 MeV above the ground state). It is almost
completely hidden below the ground state and therefore does

not contribute in a substantial way to the half-life, as men-
tioned above. At Q20 = 90 b the asymmetric valley opens up
without any additional barrier (see Fig. 5). The fission process
may proceed in the asymmetric mode, but the nucleus may as
well stay at the reflection symmetric path without energetic
costs. This fact explains the experimentally observed bimodal
fission mass distribution with a small (5% abundance) compo-
nent with high kinetic energy and mass symmetric distribution
[35,36].
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FIG. 6. The density distribution of 258No at Q20 = 140 b (left)
and Q20 = 200 b (right) in various fission paths: asymmetric (top),
compact before and after scission (middle), and elongated symmetric
(bottom).

The topography of the Q30-Q40 planes given for fixed
quadrupole moment and shown in Figs. 4 and 5 has quite a
simple structure up to the region of the second barrier. We can
see only one—or at most two—local minima in parabolic-
shaped valleys. In the final phase of the fission process, the
PES is far much complex. Already at Q20 = 120 b in both
isotopes we can see several branches of the fission valley with
two or three local minima for the same quadrupole moment.
The first one is octupole deformed. Its shape is depicted in the
top panel of Fig. 6. It leads to an asymmetric fission-fragment
mass distribution, and therefore we refer to it as an asymmetric
mode. The second one with Q30 = 0 b3/2 and small values
of Q40 (around 50–70 b2) is a natural continuation of the
symmetric fission path. The nuclear shape consists here of
two almost spherical prefragments; see the middle panel of
Fig. 6. This one is often called a compact mode of fission.
By stretching this configuration, we increase the distance
between prefragments and make the neck thinner up to its
disappearance. The compact path is continued after scission
with two separated fragments. For a two-fragment solution,
further increase of the quadrupole moment leads to an increase
of the distance between daughter nuclei instead of a shape
change. The minimum of the energy is obtained for a con-
figuration with a small mass asymmetry between fragments
and, in consequence, a small octupole deformation.

The third minimum also corresponds to reflection symmet-
ric shapes, but the hexadecapole moment takes much larger
values, over 90 b2. In this configuration, pre-fragments are not
well disentangled. The shape is almost cylindrical: cucumber-
like with a small reduction of thickness in the region of the
neck (bottom panel of Fig. 6). This solution is called symmet-
ric elongated mode [62,63]. Small reflection asymmetry can

also be found here, especially for large quadrupole moments.
The corresponding fission path is the highest in energy, and
it survives up to a very large elongation of the nucleus as
the neck is not formed and a rupture of the system is not
possible without a substantial energy cost. Calculations with
the Skyrme energy density functional suggest that this fission
path is energetically comparable with an asymmetric path
around the second barrier in the nuclei from the region of
heavy actinides and may play an important role in fission
[62,63].

We should stress here that the crossing of fission paths in
Fig. 1 cannot be interpreted as a possible place of bifurcation
or configuration change. This is a typical example of a fake
saddle point [25]. The fact that two or even three lines have the
same energy for the same quadrupole moment does not mean
that they represent the same or similar shapes of the nucleus.
As one can see in Fig. 6 the differences in the nuclear density
distribution between fission paths are usually huge.

The existence of two local minima and surrounding local
valleys (e.g., compact and symmetric elongated) at the same
quadrupole and octupole deformation leads straight to the
multiplication of the surfaces on the traditional elongation–
mass asymmetry maps, as in Fig. 2. The blue dashed lines
in Figs. 4 and 5 indicate solutions corresponding to the local
minimum of the energy for fixed Q20 and Q30, i.e., these
data could be used to create the PES map in the (Q20, Q30)
space. Mixing values coming from different valleys may lead
to an ambiguous and often erroneous interpretation of the cal-
culated results which might eventually suggest contradictory
conclusions. As the surfaces are often similar in energy, the
choice of the surface would likely be a matter of a random
selection by a numerical procedure or an arbitrary decision of
the researcher. There is also the risk of an accidental change of
the surface. This effect could easily be missed in the analysis
of fission as graphical plotting programs are likely to smooth
out sharp ridges. The application of the density distance pa-
rameter described below in Sec. III C can be useful to prevent
these nonphysical interpretations.

In the analysis of Figs. 4 and 5 various scenarios for
reaching pre-scission configuration can be envisaged. The
scission line is visible in these plots for Q20 � 120 b as a black
line (consequence of plotting many closed energy contour
lines) separating single shapes (above) from two-fragments
configuration (below). The rapid change in the energy is a
consequence of the strong dependence of the neck on mul-
tipole moment parameters: slight changes lead to a strong
reduction of the neck and eventually to the splitting of the
nucleus (see discussion below).

Beyond the region of the second fission barrier (Q20 =
100 b), the PES goes down towards scission. The pre-scission
line, i.e., the line of the most elongated shapes before the
rupture of the neck, is clearly seen at Fig. 2 as a few-MeV-high
cliff that separates the fission valley from the two-fragments
configuration. There are several ways of reaching a scission
configuration: The first is through a symmetric compact mode.
Increasing elongation leads to a relatively smooth shape evo-
lution from pre- to post-scission configuration. Nevertheless,
even if an energy fall is not noticed, an abrupt change in
the nuclear density distribution around the neck region is
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visible (e.g., see [64] for the 258Fm case). The two dimen-
sional Q30-Q40 sections of the PES between Q20 = 120 and
130 b in 252Cf and between 150 to 160 b in 258No do not differ
substantially despite a few MeV energy drop in the minimum
of the valley. It indicates that the pre- and post-scission density
distributions of the whole system are relatively similar despite
the neck rupture. Another, mostly intuitive way of reaching a
scission point from the asymmetric fission valley is by going
along the fission path (marked with the blue dashed line in
Figs. 1 and 2 and black dots in Figs. 4 and 5) to the largest
possible quadrupole moment. As the energy decreases si-
multaneously with increasing elongation, the largest gradient
indicates that this is the most probable fission scenario. The
large mass asymmetry AH/AL ≈ 140–142/112–116 obtained
before the neck rupture in this point corresponds to the experi-
mentally observed most probable fission fragment asymmetry.

The two scenarios presented above for the evolution of the
nuclear shape assume that the system remains on the fission
paths presented in Fig. 1. Therefore, only one or two particular
shapes of the nucleus are taken at scission. Such analysis can
explain the fission modes observed in the experiment, but it
is insufficient to reproduce the details of the fission fragment
mass distribution. The reason is that, on its way from the
saddle to scission, the collective wave packet may explore
different configurations away from the lowest energy fission
path, still fulfilling the condition of descending energy but not
with the largest gradient. In this way, every configuration of
the scission line in the neighborhood of the asymmetric fission
valleys which are visible in Fig. 2 is accessible, of course
with a reduced probability [51]. These configurations can be
observed in Figs. 4 and 5. For Q20 � 140 b the post-scission
compact minimum in the lower right corner of each panel has
lower energy than on the asymmetric path. The latter valley
seems to be soft in the direction towards the first one, and the
ridge separating them does not exceed 2 MeV. Those figures
indicate that the exit points from the asymmetric fission valley
are available already at relatively small octupole moments and
with a smaller asymmetry of nuclear shapes than at the end of
the asymmetric fission path.

Two additional aspects of this scenario must be pointed
out. First, a scission point is accessible already for a much
less elongated configuration than at the end of the asymmetric
fission path. In some lighter nuclei, where a scission point is
above the ground state energy, this would reduce the width
of the barrier. In consequence, tunneling probability increases
and the half-lives can be substantially shortened [54]. Second,
at smaller quadrupole moment, the asymmetric valley at low
octupole moment ends up not in fusion valley but in the com-
pact fission valley before scission. This is another mechanism
of feeding the symmetric mode of fission. Thus, the dynam-
ical calculations of the fission mass yields for 252Cf, where
only quadrupole and octupole deformations were taken under
consideration, showed a small contribution for the symmetric
mass division [51].

C. Surface discontinuity and density distance

As mentioned in Sec. II, the density distance is an appro-
priate quantity to test the continuity of the PES. This issue is

FIG. 7. The density distance function Dρρ′ (in logarithmic scale)
given by Eq. (4) between two neighboring configurations in a de-
formation space Q20-Q30 of 252Cf (top) and 258No (bottom). Contour
lines for the energy are plotted every 5 MeV for better identification
of the different regions of the PES.

very important as one may draw false conclusions concerning
fission dynamics. In Fig. 7 we have plotted, for each point in
the (Q20, Q30) plane, the largest of the two density distances
computed for the two configurations (Q20 + 
Q20, Q30) and
(Q20, Q30 + 
Q30). The figures look pretty similar for both
isotopes and a few regions of large Dρρ ′ can be identified:

(1) first barrier;
(2) around the second minimum;
(3) between the symmetric and asymmetric valleys at

Q30 ≈ 15 b3/2;
(4) bordering the asymmetric valley at large octupole de-

formation;
(5) scission line.

We will denote these regions as “regions of discontinu-
ities” due to the large difference in densities corresponding
to neighboring points indicating possible abrupt change of
configuration.

The first region of discontinuity, A, is encountered already
at the first barrier. The nucleus has a double cone (diamond)
shape on the up-going part of the barrier, whereas a two-center
structure is created beyond the maximum of the barrier, as
can be seen in the left panels of Fig. 8. The two density
distributions are clearly different, with a significant jump in
hexadecapole moment. A sharp peak of the first fission barrier
also indicates a sudden change of configuration, and the fake
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FIG. 8. Fragments of the first barrier and asymmetric valley at
fixed Q20 = 140 b of 252Cf.

or missing saddle mentioned above is usually present [25]
because two solutions can be found for the same quadrupole
moment around the peak. The density distance calculated in
this region does not take into account the influence of triaxial-
ity discussed in Sec. III A that eliminates discontinuities.

In the right panels of Fig. 8, the region D of enhanced
density distance is observed. As we can see, there is no dis-
continuity here but only a change of the hexadecapole moment
can be observed in this region. The source of this kink can be
explained by looking at Figs. 4 and 5. The valleys plotted in
the Q30–Q40 planes around Q20 = 140 b lie along a more or
less straight line with a slope of the order of 1. We determine
the localization of the bottom of these valleys by minimization
with a constraint on the octupole moment (marked by blue
dashed lines). This procedure sometimes does not give the
correct value that is obtained by following the direction of
the gradient along Q30 and Q40 that determines the bottom of
the valley. As a consequence of the improper determination
of the bottom of the valley using a constraint on the octupole
moment, large increases in the value of Q40 can be noticed
between Q30 = 50 and 55 b3/2 in Fig. 8. No real discontinuity
of the surface is found here, but rather a problem with the
precise numerical evaluation of the bottom of the valley and
therefore no important physics is missed here.

The regions C and D should be discussed together as they
separate the compact symmetric and the asymmetric fission
valleys. A first look at the PES in Fig. 1 reveals a seemingly
smooth surface: no sharp ridges or sudden energy changes.
Therefore, it comes as a surprise to find a discontinuity here.

To solve this puzzle, one has to use a magnifying glass: in
Figs. 9 and 10 we have plotted a blown-up view of the sections
of both valleys in 252Cf and 258No, respectively. The step
size in these calculations was reduced to 
Q30 = 1 b3/2 with
starting point from the nearest mesh point with smaller or
larger octupole moment.

In the left columns of Figs. 9 and 10, the PES in the
second minimum is plotted. In this case, the energy grows
up smoothly with increasing mass asymmetry. Only a small
bending in hexadecapole moment can be noticed. The PES
picture at Q20 = 70 b, in the region B of discontinuity, is com-
pletely different; see panels in the second column. The PES
consists here of two parts clearly distinct in hexadecapole mo-
ment. In the first part, for low octupole moments, the nucleus
has a well-shaped neck and a small hexadecapole moment,
below 30 b2. Increasing octupole deformation above 10 b3/2

causes a jump in hexadecapole moments which indicates the
change of configuration and the neck is not pronounced any-
more. This rearrangement is not followed by a change of
the energy but only by a change of its slope with increasing
octupole moment. It is easy to distinguish here the com-
pact valley from the elongated asymmetric one. Moreover, in
252Cf, the asymmetric valley can be extended towards lower
octupole moments up to zero. This is the germ of the sym-
metric elongated fission valley. Discontinuity in the region B
is not a significant problem in the description of fission as a
transfer from the second minimum to the asymmetric valley
requires a few additional MeV of energy, which practically
blocks such evolution.

Increasing the quadrupole moment, we find a space be-
tween regions B and C in Fig. 7. Its impact is also visible
in Figs. 9 and 10 at Q20 = 90 b. Here, the PES as a function of
Q30 is continuous again. Hexadecapole moment gradually in-
creases, indicating a smooth connection between the compact
and asymmetric valleys. The transfer between configurations
is possible as a consequence of decreasing the energy of
the asymmetric minimum. The tiny part of the symmetric
elongated surface can be noticed only very close to reflection
symmetric shapes.

The rightmost panels of Figs. 9 and 10 describe the region
C of discontinuity. Despite the same values of the quadrupole
and octupole moments and the similarity of energies, the
hexadecapole moments and the shapes of the nucleus are
considerably distinct in both configurations. In the compact
symmetric mode, two pre-fragments are separated by a thin
neck. In the asymmetric mode, the density distribution is
more uniform along the symmetry axis. In both isotopes, the
compact mode is limited to hexadecapole moments in the
range from Q40 = 50 to 60 b2 whereas the asymmetric mode
is described by much higher values, over 65 b2. In 252Cf, the
compact valley created by increasing the octupole moment
ends with a sudden drop into the asymmetric valley. In this
nucleus, by decreasing octupole moment in the calculations
of consecutive mesh points in the asymmetric valley, one may
reach zero octupole moment in a configuration characteristic
of the elongated symmetric valley. The transition from the
compact to the asymmetric valley is an analog of the scission
line discontinuity described below. In 258No both surfaces
meet at the same energy, and the elongated symmetric part
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FIG. 9. Fragments of the PES of 252Cf at fixed Q20 = 50, 70, 90, and 110 b.

cannot be determined at Q20 = 110 b. In region C, in both
isotopes, transfer to the asymmetric valley is energetically
favorable.

The transition between configurations in this region is usu-
ally overlooked. It is easy to incorrectly link the two valleys

when the distance between mesh points is as large as 4 or
5 b3/2, which is usually a reasonable choice for producing the
PES maps. The similarity of the energy slopes as well as the
fact that increasing octupole moment on the compact valley
beyond its end leads to a solution in the asymmetric one (by
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FIG. 10. The same as in Fig. 9, but for 258No.
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applying the self-consistent energy minimization) enhance the
chances of making mistakes.

Looking at the energy section maps in Figs. 4 and 5 we find
that the discontinuity between symmetric and asymmetric sur-
faces discussed above is a good example of missing saddles as
discussed by Dubray and Regnier [25]. In a three-dimensional
PES, the problem of a rapid change of configurations disap-
pears.

Finally, a commonly known discontinuity is localized in
the region E of the scission line. There is a huge difference in
pre-scission and post-scission configurations. It is very hard or
even impossible to find a continuous link by using constraints
on multipole moments to control the nuclear shape. Applying
constraints on the neck parameter QN may help to provide a
continuous surface on the scission line [55,56].

Let us discuss now the source of the scission line cliff
obtained in the self-consistent calculations. The asymmetric
valley in two-dimensional space is made of configurations
which are local minima along all the directions orthogonal
to the ones of the constraints. In consequence, decreasing the
neck thickness (or hexadecapole moment) leads to increasing
the energy of the system even though the ruptured nucleus is
energetically favorable. The height of the barrier separating
the asymmetric path from the no-neck solution decreases to
zero with increasing quadrupole moment. Beyond the pre-
scission line, any shape of the nucleus is unstable against neck
rupture, i.e., the energy monotonically decreases with de-
creasing neck thickness. The energy minimization procedure
cannot find a stable solution with a neck. The gradient of the
energy directs the system towards post-scission configuration
with much lower energy in the self-consistent process. Of
course, the cliff on the scission line does not mean that in
nature the neck disappears instantly, but only that a further
thinning of the neck should occur without increasing the elon-
gation of the system.

The concept of density distance can also be applied to the
PES given as a function of the octupole and hexadecapole
moments for fixed Q20 values. An example of the results
is presented in Fig. 11. Here again, the discontinuity at the
scission line is clearly visible. The density distance is also
enhanced in some other regions of the PES quite randomly
scattered on the surface. Its values are relatively small in
comparison to the scission line ones. The only characteris-
tic region of larger density distance separates the elongated
symmetric valley from the compact one.

D. Multiple solutions

We have already shown that the description of fission in
terms of a one-dimensional or even a two-dimensional PES
may lead to many misunderstandings. Two or more different
configurations can be obtained in the same location of the
PES in those cases. This problem has been observed while
discussing the region between the compact symmetric and the
asymmetric valleys. Similar issues can arise if one analyzes
the so-called fusion channel with two separate fragments.
Decreasing the quadrupole moment of the system in this re-
gion leads to approaching fragments which are much closer
than what can be achieved in the scission configuration. In

FIG. 11. The same as in Fig. 7, but for the PES at fixed Q20 in a
deformation space Q30-Q40 of 252Cf at Q20 = 70 b (top) and at Q20 =
130 b (middle) and of 258No at Q20 = 160 b (bottom). Contour lines
of equal energy are plotted every 5 MeV for better identification of
the different regions of the PES.

consequence, the fusion valley covers a much larger area than
presented in Fig. 2. This surface, mostly “hidden” under the
asymmetric fission valley from Fig. 2, is shown in Fig. 12.
Only in the lowest quadrupole deformation region are the
fragments close to each other, and Coulomb energy is so high
that the fusion valley climbs up above the fission one. Since
the global energy minimum for a given quadrupole moment
may be in the post-scission configuration, an important phys-
ical problem appears. Should we take this solution as part of
the PES leading to fission or rather stay in the fission valley
as long as possible? The only way to tell is to do a dynamic
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FIG. 12. The same as in Fig. 2 but the fusion valleys are plotted.

calculation, but if this is not available then the two possibilities
and their consequences should be considered.

Two alternative approaches can be found in Fig. 1 of
Ref. [65] by Regnier et al. and Fig. 1 of Ref. [64] by Warda
et al. Both Figures show the PES of 258Fm calculated with
the same model and interaction (HFB theory and Gogny D1S
force). Nevertheless, the shape of the asymmetric fission val-
ley is different. In the first plot it is narrow and equipotential
(the lines are mainly horizontal), whereas in the second case
the asymmetric valley is wide and the lines of constant energy
are rather vertical. The source of the difference comes from
the distinct strategy of selecting the local minima for the
surface. Regnier et al. selected the lowest of the local minima
for the given constraints. Warda et al. paid more attention to
the continuity of the changes in the shape and preservation
of the valley in which a nucleus was located in the previous
phase of evolution. In the first approach, the scission line is
localized at a much lower elongation, and the PES includes a
larger part of the fusion valley.

We would like to stress that, unexpectedly, both figures
give the correct surface in two dimensions, showing the im-
portance of considering multidimensional PESs. Restricting
the deformation space to just one, two, or three dimensions
simplifies the interpretation of the results as well as its graph-
ical representation, but it can hide information, veiling our
understanding of the nature of the fission process.

We would like to point out that one can observe an internal
structure of the PES in the fusion channel. The surface is
usually smooth, with mass and deformations of the fragments

FIG. 13. The same as in Fig. 12 but for cross sections in the
Q30-Q40 plane. Black and red dots indicate localization of the fission
and fusion paths, respectively.

gradually evolving with octupole moment. A rapid drop in the
energy indicates an abrupt change of the fragment configura-
tion.
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The extended fusion valley can also be seen in Fig. 13
where, for fixed quadrupole moments, the PESs as a function
of the octupole and hexadecapole moments are plotted. Again
we can see the fusion valley even at low quadrupole moments.
It extends towards much larger hexadecapole moments than
shown in Figs. 4 and 5. This analysis provides one more,
not very optimistic conclusion. Applying a triple constraint
(on quadrupole, octupole, and hexadecapole moments) and
preparing a three-dimensional surface in the self-consistent
calculation explains most of the problems with discontinu-
ities, but not all of them: even triple constraints does not
guarantee the uniqueness of the solution. We can still obtain
distinctly different shapes of the density distribution depend-
ing on the initial configuration.

IV. CONCLUSIONS

We have investigated the fission barriers of two heavy
actinide nuclei, 252Cf and 258No, using the self-consistent
microscopic approach. The calculations were made using
multiple constraints on the quadrupole, octupole, and hexade-
capole moments. A detailed analysis has shown a complicated
structure of the potential-energy surface at large quadrupole
deformations of the nucleus. The competition between local
minima at a given quadrupole moment–compact, elongated,
and symmetric elongated—determines the fission mode and
the experimentally observed fragment mass distribution. We
have shown that the scission may occur at a quadrupole defor-
mation smaller than the one at the end of the fission path in
the minimum of the valley on the potential-energy surface.

The calculations using three constraints give a much more
complete description of the potential-energy surface. Never-
theless, it is possible to find distinct solutions of the HFB
equations corresponding to the same values of the quadrupole,
octupole, and hexadecapole moments. These configurations
create various layers of the potential-energy surface in the
same place of two- or three-dimensional maps. It makes the
description of the fission even more complicated.

Reducing the full space of deformation to two dimen-
sions creates a potential-energy surface that is not always
continuous. Rapid changes of the configuration of density
distribution may be found even at seemingly smooth surfaces.
We therefore conclude that the jumps between surfaces must
be discussed in the analysis of the fission process. This is
especially relevant for subsequent analysis based on the time
evolution of wave packets depending on the restricted set of
collective coordinates. The influence of the discontinuities in
such kind of calculations has to be investigated and carefully
assessed. The discontinuities of the PES presented in this
paper are an immanent property of the constrained calcula-
tions. Nevertheless, their existence usually does not affect the

analysis of the PES in two- or three-dimensional space. The
possible jump between quite similar configurations has little
impact on the conclusions extracted from the global analysis
of the whole fission process.

In this paper, we are analyzing problems that appear when
multidimensional energy (depending on the hundreds of thou-
sands of parameters in the Bogoliubov transformation) is
projected into a two- (or three-) dimensional picture based
on standard deformation parameters. The energy as a function
of the Bogoliubov parameters is a continuous function and
it is only the projection on Q20-Q30, etc., that is causing the
discontinuities in the energy as depicted as a function of those
deformation parameters. Therefore our calculations satisfy
the continuity requirement but only when all the independent
parameters are considered.

The present analysis is based on the HFB approxima-
tion, but it also applies to any constrained, self-consistent
type of calculations. Similar problems with multiple min-
ima and surface discontinuities may also affect calculations
made on a grid of fixed deformation parameters as in the
macroscopic-microscopic models. In many papers, potential
energy calculated in the multidimensional space of deforma-
tions is projected on two dimensions by finding minima of the
energy with respect to the remaining deformation parameters
(see, e.g., [8,9,11,12,17]). In this way, it is possible to visual-
ize them as a map and discuss the obtained results in a more
intuitive way. However, it might happen that there exist more
than one local minimum of the energy in the multidimensional
space of deformations for given coordinates on the map. In
such a case, an unnoticed link between neighboring mesh
points with similar energy but significantly distinct deforma-
tion may exist. Nevertheless, when the analysis is performed
on a full, multidimensional grid of shape parameters, it is
much easier than in self-consistent calculations to control the
whole spectrum of nuclear shapes and to avoid uncontrolled
configuration change.

We would like also to mention that the discussion of the
determination of the potential-energy surface is not the only
relevant issue in the analysis of fission. Many other aspects
also have a significant impact on the dynamics of this process.
We should mention here the influence of the inertia parameter
and pairing degrees of freedom that shall also be investigated
in the future.
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