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Analysis of nuclear fission properties with the Langevin approach in Fourier shape parametrization
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The Langevin approach is extendedly applied to study the dynamical process of nuclear fission within the
Fourier shape parametrization, where the potential energy is calculated with the macroscopic-microscopic model
based on the Lublin-Strasbourg drop model and the Yukawa-folded potential. The fragment mass distribution
and the total kinetic energy as a function of heavy fragment mass in 14 MeV n + 235U fission are calculated
and compared with the evaluated data from ENDF/B-VIII.0 and the experimental data. It is found that the Wall
model for the friction tensor is available to describe both of the mass distribution and the total kinetic energy
(TKE) distribution in the nuclear fission within the present model. In addition, the mass distributions and the
TKE distributions in 14 MeV n + 233,236,238U and 239Pu fission are well described. Furthermore, the behavior of
the correlation of the distance between the centers of mass of two fragments with the heavy fragment mass at the
scission point is found to be consistent with that of the TKE distribution where the shortest R12 locates around
Ah = 135 which is due to the influence of the shell effects.
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I. INTRODUCTION

The fission process evolves slowly from a compact nucleus
towards two separated fragments, which involves a large-scale
and highly dissipative collective motion coupled with inter-
nal degrees of freedom. Despite great progress in the study
of nuclear fission within the framework of microscopic or
macroscopic approaches in recent years [1–20], the dynamical
process towards the scission point is still not completely un-
derstood, and the knowledge about the scission configuration
is quite lacking.

In the theoretical description of nuclear fission, the
parametrization of nuclear shape and the potential energy
surface are generally important ingredients, which have a
significant influence on the predictive power of the dynam-
ical model. Up to now, several shape parametrizations have
been developed and applied in the description of nuclear
fission [21], including the two-center shell model (TCSM)
[12–14,18,20,22,23]. We have used the three-dimensional
Langevin approach with TCSM plus a constraint on the shape
of the heavy peak fragment (N = 82 shell closure) to study the
fission dynamics for uranium and plutonium isotopes at low
excitation energies and the fragment mass distributions are
well reproduced [20]. Recently the Fourier shape parametriza-
tion has been introduced in Ref. [24], which has the virtue
of convenience to handle due to its analytical expression
and rapidly converging. The calculation time needed is much
shorter compared with the TCSM calculations.

This method can generate a rich variety of shapes
with only three free shape parameters. In addition, the
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Fourier parametrization was used to construct a simple three-
dimensional (3D) collective model obtained by using the
Born-Oppenheimer approximation in which the nuclear dis-
sipation is only partially taken into account [11], and the main
characteristics of fission fragment mass distributions were
well reproduced for even-even Pt to Ra isotopes at the lower
temperature, where the potential energy surface is evaluated
within the macroscopic-microscopic approach based on the
Lublin-Strasbourg drop (LSD) model [25] and the Yukawa-
folded single-particle potential [26,27]. In this work, the
potential energy surface within the Fourier shape parametriza-
tion is extendedly applied in studying the dynamical process
of nuclear fission using a 3D Langevin approach. The frag-
ment mass and the total kinetic energy distributions for 14
MeV n + 233,235,236,238U and 239Pu fission as well as the mass-
energy correction of fragments in 14 MeV n + 235U fission
are calculated, which verify the applicability and reliability of
the model during the dynamical calculation. Furthermore, we
also study the correlation between the deformation parameters
at the scission point, which deepens the understanding of the
dynamical process of nuclear fission.

This paper is organized as follows. A detailed introduction
of the model is presented in Sec. II. The calculated fragment
mass distributions and total kinetic energy distributions as
well as the configuration at the scission point are shown in
Sec. III. A summary of the present work and prospects are
presented in Sec. IV.

II. METHODS

A. The Fourier shape parametrization

The nuclear shapes involved in the fission process cover
a rich variety of shapes including not only the mononuclear
shapes but also the dinuclear shapes, and several powerful
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FIG. 1. The nuclear shapes described within the Fourier shape
parametrization (q3 = 0.0).

shape parametrizations have been developed in the past. In the
present work, the surface of the fissioning nucleus is described
by using the recently proposed Fourier shape parametrization
[24] which could be rapidly converging and analytical. For
an axially symmetric nucleus, the nuclear surface can be ex-
panded in a Fourier series in cylindrical coordinate as follows:

ρ2
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where ρs(z) is the distance of the point at the surface to the
symmetric axis (z axis) and R0 denotes the radius of the spher-
ical shape having the same volume, i.e., R0 = 1.2A1/3 fm.
The left end and right end are located at zmin = zsh − z0 and
zmax = zsh + z0, respectively. z0 is the half of extension of the
shape along the symmetry axis, which can be obtained from
the volume conservation, and zsh is determined by imposing
the condition that the center of mass of the nuclear shape is
located at the origin of the coordinate system. The Fourier
parametrization is very rapidly converging and only the first
five terms, i.e., a2, . . . , a6, are needed with enough accuracy.
In the description of the fission process, the parameters an are
usually transformed to the deformation parameters qn in the
following way:
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where the a(0)
n stands for values of the Fourier coefficients for

the spherical shape. The higher-order coordinates q5 and q6

are generally set to be zero within the accuracy of the present
approach. Figure 1 shows a series of nuclear shapes described
within the Fourier parametrization, where different values of
q2 and q4 are taken and q3 is set to be zero (i.e., left-right
mass-symmetric). It indicates that the set of qi has explicit

physical meaning in describing the shape of the fissioning
nucleus, i.e., q2 denotes the elongation of the nucleus and
q4 is the neck parameter, and q3 is the left-right asymmetry
parameter. Therefore, the dynamical process of nuclear fission
can be described in the three-dimensional deformation space
{q2, q3, q4} within the Fourier shape parametrization. It should
be noted that the nonaxiallity is not taken into account in
the present work, since it plays an important role only in the
vicinity of the ground state and the first saddle point [24].

B. The potential energy, inertia tensor, and friction tensor

The potential energy, inertia tensor, and friction tensor,
which are dependent on the nuclear deformation, are the
basic ingredients of the Langevin equation. In this work,
the macroscopic-microscopic approach is adopted to calcu-
late the potential energy of the fissioning system, which is
represented by the sum of the liquid drop energy and the
microscopic correction energy for the same nuclear shape.
The macroscopic energy is evaluated with the LSD model
[25], with the deformation-dependent terms being taken into
account, which includes the surface energy, the Coulomb en-
ergy, the curvature energy, and congruence energy. For the
microscopic energy, we calculate the shell correction energy
using the Strutinsky method [28] and the pairing correction is
calculated with the Bardeen-Cooper-Schrieffer (BCS) method
[29,30] based on the single-particle levels obtained from the
Yukawa-folded mean-field potential [26,27]. Also, the tem-
perature dependence of the microscopic energy is introduced
to describe the fissioning system at certain excitation energy
[31]:

V (q, T ) = Vmac(q) + Vmic(q, T = 0)φ(T ),

φ(T ) = exp(−aT 2/Ed ),
(3)

where a is the level density parameter of the compound
nucleus and Ed represents the damping parameter of the mi-
croscopic correction energy. In the present work, we use the
constant value ACN/10 MeV−1 for the level density parameter
a, as it is found that the calculated mass distributions are not
sensitive depending on the parameter a in a reasonable range
[20]. And the shell damping parameter Ed is taken to be 60
MeV for the even-even fissioning system which is similar to
Ref. [32] and 50 MeV for the odd-A fissioning system.

The calculated potential energy surface of 236U at zero tem-
perature relative to the corresponding spherical LSD energy as
a function of elongation q2 and mass asymmetry q3 is shown
in Fig. 2, in which the energy is minimized with respect to
q4. It can be clearly seen that the ground state locates around
q2 ≈ 0.3 and q3 ≈ 0.0, and the mass-symmetric saddle lays
a few MeV higher than the mass-asymmetric saddle after
crossing the first saddle point where the optimal fission path
walks along the asymmetric fission channel.

The inertia tensor is calculated within the macroscopic
hydrodynamic method, where the nucleus is assumed to be
an incompressible and irrotational liquid drop. The Werner-
Wheeler approximation [33] is adopted to calculate the inertia
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FIG. 2. The deformation energy on the (q2, q3) plane of 236U
minimized with respect to q4. Only axial shapes (η = 0) are taken
here into account.

tensor which is expressed in the following form:

mi j (q) = πρm
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8
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where ρm denotes the mass density, and A′
i is the differen-

tiation of Ai with respect to z. In the expression of Ai, the
integration is from z to the right end zmax for the right part
and from the left end zmin to z for the left part, respectively.

The friction tensor is calculated within the one-body Wall
model [34–37], in which the corresponding energy dissipation
arises from the collision of the inner nucleons with the nuclear
surface, which is written as follows:
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(6)

where υ is the average velocity of inner nucleons and related
to the Fermi velocity as υ = 3

4υ f .

C. The Langevin approach

In the present work, the dynamics of the fission process
is described within the Langevin approach, in which the evo-
lution of the collective coordinates is viewed as the motion
of Brownian particles that interact stochastically with the
inner nucleons. The coupled Langevin equation describing
the evolution of the collective coordinates and the conjugate
momenta have the following form:

dqi

dt
= (m−1)i j p j,

d pi

dt
= − ∂V

∂qi
− 1

2

∂ (m−1) jk

∂qi
p j pk − γi j (m

−1) jk pk + gi j	 j (t ),

(7)

where the collective coordinates {qi} represent {q2, q3, q4}
within the Fourier shape parametrization, and pi is the gener-
alized momentum conjugate to qi. The summation convention
for repeated indices is taken in this paper. The first term

represents the conservative force, in which we use the differ-
entiation of potential energy V with respect to qi instead of the
free energy F = V − aT 2, since the level density parameter
a is taken to be a constant in this work. The mi j is the inertia
tensor and its inverse matrix denotes (m−1)i j . γi j is the friction
tensor. The last term gi j	 j (t ) is the random force, in which the
normalized random force 	 j (t ) is assumed to be white noise
and obtained by using a Gaussian random number generator,
and gi j is the strength of the random force, which is calculated
according to the fluctuation-dissipation theorem

gikg jk = γi jT
∗, (8)

T ∗ is the effective nuclear temperature, in which the quantum
effect is taken into account for nuclear fission at low excitation
energy. It is expressed as follows [38,39]:

T ∗ = h̄


2
coth

h̄


2T
, (9)

where T is the general nuclear temperature, and 
 is the
local frequency of the collective motion. The minimum value
of h̄
 is generally given by the zero-point energy. In the
present work, we adopt the value h̄
 = 2 MeV suggested in
Ref. [13]. The temperature T is calculated by the Fermi gas
model: Eint = aT 2. Eint is the intrinsic excitation energy of the
compound nucleus and calculated at each time step as follows:

Eint (q) = E∗ − 1
2 (m−1)i j pi p j − V (q, T = 0), (10)

E∗ is the total initial excitation energy of the fissioning nu-
cleus. In the present work, the particle emission along the
Langevin trajectory is not taken into account, which will be
studied in the future work.

The above Langevin equation is solved by the second or-
der Runge-Kutta numerical method, and the potential energy,
inertia tensor, and friction tensor at each time step t = n�t
are obtained by the parabola interpolation based on the pre-
pared meshes to save computation time. The mesh values
{q2, q3, q4} are taken to be

q2 = −0.6(0.05)2.9,

q3 = −0.22(0.02)0.22,

q4 = −0.3(0.015)0.195.

The time step �t is taken to be 0.9 fm/c. The initial positions
of the Langevin trajectories are taken to be beyond the ground
state {q2 = 0.3, q3 = 0.0, q4 = −0.16}, and the initial mo-
menta are simply assumed to be zero. In principle, the initial
values should be taken from a distribution defined by the start-
ing temperature. The calculation of the Langevin trajectory
is terminated if it arrives at the scission point or reaches the
boundaries of the meshes. In this work, the scission point is
determined by a fixed neck radius Rn to be 1.2 fm, which is
close to the one (1.0 fm) adopted in Ref. [9]. If the trajectory
reaches the scission point, the trajectory is treated as a fission
event, and the mass numbers and the total kinetic energy of
two fission fragments could be obtained. Within the Fourier
parametrization, the fragment mass number for asymmetric
fission is determined by all the shape parameters, not only
by the mass asymmetry parameter q3 alone. The total kinetic
energy is the sum of the Coulomb repulsion energy between
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two fragments and the collective kinetic energy at the scission
point. The number of the Langevin trajectories reaches at least
1.0 × 105 per fissioning nucleus in the calculations in this
work, which guarantees the enough statistic for the calculation
results.

III. CALCULATION RESULTS

A. The fragment mass and TKE distributions
in 14 MeV n + 235U fission

In this section, the fragment mass and TKE distributions
in 14 MeV n + 235U fission as well as the mass-energy cor-
relation of fission fragments are presented. Figure 3 shows
the calculated mass distribution for 14 MeV n + 235U fission
and the comparison with the calculated result in Ref. [20]
and the evaluated data from ENDF/B-VIII.0 [40]. It can be
seen that the calculated result, especially the peak position, is
overall consistent with the evaluated data, and similar with
the calculated result of Ref. [20], except a little narrower
width. It verifies the reliability of the potential energy surface
including the saddle point configuration within the Fourier
parametrization, which almost determines the fragment mass
distribution in low-energy nuclear fission [12]. The result also
shows that the Wall formula for the friction tensor is available
to well describe the fission fragment mass distribution in the
present model calculations, despite the narrower peak width,
which will be left to the near future work by introducing the
random neck rupture into the Langevin trajectories suggested
by Sierk [9]. In addition, it should be noted that the calculation
results are for the primary fragments, so the mass distribution
obtained is on the right side compared to the evaluated data
which is obtained after the prompt neutron emission.

In addition to the fragment mass distribution, we also
calculate the total kinetic energy distribution of fission frag-
ments, which is another equally important observable related
to nuclear fission. The TKE is the sum of the prescission
kinetic energy and the Coulomb energy related to repulsion of
the fragments, which is approximately treated as that between
two charged point particles located at the centers of mass of

FIG. 3. The calculated fragment mass distribution in 14 MeV
n + 235U fission with the present model (red curve) compared with
the result calculated with the 3D Langevin approach plus a constraint
on the heavy fragment deformation based on the TCSM [20] (blue
dashed-dot curve) and the evaluated data from ENDF/B-VIII.0 [40].

FIG. 4. The calculated TKE as a function of the heavy fragment
mass in 14 MeV n + 235U fission compared with the experimental
data. The experimental data are taken from (a) [41] and (b) [42],
respectively.

two fragments, i.e., e2Z1Z2
R12

. The first term is for sure very small
in the presence of the friction force while the Coulomb energy
is dominant. Figure 4 shows the calculated TKE in 14 MeV
n + 235U fission, along with the experimental data. It can be
seen that there is a good agreement between the calculated
results and the experimental data both for the symmetric and
the asymmetric fission region. In general, the TKE is quite
sensitive to the nuclear shapes at the scission point, for the
Coulomb repulsion energy between the fragments at the scis-
sion point dominates the TKE. The good agreement between
the present results and the experimental data indicates that
the present model is quite reasonable in the description of the
shape at the scission point for the fissioning system studied.

The mass-energy correlation of the fission fragments in
14 MeV n + 235U fission is shown in Fig. 5. It is seen that
there is a wide distribution of the TKE for a pair of fragments,
due to the different deformations at the fixed mass asymmetry.
On the whole, most of the fission events distribute around
the heavy fragment mass A ≈ 140, which corresponds to the
peak position of the mass distribution and the largest TKE
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FIG. 5. The calculated mass-energy correlation of the fission
fragments in 14 MeV n + 235U fission.
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FIG. 6. The correlation between the distance of the mass centers
of two fragments R12 and the heavy fragment mass at the scission
point (upper). the correlation between the R12 and the elongation
parameter q2 at the scission point (bottom).

values locate around A ≈ 135, where the heavy fragment is
close to the spherical shape due to the shell effects around
the shell closure Z = 50 and N = 82, which leads to the
strongest Coulomb repulsion and the largest TKE as well.
In addition, the averaged TKE around the symmetric fission
region is about 159 MeV and the lower TKE shows that the
symmetric fission channel corresponds to the superlong fis-
sion mode. And with the heavy fragment mass number larger
than 145 corresponding to the very asymmetric fission case,
the TKE value becomes lower than that around the symmetric
region, and the neutron number of the corresponding heavy
fragment is far from the deformed shell N = 88 and therefore
the deformation becomes larger.

B. The scission point configuration

The scission point is defined as the terminating point of the
Langevin trajectories, which are determined by the dynami-
cal process of nuclear fission. In general, the scission point
configuration can provide information about the correlation
between the deformation parameters corresponding to differ-
ent nuclear shapes at the scission point, which helps us to
understand the fission mechanism. In this section, we show
the correlation of the distance between the mass centers of two
complementary fragments R12 with the heavy fragment mass
at the scission point in Fig. 6. It shows that the R12 is much
larger around the symmetric mass region, and with the mass
asymmetry increasing the R12 decreases and then reaches the
minimum around A ≈ 135, for which the fragment shape is
close to the spherical shape. When the heavy fragment mass
further increases, the R12 increases slowly. The overall behav-
ior of the correlation between the R12 and the fragment mass

FIG. 7. The correlation between the neck parameter q4 and the
elongation parameter q2 at the scission point where the neck radius
is set to be 1.2 fm (red curve) and 0.1 fm (black curve), respectively.

is consistent with the behavior of the correlation between the
TKE and the fragment mass shown in Figs. 4 and 5.

The correlation between R12 and the elongation parameter
q2 at the scission point is also obtained from the dynamical
calculation and shown at the bottom of Fig. 6. One can see
that R12 increases linearly with the q2 at the scission point,
which supports that q2 is suitable to describe the elongation of
the system at scission point. Furthermore, the dynamical sim-
ulation with the Langevin approach could verify the validity
of the collective model obtained using the Born-Oppenheimer
approximation [11], where the q2 direction is related to the
slow motion towards fission.

Besides, concerning the correlation of shape parameters,
we study the correlation between the neck parameter q4 and
the elongation parameter q2 at the scission point in Fig. 7,
which shows that the averaged q4 increases nearly linearly
with the q2 at the scission point defined by the fixed neck
radius (1.2 fm). And the result of the correlation is compared
with that of the case where the scission neck radius Rn is set
as 0.1 fm. One can see that the slopes of the two lines are
the same but the line for the small neck radius case is shifted
downward, and it leads to a too elongated shape and thus a too
small TKE when the scission point is defined by a small neck
radius. Therefore, in this work, the neck radius at the scission
point is defined as 1.2 fm.

C. The calculated fragment mass and the TKE distributions
for the more fissioning systems

Within the present model, the fragment mass distributions
in 14 MeV n + 233,236,238U and 239Pu fission are calculated
as shown in Fig. 8 together with the evaluated data from
ENDF/B-VIII.0 and the results in Ref. [20] for n + 233U and
239Pu fission. It can be seen that the agreements between the
calculated results and the evaluated data are as good as that
shown in Fig. 3, especially in the cases for 14 MeV n + 233U
and 239Pu fission, in which the calculated results agree well
with the evaluated data and the results in Ref. [20]. As for the
calculations in 14 MeV n + 236,238U fission, the peak widths
of the mass distributions are narrower and the corresponding
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FIG. 8. The calculated fragment mass distributions in 14 MeV n + 233,236,238U and 239Pu fission (red curve) along with the results calculated
within the 3D Langevin approach plus a constraint on the heavy fragment deformation based on the TCSM (blue dashed-dot curve) and the
evaluated data from ENDF/B-VIII.0.

peak heights are higher, which is possible because the poten-
tial energy valley for the asymmetric fission channel is deeper
for the odd-A fissioning systems.

The calculation results of the TKE as a function of heavy
fragment mass for 14 MeV n + 233U and 239Pu fission are
presented in Fig. 9, where the comparison with the results of
the GEneral description of Fission observables (GEF) code
and the experimental data is also shown. It is shown that the
calculated TKE results agree well with the experimental data
and the GEF results [43] at the large asymmetric mass region.
However, there is a large difference among the calculated
results of the present work and the GEF and the experimental
data at the symmetric mass region, and the TKE of the present
work is between the experimental data and the GEF results.
The description of the deformation of the fissioning nucleus
at the scission point influences the TKE strongly, as discussed
in Ref. [14]. The discrepancy shown in Fig. 9 implies the need
of improvement of the present model.

Furthermore, the calculated probability distributions of the
TKE in 14 MeV n + 233U and 239Pu fission are compared
with the results obtained by the GEF model, which is shown
at the bottom of Fig. 9. The shapes of the TKE distribu-
tions are Gaussian-like ones, while those with GEF deviate

from a Gaussian-like distribution in the left side of the dis-
tribution. In this work, the mean TKE in 14 MeV n + 233U
fission is 168.62 MeV, and the latest experimental data in
Ref. [44] is 167.7 MeV, which shows a good agreement
between them. And the mean TKE in 14 MeV n + 239Pu
fission is 172.99 MeV, which is close to the measured value
175.43 MeV in Ref. [45]. It should be noted that the multi-
chance fission is not taken into account in the present work,
which will influence the TKE calculation results.

IV. SUMMARY

In this work, the Langevin approach is extendedly applied
to study the dynamical process of nuclear fission within the
Fourier shape parametrization, where the potential energy is
calculated with the macroscopic-microscopic model based on
the Lublin-Strasbourg drop (LSD) model and the Yukawa-
folded potential. Within the present model, the calculated
fragment mass distributions and the TKE distributions in
14 MeV n + 233,235,236,238U and 239Pu fission are in agreement
with experimental data, and the correlation between the defor-
mation parameters at the scission point is studied as well.
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FIG. 9. The calculated total kinetic energy distribution (top) and the probability distribution (bottom) in 14 MeV n + 233U and 239Pu fission,
compared with the calculated results with the GEF model and the experimental data [45].

We first investigate the fragment mass and the TKE distri-
butions in 14 MeV n + 235U fission and the results show that
the Wall model for the friction tensor is available to describe
well both of the mass distribution and the TKE distribution in
the nuclear fission, which shows the advantage of the Fourier
shape parametrization, i.e., its convenience and validity. Also,
the mass-energy correlation of fragments in 14 MeV n + 235U
fission is studied, which clearly shows that the asymmetric
fission mode dominates among all the fission events and
the symmetric fission mode corresponds to the superlong
fission.

The correlation of the deformation parameters at the scis-
sion point is then studied within the present model. The
correlation of the distance between the centers of mass of
two fragments R12 with the heavy fragment mass is found
to be consistent with the TKE as a function of heavy frag-
ment mass and the shortest R12 locates around Ah = 135
which is due to the influence of the shell effects around
the shell closure Z = 50 and N = 82. The correlation be-
tween the R12 and the parameter q2 is also obtained from

the dynamical calculation, which indicates that the q2 intro-
duced in the Fourier parametrization is the optimal elongation
parameter.

Last, the present model is adopted to study the mass distri-
butions and the TKE distributions in 14 MeV n + 233,236,238U
and 239Pu fission and the overall results agree with the evalu-
ated data and the experimental data. However, the calculated
TKE cannot describe the experimental data well around the
symmetric mass region, which will be left to the improvement
of the model in the future work.
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