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Abstract

The spontaneous fission of actinides is analysed by the macroscopic - microscopic method based on the Lublin Strasbourg Drop

model and the two deformed Nilsson wells or Yukawa folded single particle potentials. The microscopic corrections are obtained

within the Strutinsky prescription and the BCS theory. In the scission point the shell correction possess the additive property but

this is not true for pairing correlations during asymmetric fission . Here the shape dependent pairing force of the δ or Gogny type

should be used and the pairing strength should grow with increasing deformation of fissioning nucleus. The examples of sponta-

neous fission results are presented. The possibility of β decay accompanying the spontaneous fission is noticed.
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1. Introduction

After 75 years from the discovery of nuclear fission it is worth to remain the names of scientists: Otto Hahn, Fritz

Strassmann, Lisa Meitner and Otto Frisch, who had discovered this phenomenon (Hahn and Strassmann, 1939) and

began the long way of it’s explanation (Meitner and Frisch, 1939). The first quantitative description of the fission

process was proposed also in 1939 by Niels Bohr and John A. Wheeler (Bohr and Wheeler, 1939). Till now the

mechanism of the nuclear, even spontaneous, fission is not fully understood. The life-times with respect of this decay

are not well reproduced by any theory. Also the origin of asymmetric fission demands better descriptions. Similarly

the theoretical description of the kinetic energy distribution of fission fragments needs further studies of the scission

point configuration and the neck rupture mechanism. The crucial quantities influencing all these doubts are the shell

and pairing correlations in the region of the scission point of the fission barrier.
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The Strutinsky method was used to evaluate the shell correction in the fissioning nucleus and its fragments. It was

shown that the sum of the shell corrections of the both fragments is nearly equal to the shell correction evaluated in

the mother nucleus even for asymmetric fission.

The pairing correlation were evaluated using the BCS approximation with the monopole pairing force for the

mother nucleus and the both fragments. The additive property is not true for the pairing correction, by asymmetric

fission, where the pairing energy of the total system differs from the sum of the pairing energies of the fragments.

One has to use the δ-pairing or Gogny force instead of the monopole force in almost separated system. The shape

dependent force will switch off the pairing correlations between orbitals in different fragments. The average pairing

energy reproducing the masses of the fragments after scission should grow with deformation.

The paper is organised in the following way. We begin the article with presentation of a modern version of the liquid

drop formula, namely the Lublin Strasbourg Drop (LSD) model (Pomorski and Dudek, 2003), which reproduces well

the nuclear masses and the fission barrier heights. Then, we shall present the shell and pairing corrections at large

deformations close to the scission point of the fissioning nucleus and examine the influence of the average pairing

energy on the fission barrier heights of light nuclei with A ≈ 100. In addition, we show that the β-stable nuclei lose

their stability at large deformations what can lead to β-decays accompanying to fission. The conclusions will be drawn

in the end of the paper.

2. Macroscopic-microscopic theory

2.1. Macroscopic part of the binding energy

Following the idea of Meitner and Frisch (Meitner and Frisch, 1939) Bohr and Wheeler have assumed that the

liquid drop formula consists of the volume energy, and the deformation dependent surface and Coulomb energy terms

(Bohr and Wheeler, 1939):

ELD({αl}) = Evol + Esurf({αl}) + ECoul({αl}) = avolA + asurf A2/3Bsurf({αl}) + e2Z2

r0A1/3
BCoul({αl}) , (1)

where {αl}, called deformation parameters, is a set of expansion coefficients of nuclear radius in Legendre polynomials

Pl series

R(θ) = R0

⎛⎜⎜⎜⎜⎜⎝1 + ∞∑
l=0

αl Pl(θ)

⎞⎟⎟⎟⎟⎟⎠ . (2)

Here R0 is radius of a spherical nucleus.

Bohr and Wheeler have shown that the saddle point of the liquid drop energy function in the {αl} deformation

parameters space appears at large deformation α2 and the fission barrier occurs when the fissility parameter

x =
ECoul(0)

2Esurf(0)
≈ Z2

50A
MeV (3)

is smaller than 1, what is clearly seen when one expands the relative to sphere surface and Coulomb energies in the

Taylor series with respect to the deformation parameters:

Bsurf = 1 +
2

5
α2

2 +
5

7
α2

3 + . . . ; BCoul = 1 − 1

5
α2

2 −
10

49
α2

3 − . . . (4)

The shell effects in the deformed macroscopic potential energy surface was included in 1966 by Myers and Swiatecki

who have proposed a phenomenological formula for the shell correction energy (Myers and Swiatecki, 1969,1974)

what has allowed them, after refitting of the liquid drop formula parameters, to reproduce with a good accuracy the

known at that time nuclear masses. After appearance of this first macroscopic-microscopic model (Myers and Swiate-

cki, 1966) several more complex macroscopic formulae containing more adjustable parameters were developed. One

can count here the droplet model (Myers and Swiatecki, 1969,1974), the Yukawa-plus-exponential anzatz (Krappe et

al., 1979), the finite-range droplet model (Moller, 1988) or the Thomas-Fermi theory (Myers and Swiatecki, 1996).

Surprisingly, it was shown in Ref. (Pomorski and Dudek, 2003) that simple liquid drop formula containing the surface



6   Krzysztof Pomorski and Bożena Nerlo-Pomorska  /  Physics Procedia   64  ( 2015 )  4 – 18 

curvature term is able to reproduce both the experimental binding energies and the fission barrier height with even

better accuracy that the above more complex models when one uses the same microscopic energy corrections. This

Lublin-Strasbourg-Drop (LSD) mass formula (Pomorski and Dudek, 2003) has the following form:

M(Z,N ; def) = ZMH + NMn − belec Z2.39 + bvol (1 − κvol I2 ) A + bsurf (1 − κsurf I2 ) A2/3Bsurf(def)

+ bcur (1 − κcur I2 ) A1/3Bcur(def) + 3
5

e2Z2

rch
0

A1/3 BCoul(def) − C4
Z2

A + Emicr(Z,N; def) + Econg(Z,N) .
(5)

where the congruence energy Econg is defined in Ref. (Myers and Swiatecki, 1997) and the microscopic part of the

binding energy Emicr consists of the shell δEshell and pairing δEpair energy corrections

Emicr(Z, A; def) = +δEshell(Z, A; def) + δEpair(Z, A; def) , (6)

One can obtain the microscopic energy corrections using the Nilsson (Nilsson, 1955; Nilsson et al. , 1969), the

Saxon-Woods (Woods and Saxon, 1954) or the Yukawa-folded (Bolsterli et al., 1972) single-particle potentials and

the Strutinsky method to evaluate the shell energy corrections (Strutinsky, 1967,1968; Nilsson et al. , 1969) while the

BCS theory is used to get the pairing correlations energy(Bardeen et al., 1957; Nilsson et al. , 1969).

All results presented below were obtained using the LSD macroscopic energy model with the curvature term

(Pomorski and Dudek, 2003) as shown in Eq. (5) and the Nilsson (Nilsson, 1955; Nilsson et al. , 1969) or the

Yukawa-folded (Krappe et al., 1979; Moller, 1988) single-particle potentials .

2.2. Shell correction

According to Strutinsky the shell energy is given by the following difference:

δEshell =
∑
occ

2eν − ẼStr , (7)

where the sum goes over all occupied single-particle (s.p.) energies eν and the second term is the smoothed s.p. energy

sum which can be calculated by the Strutinsky prescription (Strutinsky, 1967,1968; Nilsson et al. , 1969). The total

shell-energy consists of the proton and neutron contributions. The average sum of the single-particle energies is given

by the integral

ẼStr =

λ̃∫
−∞

2 e g̃(e) de , (8)

where g̃(e) is the smooth level density obtained by folding the real spectrum of the single-particle energies

g(e) =
∑
ν

δ(e − eν) −→ g̃(e) =
1

γS

∑
ν

jn

(
e − eν
γS

)
. (9)

with Gauss function of the sixth (Nilsson et al. , 1969)

j6(x) =
1√
π

e−x2

(
35

16
− 35

8
x2 +

7

4
x4 − x6

)
. (10)

or higher order correction polynomial. The smearing parameter γ should be of the order of the distance between the

major shells to wash out the shell effects in Ẽ and ensure the plateau condition (independence on γ) of the shell energy.

One obtains the average Fermi energy λ̃ in Eq. (8) from the particle number equation in the system with the smoothed

shell structure

N =
λ̃∫

−∞
2 g̃(e) de . (11)

An alternative to the Strutinsky approach method is averaging of the sinle-particle energy sum over the number of

particles (see e.g. (Pomorski , 2004)). This method leads to similar magnitudes of the shell energy corrections for

deformed nuclei while for the spherical nuclei absolute values of the negative energy corrections are larger.



 Krzysztof Pomorski and Bożena Nerlo-Pomorska  /  Physics Procedia   64  ( 2015 )  4 – 18 7

2.3. Pairing correction

The pairing correction is defined as the difference between the BCS and the average pairing energy

δEpair = Epair − 〈 Epair 〉 . (12)

The average pairing correlation energy was supposed to be already contained in the macroscopic part of the binding

energy (Myers and Swiatecki, 1966), what is not necessary true what we shall point later. The pairing energy Epair is

equal to the difference of the BCS energy and the sum of the energies of the occupied single-particle levels: (Nilsson

et al. , 1969)

Epair = EBCS −
∑
occ

2eν , (13)

where

EBCS =
∑
ν

2v2
νeν −G

∑
ν

uνvν −G
∑
ν

v4
ν (14)

G is the pairing strength, vν and uν the occupation and unoccupation BCS factors.

2.4. Potential energy surface

An example of results of the potential energy surface of 210Pu isotope is presented in Fig. 2.4. The calculation

was done with the Yukawa-folded (YF) single-particle potential and LSD macroscopic energy using the Modified

Funny-Hills shape parametrization of the deformed nucleus shapes (Bartel et al., 2014). The parameter ψ corresponds

to the elongation of fissioning nucleus while α′ describes the mass asymmetry mode. One can see that the second

barrier is significantly reduced by the reflection asymmetry, while the super deformed (SD) and hyper deformed (HD)

are on the path which corresponds to the symmetric in mass fission. One has to stress here that the proper choice of

the shape parametrization was very important to obtain the shell effects at such very elongated shapes. The right hand

side end of the potential energy surface corresponds to the liquid drop scission line.

SD
HD

Fig. 1. Potential energy surface of 210 Po in elongation ψ and asymmetry α′ plane
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3. Additive property of the microscopic energy corrections

Let us assume that we are dealing with the almost separated fission fragments. The single-particle potential well

of such system is schematically presented in Fig. 2. The bound single-particle levels, which one obtains after diag-

onalization of the Hamiltonian with such a potential, are already localised in the two wells corresponding to each

fission fragment. Only the weakly bound and unboud states have wave functions which are distributed over the whole

system.
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Fig. 2. Schematic plot of a single-particle potential well corresponding to the two almost separated fission fragments.

The common energy spectrum of the bound states can be separated into the levels belonging to the heavy or to

the light fragment: {e} ≡ {el, eh}. The both fragments should have the same average Fermi energy (11) as the mother

nucleus because the system is not yet fully divided: λ̃l = λ̃h = λ̃. For such a configuration the following relations can

be written:

ẼStr = Ẽl
Str + Ẽh

Str and N = N l +Nh , (15)

So

Eshell =
∑
occ

2eν − ẼStr =
∑
occ

2el
ν +
∑
occ

2eh
ν − Ẽl

Str − Ẽh
Str (16)

and

Eshell = El
shell + Eh

shell . (17)

In case of the pairing energy, the average pairing gaps could be different in the both fragments. Let us consider a

nucleus composed of two almost separated fragments in which the pairing correlations are described by the monopole

pairing Hamiltonian:

Ĥ = Ĥ0 + Ĥpair =
∑
ν

eν
(
a+ν aν + a+ν̄ aν̄

) −G
∑
ν,μ

a+ν a+ν̄ aμ̄aμ , (18)

where a+ν and aν the particle creation and annihilation operators. One can define the operators of annihilation of a pair

of particles in each fragment:

P̂l =
∑
ν

al
ν̄a

l
ν and P̂h =

∑
ν

ah
ν̄a

h
ν . (19)
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Fig. 3. Sum of the shell energies of fragments (solid line) and the shell energy of the mother nucleus 236U (dotted line) as function of the mass

heavy fragment (upper raw). Similar data but for the pairing energy are plotted in the bottom raw. Left column corresponds to spherical heavy

fragment and prolate light one while the r.h.s column shows the results when the both fragments are prolate.

and corresponding creation operators P̂+l = (P̂l)
+ and P̂+h = (P̂h)+. The single-particle and pairing Hamiltonian in the

new operators takes the following form:

Ĥ = Ĥl
0 + Ĥh

0 −GlP̂+l P̂l −GhP̂+h P̂h−Glh

(
P̂+l P̂h + P+h P̂l

)
. (20)

The monopole pairing strength G is in the first approximation proportional to 1/A, so in the case of the separated

fragments the approximation Gl = Gh = Glh = G is not valid any more. One should rather assume: Gl ≥ Gh > G and

Glh ≈ 0, where the equality sign is valid for the symmetric fission only.

The BCS equations for almost separated fragments will take the following form:

2

G
=
∑
ν

1

Eν
�
∑
ν

1

El
ν

+
∑
ν

1

Eh
ν

=
2

Gl
+

2

Gh
(21)

and

N =
∑
ν

2v2
ν =
∑
ν

2(vl
ν)

2 +
∑
ν

2(vh
ν)

2 = Nl + Nh , (22)

where

El
ν =

√
(el
ν − λl)2 + Δ2

l , (vl
ν)

2 =
1

2

⎛⎜⎜⎜⎜⎝1 − el
i − λl

El
i

⎞⎟⎟⎟⎟⎠ , etc. (23)

with Δ � Δl � Δh and λ ≈ λl ≈ λh.

In Fig. 3 the two deformed Nilsson (Nilsson et al. , 1969) wells are used to describe the configuration of the fission

fragments. The shell (upper raw) and the pairing (bottom raw) energy of the mother system (dashed line) are compared
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with the sum of the shell energies (solid line) of the both fragments of 236U for different mass ratios and two different

shapes of the fragments. It is seen in Fig. 3 that the shell energy of the mother nucleus is nearly equal to the sum of the

fragments shell energies as it should be according to Eq. (17). The pairing energy is almost doubled in the fragments

as can be visible in the two bottom plots in Fig. 3. This is in agreement with results obtained in Ref. (Pomorski and

Ivanyuk, 2009) for the systems without shell structure. In the plot we haven’t subtracted the average pairing energy

nor the pairing diagonal term. The pairing strengths for the mother nucleus and fission fragments was adjusted to

the average experimental proton and neutron gaps: Δ̄
(p)
exp = 4.8Z−1/3 MeV and Δ̄

(n)
exp = 4.8N−1/3 MeV taken from

Ref. (Möller and Nix, 1992).
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Fig. 4. Shell energy (thin solid line), the sum of the pairing energies of the fragments (dashed line) and the total microscopic energy (thick line) as

function of the heavy fragment mass. The results are drawn for four elongations εh , εl of heavy and light fragment (written in the plots).

The total value of the microscopic energy as well as its both components Eshell and Epair are plotted in Fig. 4

as functions of the heavy fragment mass. Each of four plots corresponds to a different deformations of the fission

fragments. We have switched of the pairing interaction between orbitals belonging to different fragments. This can be

done automatically when one uses e.g. the δ-pairing force (Krieger, 1990) instead of the monopole pairing interaction

Vq(
r1, 
σ1;
r2, 
σ2) = Vq
0

1 − 
σ1 · 
σ2

4
δ(
r1 − 
r2) , with q = n, p , (24)

where Vq
0

is the δ pairing strength, 
σ1 and 
σ2 denote Pauli matrices. Matrix elements of the δ-pairing force are:

Viī j j̄ = Vq
0

∫
d3rρq

i (
r)ρ
q
j (
r) , (25)

where ρ
q
i (
r) =

∣∣∣ϕq
i (
r)
∣∣∣2.

It means that the matrix elements (25) vanish when the orbits φ
q
i and φ

q
j belong to the different fragments. One

obtains similar effect in case of the Gogny interaction (Gogny, 1975) frequently used in the self-consistent Hartee-

Fock-Bogolubov calculations.
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4. Influence of the congruence and the average pairing energies on the fission barrier heights

In the macroscopic-microscopic model one usually assumes that the average pairing energy is contained in the

macroscopic part of the binding energy. To check the validity of this assumption one has evaluated in Ref. (Pomorski

and Ivanyuk, 2009) the average monopole pairing energy of nuclei from different mass regions at small deformations

corresponding to the ground state and at the scission configurations. The proportional to v4
ν term in Eq. 14 was taken

into account when evaluating the pairing energy.
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Fig. 5. Average pairing energy of nuclei at the ground state and at the scission point in function of A1/3. (After (Pomorski and Ivanyuk, 2009)).

The results are presented in Fig. 5. One can see that the average pairing energy in the ground state is almost A-

independent and approximately equal to -14 MeV. This result means that the average-pairing should be doubled when

two fission fragments are born from the mother nucleus. There is no mechanism in the macroscopic-microscopic

model which can give this effect. The only remedy is to assume that the average-pairing energy should not be included

into the macroscopic energy. In addition one has to take the deformation dependent monopole-pairing strength or more

complex pairing force as discussed in the previous section. The taking into account the fluctuative part of the pairing

energy δEpair only leads to a systematic error in the deformation dependence of the macroscopic-microscopic energy.

One has to add to the macroscopic energy Emacr the whole pairing energy (13) not only its fluctuating part in order to

get proper estimates of the binding energy at the saddle-point as well as at the scission configuration.

It was shown in Ref. (Pomorski and Ivanyuk, 2009) that the proportional to the surface monopole pairing strength

(G ∼ S ) can roughly give the doubling effect of the pairing energy at scission. It is seen in Fig. 5 that the magnitude

of < Epair > evaluated with G ∼ S at the scission configuration is much larger (almost twice for the heaviest nuclei)

than in the ground-state.

Similar effect but for the congruence (Wigner) energy was already noticed in Ref. (Myers and Swiatecki, 1997),

where one has assumed that the congruence energy at the scission point is twice as large as in the ground state. The

effect of deformation dependent congruence and average pairing energy on the fission barrier heights was discussed

in Ref. (Pomorski and Ivanyuk, 2009) and is shown in Fig. 6 for Br to Cf isotopes. It is seen in Fig. 6 that the

deformation dependent average-pairing and congruence energies significantly approaches the estimates of the fission

barrier heights to their measured values (Pomorski and Ivanyuk, 2009).
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Fig. 6. The macroscopic fission barrier of 75Ba to 252Cf isotopes as function of the quadrupole deformation of nuclei. The barriers are evaluated

using the LSD energy (dotted lines) and the deformation dependent congruence (dashed lines) and average-pairing terms (solid lines). The crosses

correspond to the experimental fission barrier heights reduced by the microscopic effects at the ground-state according to the topographical theorem

(Myers and Swiatecki, 1996).

The barrier heights were estimated using the topographical theorem of Swiatecki in which one assumes that at the

binding energy of nucleus at the saddle is mostly determined by the macroscopic part of the binding energy. The

quality of this approximation can be seen in Fig. 7, where the experimental fission barrier heights of 18 actinide nuclei

are compared to their estimates in which the LSD macroscopic mass formula was used to evaluate the mass of nuclei
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at the saddle point. All estimates except one (252Cf) are slightly below the data (r.m.s. 310 keV) what leaves a place

for the small unwashed shell effects at the saddle.

5. Spontaneous fission

The spontaneous–fission half–life is inversely proportional to the probability P of penetration through the fission

barrier (confer e.g. (Krappe and Pomorski, 2012):

T sf
1/2 =

ln 2

n
1

P
, (26)

where n is the number of assaults of the nucleus on the fission barrier per time unit. The number of assaults is given by

the frequency of zero–point vibration of the nucleus in the fission mode direction. Using the one-dimensional WKB

approximation one obtains the following equation for the penetration probability:

P =
1

1 + exp 2S (L)
, (27)

where S (L) is the action–integral calculated along a fission path L(s) in the multi–dimensional space of collective

coordinates {qi}

S (L) =

s2∫
s1

{
2

�2
Beff(s)[V(s) − Eg.s.]

}1/2

ds . (28)

Here V(s) is the collective potential and Eg.s. is the ground state energy of nucleus. An effective inertia associated

with the fission mode along the path L(s) is:

Beff(s) =
∑
k, l

Bkl
dqk

ds
dql

ds
, (29)

where Bkl are the qk and ql components of the inertia tensor and ds denotes the element of the path length in the

multi-dimensional space of collective coordinates {qi}. The integration limits s1 and s2 correspond to the classical

turning points.
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Encouraged by the good results for the α-decay and the cluster radioactivity half-lives obtained within the Gamow

theory (Zdeb et al., 2013), we are going to check another simple model for the spontaneous fission half-lives proposed

in 1955 by Swiatecki (Swiatecki, 1955). He has who proposed a simple phenomenological relation between the half-

lives and the experimental mass deviations from their liquid drop estimates. The crucial ingredient of the model is

the liquid drop type formula which should reproduce well both the average binding energies of nuclei and the fission

barrier heights. The LSD model seems to fulfill the both criteria.

Let us consider one dimensional fission barrier along the least-action (dynamic) trajectory which corresponds to a

path in the multidimensional deformation parameter space which minimizes the integral S (28). Assuming that the

fission path is parametrised by a collective coordinate s one can evaluate the potential V(s) and the mass parameter

Bss(s) corresponding to this path. The fluctuations of the inertia Bss along the least-action trajectory becomes smaller

and smaller when one increase the number of collective coordinates. Especially the collective pairing degrees of

freedom significantly wash out the fluctuations of the inertia function (Staszczak et al., 1989).

E0

Vsadd

xl 0 xr

V
(x

)

VB

V(x)

~

Fig. 8. Schematic plot of a fission barrier. Two, at the saddle point, smoothly joined inverted parabolas approximate the barrier form.

A simple transformation:

x(s) =

s∫
ssadd

√
Bss(s′)

m
ds′ , (30)

brings us to the new coordinate x(s) in which the inertia becomes constant Bxx = m. The lower integration limit in

Eq. (30) are chosen in such a way that x=0 corresponds to the saddle point ssadd. The collective potential in the new

coordinate, schematically presented in Fig. 8, can be approximated by the two inverted parabolas of different stiffness

Cl and Cr having the maximum at the saddle point:

Ṽ(x) =

⎧⎪⎪⎨⎪⎪⎩Vsadd − 1
2

Cl x2 for x < 0 ,

Vsadd − 1
2

Cr x2 for x > 0 ,
(31)

The stiffnesses of the Ṽ potential are chosen in such a way that the action-integral S (28) becomes equal:

S =

x′r∫
−x′l

√
2m
�2

[V(x) − E0] dx =

xr∫
−xl

√
2m
�2

[Ṽ(x) − E0] dx (32)
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where pairs (−x′l , x
′
r) and (−xl, xr) are classical left and right turning points for the true and approximative potential

respectively. The last integral in Eq. (32) can be rewritten as

S =

√
2m
�2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xl∫

0

√
VB − Clx2

2
dx +

xr∫
0

√
VB − Crx2

2
dx

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
where VB = Vsadd − E0 is the fission barrier height.

After a small algebra the action integral becomes

S =
π

2�
VB

(√
m
Cl
+

√
m
Cr

)
=
π

�
VB
ωl + ωr

2ωlωr
, (33)

whereωl =
√

Cl/m andωr =
√

Cr/m are frequencies of the left and right (inverted) oscillator respectively. Introducing

the average oscillator frequency

ω̃ =
2ωlωr

ωl + ωr
, (34)

one can bring the action integral to the following form:

S =
2VB

�ω̃
. (35)

In our approximation the action integral is proportional to the fission barrier height measured in the energy quanta of

the harmonic oscillator which approximates the fission barrier form. For the action-integral S > 1 the logarithm of

the spontaneous fission half-lives (26) can written as

log(T sf
1/2/y) = 2S − log(n) − 0.3665 (36)

where n is the number of assaults of nucleus on the fission barrier per year (y) and the constant 0.3665=log[log(2)].

Having in mind that according to the topographical theorem the fission barrier height is VB = Msadd
LSD
−Mg.s.

exp and making

use of the relation (35) one can rewrite the last equation as follows:

log(T sf
1/2/y) +

4δM
�ω̃
=

4VLSD
B

�ω̃
− log(n) − 0.3665 , (37)

where

δM = Mg.s.
exp − Msph

LSD
and VLSD

B = Msadd
LSD − Msph

LSD
(38)

are the ground state microscopic energy correction and the liquid drop fission barrier height receptively.

The right hand side of Eq. (37) is a very smooth function of nucleon numbers as it is defined only by global properties

of nucleus. Note, that the derived equation has the same structure as the phenomenological formula in Ref. (Swiatecki,

1955).

The liquid drop barrier height of actinides decreases almost linearly in function of Z from 4.3 MeV for Z = 90 to

0 for Z ≥ 103 (Ivanyuk and Pomorski, 2009). The fission barrier of finite height appears in the super-heavy nuclei

mostly due to the shell effects in the ground state. The smooth dependence of logarithms of spontaneous fission

half-lives, corrected by the ground state shell-plus-pairing effects (k=7.7/MeV), on the LSD fission barrier heights,

is shown in Fig. 9 for even-even (e-e), odd A (o-A) and odd-odd (o-o) nuclei (Zdeb et al., 2015). The data for e-e

isotopes lie very close to the straight line what validates Eq. (37). The data for o-A and o-o are above this line, what

is due to the specialization energy which increases the fission barrier heights.

In Fig. 10 the spontaneous fission half-lives for even-even nuclei in function of Z2/A are shown (Zdeb et al., 2015).

They are fitted by the 3 parameter formula which implicates from Eq. (37) and it is very close to that proposed in

Ref. (Swiatecki, 1955):

log10

⎛⎜⎜⎜⎜⎜⎝T sf
1/2

y

⎞⎟⎟⎟⎟⎟⎠ + kδM = a Z + b + h [mod(Z, 2) +mod(N, 2)] (39)
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Fig. 9. Logarithms of the observed spontaneous fission half-lives corrected by 7.7δM as a function of liquid drop barrier height.
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Fig. 10. Logarithms of the observed spontaneous fission half-lives and their estimates by formula (39).

with the adjusted to the data constants a = 4.1, b = 380.2, k = 7.7/MeV and odd-particle hindrance factor h = 2.5.

The r.m.s. deviation of T sf
1/2 for the even-even nuclei with Z ≤ 104 is 1.2 only. The agreements for the odd-A and

odd-odd systems are of similar quality.
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We have shown here that the spontaneous fission half-lives are determined mostly by the microscopic (shell plus

pairing) effects in the ground state and depend on the global properties of the macroscopic fission barrier like its

height and width. The microscopic energy corrections at larger deformations have only a tiny influence on the fission

probability. In other words: the systematics of fission life-times depends mostly on the ground-state properties of

nuclei.

6. Conclusions

The following conclusions can be drawn form our investigations:

• The sum of shell energies of the fission fragments is close to the shell energy of the mother system.

• The sum of pairing energies of the fission fragments could be different from the pairing energy evaluated for

the common system.

• The deformation dependent congruence (Wigner) energy and the pairing strength proportional to the nuclear

surface improve the estimates of the barrier heights of the light nuclei.

• The average pairing energy of fissioning nucleus should grow with deformation to the double value at the

scission point.

• Lublin Strasbourg Drop describes well masses of all isotopes both in the ground state and saddle points.

• The spontaneous fission half-lives are mostly determined by the ground state shell effects

• Binuclear structure can appear in Th or lighter elements which have a very long flat fission barrier allowing for

creation of the local minima corresponding to the super- and hyper-deformed shapes.
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Möller, P., Nix, J. R., 1992. The Coulomb redistribution energy by a as revealed refined study of nuclear masses, Nuclear Physics A536, 61–71.

Myers, W. D., Swiatecki, W. J., 1966, Nuclear Masses and Deformations, Nuclear Physics 81, 1–60.

Myers, W. D., Swiatecki, W. J., 1969. Average Nuclear Properties, Annals of Physics 55, 395–505; ibid. 1974. Nuclear Droplet Model for Arbitrary

Shapes, Annals of Physics 84, 186–210.

Myers, W. D., Swiatecki, W. J., 1996. Nuclear properties according to the Thomas-Fermi model, Nuclear Physics A601, 141–167.
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nuclear structure and stability of heavy and superheavy elements, Nuclear Physics A131, 1–66.

Pomorski, K., Dudek, J., 2003. Nuclear liquid-drop model and surface-curvature effects, Physical Review C 67, 044316, 1–13.

Pomorski, K., 2004. Particle number conserving shell-correction method, Physical Review C 70, 044306, 1–10.

Pomorski, K., Dudek, J., 2004. Fission barriers within the liquid drop model with the surface-curvature term, Int. Journal Modern Physics E13,

107–112 .

Pomorski, K., Ivanyuk, F., 2009. Pairing correlations and fission barrier heights, Int. Journal Modern Physics E18, 900–906.

Staszczak, A., Pilat, S., Pomorski, K., 1989. Influence of the Pairing Vibrations on Spontaneous Fission Probability, Nuclear Physics. A504,

589–604.

Strutinsky, V. M., 1967. Shell effects in nuclear masses and deformation energies , Nuclear Physics, A95, 420–442 ; 1968. Shells in deformed

nuclei, Nuclear Physics A122, 1–33.

Swiatecki, W. J., 1955. Systematics of Spontaneous fission Half-Lives, Physical Review 100, 937–938.

Woods, R. D., Saxon, D. S., 1954. Diffuse Surface Optical Model for Nucleon-Nuclei Scattering Physical Review 95, 577–578.

Zdeb, A., Warda, M., Pomorski, K., 2013, Half-lives for alpha and cluster radioactivity within a Gamow-like model, Physical Review C 87, 024308,

1–5.

Zdeb, A., Warda, M., Pomorski, K., 2014, On spontaneous fission and α-decay half-lives of atomic nuclei, Physica Scripta, submitted for publica-

tion.


