
EPJ A
Hadrons and Nuclei

your physics journal

EPJ .org

Eur. Phys. J. A (2017) 53: 67 DOI 10.1140/epja/i2017-12259-8

On possible shape isomers in the Pt-Ra region
of nuclei

B. Nerlo-Pomorska, K. Pomorski, J. Bartel and C. Schmitt



DOI 10.1140/epja/i2017-12259-8

Regular Article – Theoretical Physics

Eur. Phys. J. A (2017) 53: 67 THE EUROPEAN

PHYSICAL JOURNAL A

On possible shape isomers in the Pt-Ra region of nuclei

B. Nerlo-Pomorska1, K. Pomorski1,a, J. Bartel2, and C. Schmitt2,3

1 UMCS, Lublin, Poland
2 IPHC, Strasbourg, France
3 GANIL, Caen, France

Received: 28 December 2016 / Revised: 13 March 2017
Published online: 11 April 2017
c© The Author(s) 2017. This article is published with open access at Springerlink.com
Communicated by T. Duguet

Abstract. A certain number of yet unknown super- and hyper-deformed shape isomeric states are predicted
in even-even nuclei of the region between Pt and Ra, using the macroscopic-microscopic model based
on the Lublin Strasbourg Drop for the macroscopic energy and shell plus pairing corrections evaluated
through the Yukawa-folded mean-field potential for the microscopic part. A new, rapidly converging shape
parametrization is used to describe the vast range of nuclear deformations between the ground and the
fission isomeric states up to near the scission configuration. Quadrupole moments are evaluated in the local
minima and turn out to be in good agreement with the experimental data wherever available.

1 Introduction

The first shape isomer 242mAm was discovered in 1962
by Polikanov et al. [1] in the 242Pu(d, 2n)242Am reaction.
They observed an activity with a very short half-life of
the order of ms. The first theoretical interpretation of this
discovery as super-deformed (sd) shape isomer with the
main axis ratio 1:2 was proposed by Strutinsky [2] who
showed that taking into account the shell energy leads to
the appearance of a second minimum in the fission bar-
rier. Until that time one assumed that the shell-correction
effects could generate the ground state deformation only
and that they disappeared with growing nuclear deforma-
tion, and that the region of the fission barrier saddle was
determined by the liquid-drop model [3]. The Polikanov
discovery and its attractive interpretation given by Struti-
nsky has initiated both experimental and theoretical re-
search in this field. Already in the next decade one dis-
covered 33 super-deformed shape isomers in the actinide
region. The analysis of the transmission probability of res-
onances in prompt fission induced by γ or light particles
has suggested the existence of even more deformed iso-
meric states called hyper-deformed (hd). Such third min-
ima were discovered in 230–233Th [4–9], 232,234,236U, and
232Pa nuclei [10–13].

Theoretical predictions of the ground state and shape
isomeric minima as well as the saddle-point energies ob-
tained for more than 7000 isotopes with A ≥ 31 within the

a e-mail: pomorski@kft.umcs.lublin.pl

macroscopic-microscopic model are presented in ref. [14].
They were based on extended macroscopic-microscopic
calculations in a three-dimensional (3D) deformation-pa-
rameter space using the Nillson quadrupole axial (ε2),
nonaxial (γ), and hexadecapole (ε4) deformation param-
eters. The finite-range liquid-drop model (FRLDM) was
used in ref. [14] for the macroscopic part of the energy
while the Yukawa-folded single-particle potential [15] for
the microscopic part. The range of deformations used
to perform the calculations was sufficient for locating
the super-deformed isomers, but not the very elongated
(hyper-deformed) shapes for which the use of higher mul-
tipolarities was necessary. The macroscopic-microscopic
model of ref. [14] was extended in ref. [16] to 5 dimen-
sions for nuclei with charge and mass numbers in the range
88 ≤ Z ≤ 94 and 230 ≤ A ≤ 236. In the barriers of the
nuclei from this mass region only a few were found with
third minima for light Th and U isotopes, which, however,
turned out to be less than 1MeV deep.

Similar extended studies of possible third hyper-de-
formed minima in even-even Th, U, and Pu nuclei were
performed by Kowal and Skalski [17]. They made calcu-
lations in a 8D space spanned by the βλ (λ = 1, 2, . . . , 8)
deformation parameters (in a spherical harmonics expan-
sion). The Yukawa plus exponential model [18], and in
parallel, the Lublin Strasbourg version of the liquid drop
(LSD) [19], were used to evaluate the macroscopic part of
the nuclear energy while the Woods-Saxon single-particle
levels were used to obtain the microscopic energy correc-
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Fig. 1. Fission barrier heights obtained using the Myers-
Świa̧tecki liquid drop (MS-LD, triangles) [3], the Lublin Stras-
bourg Drop (LSD, circles) [19], the Myers and Swiatecki
Thomas-Fermi model (MS-TH, squares) [35], and the exper-
imental data (exp., dots) taken from the table in ref. [35] as a
function of Z2/A.

tions. It was shown in this 8D calculation that the third
minima predicted in the 230–232Th isotopes are much less
deep (< 0.5MeV) than in previous theoretical estimates
(3–4MeV) (e.g., in ref. [20]).

Also several attempts to find very exotic deformed con-
figurations in the actinide region were undertaken using
self-consistent models. One should mention here the HFB
calculations made with the Gogny force [21,22], or the
HF+BCS results obtained in ref. [23] using the SkM∗

Skyrme force [24]. Using the SkM∗ force and the UN-
EDF1 the Potential Energy Surfaces (PESs) in Th and
U isotopes were studied in ref. [25]. No, or only very shal-
low third minima were found in the PES of 232Th and
232U, whereas these minima appeared deeper for the more
neutron-deficient Th and U nuclei with neutron number
N = 136 and 138.

A new interest in the fission barrier particularities of
nuclei lighter than the actinides was triggered by the ex-
periment of Andreyev et al. [26] who discovered an asym-
metric fission in the 180Hg isotope. Several calculations
of the PES of nuclei in this region where performed [27–
33]. The majority of these theoretical papers concentrated
only on an explanation of a before unexpected asymmet-
ric mass distribution of the fission fragments but not on
the properties of local minima visible in the PES at very
elongated nuclear shapes.

In the present paper we are going to concentrate on
properties of the super- and hyper-deformed shape iso-
mers in the preactinide even-even nuclei. We have chosen
the LSD model for the macroscopic part of the nuclear en-
ergy as it very well reproduces the measured fission barrier
heights (VB) in a wide mass region of the nuclear chart as
can be seen in fig. 1. The theoretical fission barrier heights
presented in fig. 1 were evaluated in ref. [34] on the basis

of the topographical theorem of Świa̧tecki [35], i.e. as a dif-
ference between the macroscopic saddle-point and the ex-
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Fig. 2. LSD fission barrier profiles obtained for different charge
numbers Z and a relative neutron excess (N − Z)/A = 0.26
using the optimal (i.e., deformation-parameterless approach)
shape Strutinsky theory [36] as a function of the relative dis-
tance between the mass centres of the nascent fragments in
symmetric fission.

perimental ground state masses. The nuclei of our present
study correspond to 32 ≤ Z2/A ≤ 34.

The LSD fission barriers evaluated for several charge
numbers 35 ≤ Z ≤ 100 with a relative neutron excess
(N − Z)/A = 0.26 are shown in fig. 2 as a function of
the relative distance between the nascent fission-fragment
mass centres (R12). The optimal-shape theory of Struti-
nsky [36] was used to evaluate the barrier profiles. All
evaluated fission barriers end at the geometrical scission
point (two touching fragments). Saddle points are marked
by triangles. It is seen in fig. 2 that with decreasing charge
number the liquid-drop barrier heights grow, which is
rather well known, and the saddle points are shifted to-
wards larger elongations which for Z ≤ 70 almost coincide
with the scission point. It is also seen that for Z < 90
the LSD energy corresponding to the scission configura-
tion is higher than the LSD energy of the spherical nu-
cleus, which prevents the spontaneous fission of such nu-
clei. The very broad and flat liquid-drop fission barriers
of pre-actinide nuclei (Z � 85) indicate that the inclusion
of shell effects will have a good chance to produce local
minima in the PES, corresponding to super- or/and hyper-
deformed shapes. Extended calculations for long isotopic
chains of even-even nuclei from platinium (Z = 78) to
radium (Z = 88) have therefore been performed in the
present paper within the macroscopic-microscopic model.
A new rapidly convergent shape parametrization devel-
oped in ref. [37] was used to describe the shapes of a
deformed nucleus from its ground state up to near the
scission configuration.
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2 Macroscopic-microscopic model and shape

parametrization

The nuclear deformation energies of our analysis were de-
termined in the macroscopic-microscopic model

Etot(Z,A; def) = Emacr(Z,A; def) + Emicr(Z,A; def).
(1)

The Lublin Strasbourg Drop (LSD) model [19] has been
used for the macroscopic part (Emacr) of the potential-
energy surface. The microscopic effects (Emicr) have been
evaluated through a Yukawa-folded (YF) single-particle
potential [15] with the parameters listed in ref. [38], where
also our way of solving of the eigenproblem of the YF
Hamiltonian is described. Eighteen deformed harmonic os-
cillator shells were taken into account when diagonalising
the YF Hamiltonian.

The Strutinsky shell-correction method [2,39] with an
8th-order correctional polynomial and a smearing width
γS = 1.2 �ω0, where �ω0 = 41/A1/3 MeV is the spheri-
cal harmonic-oscillator frequency, is used. The BCS [40]
theory, including an approximate GCM+GOA particle-
number projection as described in refs. [41,42] was used
for the pairing correlations. The pairing strength equal to
G · N 2/3 = 0.28 �ω0, (with N = Z,N for proton or neu-
tron, respectively) was adjusted to the experimental mass
differences of nuclei in this region using a pairing window
composed of 2

√
15N single-particle levels closest to the

Fermi surface.
A new nuclear shape parametrization [37,33] is used

that gives an expansion of the nuclear surface in the form
of a Fourier analysis in cylindrical coordinates

ρ2
s(z)

R2
0

=

∞
∑

n=1

[

a2n cos

(

(2n − 1)π

2

z − zsh

z0

)

+ a2n+1 sin

(

2nπ

2

z − zsh

z0

)]

, (2)

where, similarly to the famous “Funny-Hills” (FH) shape
parametrization [39], ρs(z) defines the distance of the
equivalent sharp surface from the symmetry z-axis, and
z0 is half the elongation of the nuclear shape along that
axis with end points located at zmin = zsh − z0 and
zmax = zsh + z0. The coordinate zsh is chosen so as to
locate the centre of mass of the shape at the origin of the
coordinate system. R0 represents the radius of the cor-
responding spherical shape having the same volume and
z0 = cR0 makes the connection with the FH elongation
parameter c which can be expressed through the even (left-
right symmetric) Fourier coefficients by the relation

π

3c
=

∞
∑

n=1

(−1)n−1 a2n

2n − 1
. (3)

The parameters a2, a3, a4 are related to quadrupole, oc-
tupole, and hexadecapole deformations, which in the con-
text of fission, represent the elongation, left-right asymme-
try, and neck degree of freedom, respectively. One should

note that a spherical shape corresponds to a value of a
(0)
2
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Fig. 3. (Color online) Schematic visualization in cylindrical
coordinates of the parameters entering the definition of the
profile function defined with eqs. (2)–(6). The quantities zl

and zr localize the mass centres of the left and right nascent
fragments entering the definition of R12.

close to unity, with almost vanishing higher-order even

a
(0)
n parameters

a
(0)
2 = 1.03205, a

(0)
4 = −0.03822, a

(0)
6 = 0.00826, · · · .

(4)
More and more elongated prolate shapes correspond to
decreasing values of a2, while oblate ones are described
by a2 larger than one, which is somehow contrary to the
traditional definition of a quadrupole deformation param-
eter. We will show below, how to obtain a more natural

definition of that quadrupole deformation parameter.
To account for the possibility of non-axial nuclear

shapes, the profile function can be factorized as [43–45]

̺2
s(z, ϕ) = ρ2

s(z)
1 − η2

1 + η2 + 2η cos(2ϕ)
, (5)

where ρ2
s(z) is given by eq. (2) and ϕ is the usual az-

imuthal angle in cylindrical coordinates (see fig. 3). The
non-axiality parameter η appearing in eq. (5) is the rel-
ative difference of the half axis of the cross section per-
pendicular to the z-axis, assumed here to be of ellipsoidal
form,

η =
b − a

b + a
, (6)

where the condition a b = ρ2
s ensures volume conservation

for a non-axially deformed shape. This definition, together
with the expressions for the semi-axis

a(z) = ρs(z)

√

1 − η

1 + η
and b(z) = ρs(z)

√

1 + η

1 − η
, (7)

guarantees that η is independent of z. The description
can be extended to a z-dependent η, and non-ellipsoidal
cross sections, which might lead to energetically more
favourable configurations when approaching the scission
line. For simplicity we are, however, keeping the present
description with a z-independent η value.

The different quantities entering eqs. (2)–(7) can be
visualized in fig. 3, where the distance R12 between the
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centres of mass of the left and right nascent fragment has
been introduced as a measure for the elongation of the
shape (see ref. [33] for details).

Let us come back for a moment to axially symmet-
ric shapes and study the convergence of the Fourier se-
ries, eq. (2). To that purpose we have drawn in fig. 4 the
relative importance of the contributions of the different
Fourier terms for a well deformed left-right asymmetric
shape. It immediately becomes clear that beyond k = 4
(here k = 2n or 2n− 1, see eq. (2)) the contribution from
higher multipolarities turns out to be very small, even for
such a strongly deformed shape as considered here. That
indicates already at this stage, that one should be able to
describe the very large variety of nuclear shapes between
the ground state up to very large deformations close to the
scission instability, where the nucleus splits into two fis-
sion fragments, with only 4 deformation parameters corre-
sponding respectively to elongation, left-right asymmetry,
neck degrees of freedom and non-axiality. Starting from
the non-axiality parameter η of eqs. (5)–(7) plus the cor-
responding 3 Fourier deformation parameters a2, a3, a4,
we are therefore defining 4 collective coordinates q1, q2, q3,
q4 which will also help us to cure the above mentioned un-

natural behaviour of the quadrupole parameter a2. What
we aim at, is to define these qn, for a very large variety of
nuclei, in such a way that along the LD fission path these
parameters show only a small variation around zero. We
will show below that this aim is achieved by the following
definitions

q2 =
a
(0)
2

a2
− a2

a
(0)
2

, q3 = a3,

q4 = a4 +

√

(q2

9

)2

+
(

a
(0)
4

)2

,

q5 = a5 − (q2 − 2)
a3

10
,

q6 = a6 −
√

( q2

100

)2

+
(

a
(0)
6

)2

, (8)

where, as in (4), a
(0)
n stands for the value of the an coef-

ficient in the spherically symmetric case. It becomes im-
mediately evident from (8) that the spherical case is de-
scribed by q2 = 0, while prolate deformations correspond
to q2 > 0 and oblate shapes to q2 < 0.

The deformation-energy landscapes that we are going
to discuss in the next section are thus described by 4 de-
formation parameters q1 = η (non-axiality) and q2, q3, q4,
while q5 and q6 (and higher-order terms) are set to zero,
which, however, implies non-zero values of the correspond-
ing a5 and a6 coefficients. That the above definitions,
eq. (8) are, indeed, meaningful is demonstrated in fig. 5,
which shows different sections of the LD deformation-
energy landscape. The fact that the LD path to fission
for a nuclear system with fissility parameter x = 0.8 in
fig. 5 goes along q3 = q4 = q5 = q6 = 0 shows that the
above definitions of the qn parameters really make sense
and are, at this stage, the best we can do, having no handle
on the quantum corrections that come into play through
the shell and pairing energies. Since the qn parameters are

ρ(u)

ρ2(u)

k = 2

k = 3

k = 4

k = 5

k = 6

-1 0 1 u

Fig. 4. (Color online) Relative importance of the contributions
to the shape function ρ2

s(z), eq. (2), corresponding to different
multipole orders of the Fourier series, for a left-right asymmet-
ric shape displayed in the top part of the figure. Shapes are
plotted as a function of the reduced variable u = (z − zsh)/z0.

Fig. 5. (Color online) LD potential energy in the (q2, q4) (top
left), (q2, q3) (top right), (q2, q6) (bottom left) and (q5, q2)
(bottom right) deformation sub-spaces for a nucleus with fis-
sility x = 0.8. In each (qi, qj) plot, the collective coordinates
qk with k �= i, j are set to zero.

defined as simple combinations of the an, where the latter
constitute an orthogonal basis, the qn, as the an, represent
independent deformation variables.

Thanks the fast convergence of the Fourier series, we
therefore believe that the above defined 4 deformation pa-
rameters q1 to q4 (with q5 = q6 = 0) are sufficient to
describe the large variety of nuclear shapes up to very
large deformations and we have thus been able to identify
several shape isomers in our calculations. The deformation
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Fig. 6. Potential-energy surfaces (relative to the spherical LSD energy) for Pt isotopes in the (q2, q3) plane. All energies are
minimised with respect to η (non-axial mode) and q4 (neck mode).

energies and quadrupole moments of the most pronounced
minima have also been evaluated, and are presented below.

3 Deformation energies

Nuclear deformation-energy landscapes (relative to the
corresponding spherical LD energy) were calculated for
even-even nuclei of different isotopic chains, 176–192Pt,
178–194Hg, 180–208Pb, 194–210Po, 196–212Rn and 208–236Ra
in the pre-actinide region between platinum (Z = 78) and
radium (Z = 88). They are presented in figs. 6 to 12 in
the (q2, q3) plane, corresponding, as explained above, to
the elongation and reflection asymmetry coordinates. In
all these calculations a minimization with respect to the
non-axiality and the neck degrees of freedom (parameters
q1 and q4) was carried out at each deformation point. A
similar analysis of some selected isotopes from the actinide
region from Th to U was already performed in [46–48], and
we will include some of the results of that investigation in
our discussion below, since they help to give a more com-
plete picture of that whole mass region.

It is interesting to analyse the different super- and
hyper-deformed local minima that appear in the PES of
nuclei from this region. Such minima, when deep enough
(around 1MeV or deeper) can lead to shape isomers simi-
lar to those observed for heavier nuclei of that mass region.

Starting with the Pt isotopes shown in fig. 6, we ob-
serve two energy minima: one oblate (q2 ≈ −0.2) and one

deeper prolate (q2 ≈ 0.3). Beyond 184Pt they become com-
parable in energy and also get closer to each other, tending
towards an almost spherical shape (|q2| ≈ 0.15) for 192Pt.
All ground state (gs) minima are found to be left-right
symmetric (q3 = 0). The super-deformed (sd) and hyper-
deformed (hd) minima, that turn out to be rather shallow
for the lightest Pt nuclei, but become more pronounced
for the heavier isotopes are observed around q2 ≈ 1 and
q2 ≈ 1.5, respectively. Starting with 188Pt and all the
way up to 192Pt one can identify an additional local mini-
mum appearing around q2 ≈ 0.6 the depth of which grows
with increasing neutron number. In 192Pt the sd mini-
mum around q2 = 1 has practically disappeared while the
minimum at q2 ≈ 0.6, is well identified. The above local
minima correspond all to axially symmetric shapes. One
also observes that in all investigated Pt isotopes an asym-
metric fission valley is formed at elongations q2 ≥ 1.7.

The situation is slightly different for the Hg isotopic
chain as presented in fig. 7. The lightest Hg isotope, 178Hg,
is practically spherical with a very flat potential energy
with respect to quadrupole q2 deformation. Its super-
deformed minimum at q2 ≈ 1 corresponds to a pear-like
shape (q3 �= 0) and is around 2MeV deep. The hyper-
deformed minimum at q2 ≈ 1.5 is also slightly left-right
asymmetric, but its depth is only of about 1MeV. With
growing mass number, the left-right asymmetry of both
the sd and hd shape isomers becomes smaller and smaller.
The best candidates for sd Hg isomers are isotopes with
A = 178–182 and 188–194. In the heaviest Hg nuclei the
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Fig. 7. Same as in fig. 6 but for the Hg isotopes.

q2 deformation of the sd shape isomers becomes smaller
and smaller with increasing neutron number and reaches
q2 = 0.6 for 194Hg. As one can conclude from fig. 7,
hd shape isomers have a good chance to be observed in
184–194Hg. The largest ground state quadrupole deforma-
tion and a strong competition (coexistence) between pro-
late and oblate shapes can be observed in 182–188Hg. As
was already noticed in ref. [47], a fission path leading to
asymmetric fission is observed in all Hg isotopes, with a
heavy-fragment mass between 100 and 110, which is in
agreement with the experimental results of Andreyev et
al. [26].

For the Pb isotopic chain shown in fig. 8, the Z = 82
magic number leads to a ground state of zero deformation
throughout the chain. Shape isomers corresponding to an
elongation q2 ≈ 0.6 have a good chance to be found in
Pb isotopes with mass number A = 192–208. Pronounced
hyper-deformed minima are found at q2 ≈ 1.75 in the PES
of 192–204Pb, whereas sd shape isomers (with q2 ≈ 1.3) are
only visible in the heaviest four Pb isotopes 202–208Pb. All
candidates for Pb shape isomers are reflection symmetric
(q3 = 0). In heavier Pb isotopes with A ≥ 202 the previ-
ously present mass asymmetric fission path disappears.

It is worth mentioning in this regard that the PES
of some of these Pb isotopes is often very rich, show-
ing several shape isomeric states on the oblate, but more
often on the prolate side. This is in particular the case
for the neutron-deficient isotopes between A = 180 and
A = 190. The triple shape coexistence in 186Pb advocated

in ref. [49], turns out, according to us, to be a quadru-
ple shape coexistence with two prolate local minima at
q2 ≈ 0.35 and q2 ≈ 0.5 respectively, as shown in fig. 9.
Similarly to Andreyev [49], we find the coexistence of an
oblate and a prolate minimum at the energies very close
to the measured ones. In addition, we have found a second
prolate minimum that appears at an only slightly lower en-
ergy than two other shape isomeric states. What is shown
in fig. 9 is a one-dimensional cross-section of the PES of
186Pb (energy as a function of the only quadrupole q2

parameter), where, in addition, horizontal lines indicate
the position of the ground state and both the excited 0+

states observed in ref. [49]. Andreyev et al. have also ob-
served a rotational band running from the 2+ to the 14+

state, and which decays by gamma emission and e− con-
version directly to the 0+ ground state, while the bottom
of this band was not directly observed in ref. [49]. Using
the rotational model [50] we have estimated the position of
the (non-observed) 0+ state at which the band ends, and
have found it located at approximately 606 keV (dotted
line in fig. 9). This value differs from the energies of both
0+ reported in ref. [49]. This fact can be used as certain
confirmation of quadruple shape coexistence in 186Pb. We
have found a similar kind of coexistence for other neutron-
deficient Pb isotopes, as can be seen from fig. 8.

In the Po isotopic chain analysed in fig. 10, already in-
vestigated for some aspects in refs. [46,47], the situation is
quite similar to the above described Pb nuclei. Very pro-
nounced sd minima at q2 ≈ 0.6 are visible in all isotopes,
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Fig. 8. Same as in fig. 6 but for the Pb isotopes.

except for 194Po. A chance for finding hd shape isomers
should exist for Po isotopes with A ≥ 204. A symmetric
and an asymmetric fission path are found only in the most
neutron-deficient isotopes, but only a symmetric path is
observed for heavier Po nuclei, which is in line with recent
experimental data of Ghys and co-workers [51].

The PESs for the chain of Rn isotopes with A = 196 to
212 are presented in fig. 11. The ground state of the light-
est isotopes corresponds to an oblate shape, while between
200Rn and 206Rn a coexistence between oblate and prolate
minima is observed. Starting from A = 208 all Rn isotopes
are found to be spherical. A sd left-right symmetric shape
isomer at q2 ≈ 0.6 could be found for A ≥ 198. Shal-

low minima corresponding to hd isomers might be found
in 206–212Rn. Similarly to the Po isotopic chain, a mass
asymmetric path to fission is visible in the lightest Rn
isotopes only.

The Ra isotopic chain, presented in fig. 12, already
studied for some aspects in ref. [47] shows a reflection-
symmetric path to fission for all the lighter isotopes. An
asymmetric path appears with increasing mass number
A ≥ 218 and becomes deeper than the symmetric one for
heavier Ra isotopes (A ≥ 224) in good agreement with
the experimental data (see [52] and references therein).
The ground state of all light isotopes up to A = 216 is
found to be spherical. A pronounced octupole deformation
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responds to the position of the 0+ rotational band head which
we have deduced from the rotational series observed in [49].

(q3 �= 0) appears in the ground state of 218–224Ra, which
is in addition very stiff with respect to truncation of the
reflectional symmetry while the quadrupole deformation
is around q2 ≈ 0.25. These results are in line with the
observations made in refs. [53,54] and are also in good
agreement with the more recent self-consistent mean-field
calculations [55] for 224Ra using the Gogny D1M force.
Left-right symmetric sd minima are visible in all Ra iso-
topes presented here at an elongation q2 ranging from 0.6
for the lightest to 0.75 for the heaviest nuclei. The large
depth of these minima (up to 3MeV) gives some hope that
such shape isomers will be found soon in the experiment.
Tiny hd minima can be seen in the PES of 228–234Ra nuclei
at q2 ≈ 1.2 and q3 ≈ 0.1.

In addition to the above presented isotopic chains, one
has to mention that the very deformed shallow minima
that we found in the heavier Th and U region [47] are in
agreement with calculations using both the macroscopic-
microscopic and the self-consistent mean-field models [16,
17,25].

The stability of a shape isomer does not only depend
on its position in deformation space, but also on the depth
of the local minimum. One can assume that shape iso-
mers with a potential well of a depth smaller that 0.5MeV
will be rather difficult to identify in the experiment. An-
other factor, important for experimentalists, is how high
such a local minimum would be located above the ground
state. That is why in fig. 13 we present, for all here in-
vestigated nuclei, the energies of these local minima num-
bered by increasing enegy (label 2, 3, . . . ) corresponding
to the ground state (label 1). Nuclei in shape isomeric
states could be oblate or prolate deformed reaching, in
some cases, super- or even hyper-deformed shapes. Each
shape isomeric state is represented in fig. 13 by an ellipse,
the length of which reflects the quadrupole deformation
in that state (a spherical shape corresponding to a circle).
One can notice in fig. 13 that for the Ra isotopic chain
there is a sudden drop in energy of the hd isomeric state

when the neutron number is increased beyond N = 132
(A = 220). One could think that such a transition might
have to do with some deformed shell closure.

4 Electric quadrupole moments

One possibility to check the quality of our predictions on
the deformation of stationary states (gs and shape iso-
mers) is given by the electric quadrupole moment. We
have therefore evaluated this quantity within our approach
relying on our new Fourier shape parametrization. The re-
sults obtained in our model are presented in fig. 14 by the
ellipses for each of the isotopic chains between Pt and Ra
with negative Q20 for the oblate and positive Q20 for the
prolate shape isomers. Each ellipse in fig. 14 has the same
label as the corresponding state in fig. 13. The states with
the quadrupole moment larger than 80 eb (i.e. for ultra-
deformed isomers) visible in some PESs (figs. 6–8, 10–
12) are not shown here. Where available, our predictions
are compared with the experimental data [56,54]. Usu-
ally in experiments one obtains the absolute value of the
quadrupole moment, that is why we have put the experi-
mental data with two signs: plus (filled squares) and minus
(empty squares). According to our calculation (see fig. 12)
the Ra isotopes from A = 216 to A = 228 are soft with
respect to the reflection asymmetric deformation q3 but
stable octupole deformations should appear in Ra isotopes
with 218 ≤ A ≤ 224 only. This result is in line (but shifted
by 2 mass units) with the observation made by Gaffney et

al. [54], who presented non-zero experimental values for
Q30 for 224Ra and 226Ra isotopes. Looking at these data
one has to bear in mind that the absence of a stable non-
zero deformation does not mean that the corresponding
electric moment is equal to zero. The role of dynamical
effects could be significant when the stiffness related to
this mode is small [57]. For example small quadrupole mo-
ments measured in some Pb isotopes (see red squares in
fig. 14) are due to such dynamical effects. So, the non-zero
value of Q30 in 226Ra can be obtained after performing a
dynamical calculation like done in ref. [57].

The agreement of our results with the data in the
ground state is good. Experimental efforts to measure
this quantity in the sd and hd region are therefore very
strongly encouraged. There is a hope that some of the
hd shape isomers could be found in the experiment us-
ing, e.g., proton beams that allow to produce compound
nuclear systems with not too large angular momentum.

5 Summary

Our investigations on the liquid-drop fission barrier
heights and shapes, performed in a variational ap-
proach [36], had shown that fission barriers of medium-
heavy nuclei are very broad and decrease only slowly when
going from saddle to scission. This property of the macro-
scopic energy offers a chance that in this region of nuclei
shell effects might produce local minima at a large nuclear
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Fig. 10. Same as in fig. 6 but for the Po isotopes.

Fig. 11. Same as in fig. 6 but for the Rn isotopes.
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Fig. 12. Same as in fig. 6 but for the Ra isotopes.

elongation. As first candidates, we have chosen the isotopic
chains of nuclei between platinum and radium and have
shown that the microscopic energy corrections can, indeed,
produce pronounced minima in the rather flat macro-
scopic potential-energy surfaces in this mass region. We
have evaluated not only the deformations corresponding to
these potential shape isomers but also their height above
the ground state and the electric quadrupole moment for
all isomeric states as well as for the ground state. The es-
timates reproduce well the experimental data where avail-
able. One has to bear in mind that our static calculation
can reproduce the quadrupole moment only in the case of
well-deformed nuclei. In transitional nuclei, where the po-
tential energy around the ground state minimum is very

flat, like observed in our calculations in the heaviest Pt nu-
clei or in 184,186Hg isotopes, dynamical effects can increase
the magnitude of the quadrupole moment (see ref. [57]).
A large B(E2) transition probability corresponding to
an electric quadrupole moment could be a fingerprint for
super-deformed isomers. We hope that in the near future
this new island of super- and hyper-deformed shape iso-
mers will be discovered in the experimental analysis.

One of our next goals is to study the stability of these
super- and hyper-deformed shape isomers with respect
to fission and light-particle evaporation. For this purpose
we are going to use the theoretical models described in
refs. [58–60]. We ar also planning to evaluate the rotational
bands, that might appear in the nd, sd and hd minima,
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Fig. 13. Energies ground state (label 1) and shape isomeric minima (labels 2, 3, . . . ) for isotopic chains ranging from Pt to
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Fig. 14. Electric quadrupole moments (ellipses) obtained in our approach for the ground and the shape isomeric states for
isotopic chains between Pt and Ra, with a comparison with available experimental data (boxes) [56,54]. Same labels in figs. 13
and 14 correspond to the same state for each nucleus.

by using the cranking model, like in ref. [61], but taking
into account the coupling with the collective pairing and
stretching modes [50].
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