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Abstract. The fission fragments mass-yield of 236U is obtained by an approximate solution of the eigenvalue
problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of
freedom are: the fission (elongation), the neck and mass-asymmetry modes. The macroscopic-microscopic
method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using
the liquid drop model and the microscopic corrections are obtained using a Woods-Saxon single-particle
levels. The four-dimensional modified Cassini ovals shape parametrization is used to describe the shape of
the fissioning nucleus. The mass tensor is taken within a cranking-type approximation. The final fragment
mass distribution is obtained by weighting the adiabatic density distribution in the collective space with
the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in
determining the final fragment mass distribution.

1 Introduction

Within the last few decades a number of theoretical ap-
proaches for the description of fission process were de-
veloped. They can be divided into two groups: time-
dependent and quasi-static approaches. Among the time-
dependent approaches one could mention the time-depen-
dent density functional theory [1], the time-dependent
generator coordinate method [2], the Brownian shape-
motion approach for nuclear fission [3], the models based
on the solution of Langevin equations for the shape de-
grees of freedom [4–7]. The quantum mechanical time-
dependent approaches, like time-dependent density func-
tional theory (TDDFT) [8], are unfortunately very time
consuming. In order to reduce the computation time to a
manageable level, various simplifications are introduced.
By now the results of the time-dependent approaches are
available for a very small number of fissioning nuclei. The
quasi-static methods like the scission point model [9–11]
are simpler and allow the calculations for many fissioning
systems. However in the scission point model, it is difficult
to define in a formal way (free of the fitting parameters)
the scission point configuration. So, any new approach to
the description of fission process would be quite welcome.

A very stringent test of any theoretical model which
describes the nuclear fission process should be a proper

a e-mail: pomorski@kft.umcs.lublin.pl

reproduction of the fission fragments mass distribution.
The goal of the present paper is to obtain such a distribu-
tion by an approximate solution of the eigenvalue problem
of the 3-dimensional collective Hamiltonian with degrees
of freedom corresponding to elongation, neck formation
and mass asymmetry of the nuclear shape. The present
model is similar to the 2-dimensional one of refs. [12,13]
but the non-adiabatic and dissipative effects are not taken
here into account since their effect is rather small for low-
temperature fission.

The potential energy surface (PES) is obtained in the
present work using the macroscopic-microscopic method
with the liquid drop model for the macroscopic part of
the energy while the microscopic shell and pairing correc-
tions are calculated using the Woods-Saxon (WS) single-
particle levels [14,15]. The shape of the fissioning nucleus
is described by the four-dimensional modified Cassini ovals
(MCO) [14,16]. It was shown in ref. [17] that the MCO
describe very well the so-called optimal nuclear shapes ob-
tained through a variational description [18], even those
close to the scission configuration.

The mass tensor is taken within the cranking-type ap-
proximation (cf. e.g. sect. 5.1.1 of ref. [19]). The Born-
Oppenheimer approximation (BOA) is used to describe
the coupling of the fission mode with the neck and mass
asymmetry degrees of freedom. It will be shown that, in
order to obtain a fission fragment mass distribution in
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Fig. 1. Examples of nuclear shapes in α, α1, α4 parametriza-
tion. The solid lines correspond to α4 = 0 while the dashed
and dotted curves to α4 = 0.2 and α4 = −0.2, respectively.

agreement with the experimental data, the fission proba-
bility should depend on the neck size.

The paper is organized in the following way. First we
shortly present the details of our theoretical model, then
we show the collective potential energy surface evaluated
in the macroscopic-microscopic model for 236U and the
components of the mass tensor. The calculated fission
fragments mass distribution is compared with the experi-
mental data in the next section. Conclusions and possible
extensions and applications of our model are presented in
the summary.

2 Collective Hamiltonian

2.1 Shape parameterization

We define the shape of fissioning nucleus by the parame-
terization developed in [14], where some cylindrical coor-
dinates {ρ, z} related to the lemniscate coordinates system
{R, x} by the equations

ρ =
1√
2

√
p(x) − R2(2x2 − 1) − s,

z =
sign(x)√

2

√
p(x) + R2(2x2 − 1) + s,

p2(x) ≡ R4 + 2sR2(2x2 − 1) + s2,

0 ≤ R ≤ ∞, −1 ≤ x ≤ 1, (1)

are introduced. The relation between {ρ, z} and {R, x} de-
pends on the parameter ε ≡ s/R2

0, where s is the squared
distance between the focus of Cassinian ovals and the ori-
gin of coordinates. The surface in the lemniscate coor-
dinates system is obtained by the establishing relation
between R and x, R = R(x). The coordinate surfaces
R(x) = R0 are the Cassini ovals (shown in the bottom
row of fig. 1).

The deviation of the nuclear surface from Cassini ovals
is defined by an expansion of R(x) in series of Legendre
polynomials Pn(x),

R(x) = R0

[
1 +

∑

n

αnPn(x)

]
, (2)

where R0 is the radius of the spherical nucleus. The cylin-
drical coordinates {ρ, z} are related to {ρ, z} by

ρ ≡ ρ/c, z ≡ (z − zcm)/c, (3)

where zcm is the z-coordinate of the center of mass of
Cassini ovaloid (2) and the constant c is introduced in
order to insure the volume conservation.

Instead of ε, it turns out convenient, see [15], to intro-
duce another parameter, α,

α =
(
z2
L + z2

R − 2r2
neck

) / (
z2
L + z2

R + 2r2
neck

)
, (4)

where zL(zR) is the minimum (maximum) value of the
cylindrical coordinate z and rneck is the radius of the cross
section of the nuclear surface in the plane z = 0. The
explicit relation between α and ε can be derived from (4)
using the connection of the {R, x} coordinates with the
cylindrical ones,

ε =
α − 1

4

⎡

⎣
(

1 +
∑

n

αn

)2

+

(
1 +

∑

n

(−1)nαn

)2
⎤

⎦

+
α + 1

2

[
1 +

∑

n

(−1)nα2n(2n − 1)!!/(2nn!)

]2

. (5)

The parameter α is defined so that at α = 1 the neck
radius turns into zero for any value of all other deforma-
tion parameters αn. The value α = 0 corresponds to the
spherical shape, α = 1 to the shape with zero neck. In the
case that all parameters αn are equal to zero, α coincides
with ε.

The coefficients α and αn are considered as the defor-
mation parameters. Examples of the shapes in the Cassini
parametrization are shown in fig. 1.

2.2 Born-Oppenheimer approximation

Below we use the following collective coordinates to de-
scribe the fission dynamics:

q1 = R12, q2 = a =
V1 − V2

V1 + V2

, and q3 = α4. (6)

Here R12 is the distance (in units of the radius R0 of the
corresponding spherical nucleus) between the mass center
of left and right parts of the nucleus. Within the Cassini
parameterization it is convenient to divide the shape into
left and right parts by the position of the point x = 0 (x
is one of the two lemniscate coordinates, see (1)). Such
a definition makes sense both for pear-like shapes and for
the shapes with a neck. In the last case the point x = 0 co-
incides with a good accuracy with the position of the neck.
The a in (6) is the mass asymmetry coordinate, V1 and
V2 are the volumes of left and right parts of the nucleus.
The parameter α4 describes the neck degree of freedom
(see ref. [16]).
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With these coordinates the classical energy of the sys-
tem becomes

Hcl =
1

2

∑

i,j

Mij q̇
iq̇j + V ({qi}), (7)

where Mij and V ({qi}) denote the inertia tensor and the
potential energy, respectively.

The quantized form of this Hamiltonian is the follow-
ing:

Ĥ = −�
2

2

∑

i,j

|M |−1/2 ∂

∂qi
|M |−1/2M ij ∂

∂qj
+ V ({qi}),

(8)
where |M | = det(Mij) and MijM

jk = δk
i .

The eigenproblem of this Hamiltonian will be solved
here in the Born-Oppenheimer approximation (BOA) in
which one assumes that the motion towards fission is much
slower than the one in the two other collective coordinates.
The effect of the nonadiabatic terms on the fission mass-
yield is rather small at low-energy fission as it was found in
ref. [13] in a 2D model and this is the reason why we shall
omit them in the following. In the BOA the Hamiltonian
could be written as follows:

Ĥ(R12, a, α4) ≈ T̂fis(R12) + Ĥperp(a, α4;R12). (9)

T̂fis in eq. (9) is the fission mode kinetic energy operator

T̂fis(R12) = −�
2

2

∂

∂R12

M
−1

(R12)
∂

∂R12

, (10)

where M(R12) is the average inertia related to the fission

mode and Ĥperp is the collective Hamiltonian related to
the neck and mass asymmetry coordinates. The eigenfunc-
tion of Hamiltonian (9) can be written as a product,

ΨnE(R12, a, α4) = unE(R12)ϕn(a, α4;R12), (11)

where ϕn are the eigenfunctions of Ĥperp,

Ĥperp ϕn(a, α4;R12) = en(R12)ϕn(a, α4;R12), (12)

and they are evaluated for each mesh-point value in the
R12 direction. Using the above relations one can rewrite
the eigenequation of the Hamiltonian (9) in the following
form:

(
T̂fis + en(R12)

)
unE(R12) = E unE(R12). (13)

The average inertia M(R12) in the kinetic energy operator

T̂fis (eq. 10) is evaluated as follows:

M(R12) =

∫
ϕ∗

0(a, α4;R12)MR12R12
(a, α4;R12)

×ϕ0(a, α4;R12) da dα4, (14)

where ϕ0 is the eigenfunction of the Hamiltonian Ĥperp

corresponding to its lowest eigenenergy for a given value

of R12. The integration takes place over the whole region
of allowed values of a and α.

The approximate solution of the above eigenvalue
problem can be obtained using the WKB formalism. The
energies en(R12) in eq. (13) define the fission potential
for different channels, which is important when one de-
scribes the nonadiabatic fission process in the coupled
channels approach [13]. In the following we shall take only
the lowest energy channel, which corresponds to the adia-
batic approximation. Within this approximation the wave
function of the fissioning nucleus is written in the form
of a product of the wave function u0E(R12) describing
the motion towards fission and the function ϕ0(a, α4;R12)
which corresponds to the lowest eigenenergy e0 of the
Hamiltonian (12). The probability of finding a nucleus,
at a given value of R12, in the (a, α4) point is equal to
|ϕ0(a, α4;R12)|2.

In refs. [12,13] it is shown how to go beyond the BOA
and include nonadiabatic and dissipative effects, but in
the following we are going to omit such effects, which are
expected to be small at low temperatures, and limit our
discussion to the effect of the neck degree of freedom on
the fission fragment mass distribution.

3 Numerical results

The potential energy surface is evaluated for 236U at zero
temperature within the macroscopic-microscopic model

V (q) = ELD(q) + δEshell + δEpair, (15)

in which the macroscopic part of the energy ELD(q) is
obtained using the liquid drop formula and the micro-
scopic shell δEshell and pairing δEpair corrections are cal-
culated using the Woods-Saxon single-particle potential.
All parameters of the potential are described in ref. [16].
The potential energy was calculated in the 4-dimensional
space of deformation parameters α, α1, α4, α6 and mini-
mized then with respect to α6 keeping the parameter R12

fixed. I.e., for each fixed value of α1, α4, α6 the depen-
dence of the potential energy on α (α is the main elonga-
tion parameter in the Cassini parametrization) was trans-
formed by interpolation into a dependence on R12. Then
V (R12, α1, α4, α6) was minimized with respect to α6 keep-
ing R12, α1, α4 fixed. In this way we obtain the poten-
tial energy as a function of three deformation parameters,
V (q) = V (R12, α1, α4), or V (q) = V (R12, a, α4) since α1

defines uniquely the mass asymmetry.
The mass parameter Mij(q) for the fission process is

commonly calculated by the Inglis formula

Mij(q) = 2�
2
∑

m

〈0|∂/∂qi|m〉〈m|∂/∂qj |0〉
Em − E0

, (16)

where |0〉 and |m〉 denote the ground and an excited state
of the system.

In the case that the ground and the excited states
of the system are described by the BCS approximation,
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Mij(q) is given by [20],

Mij(q) = 2�
2
∑

µν

〈µ|∂H/∂qi|ν〉〈ν|∂H/∂qj |µ〉
(Eµ + Eν)3

η2
µν + Pij ,

(17)
where the term Pij stands for the contribution due
to the change of occupation numbers, when the defor-
mation varies. The quantities Eµ, uµ and vµ in (17)
are the quasi-particle energies and coefficients of the
Bogolyubov-Valatin transformation, correspondingly, and
ηµν ≡ uµvν + uνvµ.

Unfortunately, the expression (17) has the very un-
pleasant feature that it does not turn into the mass param-
eter of a system of independent particles when the pairing
vanishes, ∆ → 0. More precisely, the nondiagonal sum
over single-particle states in (17) does turn into the mass
parameters of the system of independent particles when
∆ → 0, but the diagonal sum goes to infinity in that limit
(it is proportional 1/∆2, as demonstrated in [20]). Thus, at
some points in the deformation space, where the density of
single-particle states is very low, the mass parameter (17)
becomes unreasonably large. The same happens in excited
systems, when the temperature is close to its critical value
Tcrit at which the pairing gap disappears.

One should also keep in mind that the diagonal contri-
bution to the sum in (17) comes from the matrix elements
between the ground state and the pair excited states that
correspond to a particle number different from that of the
ground state. In a particle number conserving theory such
contribution could not appear.

In order to avoid the problems related to the diagonal
contributions to (17) we have omitted in (17) the diagonal
matrix elements 〈µ|∂H/∂qi|µ〉 and taken into account only
the nondiagonal part of (17),

Mij = 2�
2
∑

µ

∑

ν �=µ

〈µ|∂H/∂qi|ν〉〈ν|∂H/∂qj |µ〉
(Eµ + Eν)3

η2
µν . (18)

The suppression of dangerous diagonal terms leads to a
diminishing of the inertia tensor. The relative contribution
of diagonal terms to (17) depends very much on the point
in the space of deformation parameters, but, in principle,
it is not so small. For a particular case a = 0.1, α4 = 0,
the diagonal part of MR12R12

is by one order of magnitude
smaller than the nondiagonal one, but the diagonal part
of Maa is comparable with the nondiagonal ones. From
the calculations it follows that the diminishing of inertia
tensor increases the width of mass distribution of fission
fragments. Luckily, when the diagonal part to the mass
tensor is omitted the width of mass distribution gets very
close to the experimental data.

The mass parameter (18) was calculated with respect
to three deformation parameters, q = {R12, α1, α4}. We
have checked that the account of α6 does not change much
the value of the mass parameter (18). So, (18) was calcu-
lated first for the coordinates α, α1, α4, α6 = 0, then the
α-mass parameter was transformed into the R12-mass pa-
rameter using the relation between the derivatives

∂

∂R12

=
∂α

∂R12

∂

∂α
+

∂α1

∂R12

∂

∂α1

+
∂α4

∂R12

∂

∂α4

, (19)

and, eventually, the value of R12, α1, α4-mass parameter
was interpolated from the grid point in α, α1 to the grid
point in R12, a like it was done for the potential energy.

The potential energy surface (PES) related to the
spherical liquid drop energy (upper row) and the MR12R12

component of the inertia tensor (middle row) as well as
the neck radius κ = rneck/R0 (lower row) are plotted in
fig. 2 on the (Af , α4) plane for three different values of the
relative distances of the center of the fragments R12. Here
Af is the atomic mass of fission fragment, Af = A(1+a)/2.

Comparing the PES maps presented in the upper row
of fig. 2 one observes a transition from the minimum at
Af = 140 at R12/R0 = 2.1 to Af = 132 at R12/R0 = 2.3.
The calculations with the smaller step in R12 show that
the mass of the heavy fragment changes continuously from
Af = 140 to Af = 132. The minimum at Af = 132 appears
to be due to the strong shell effects in the heavier fragment
with the magic numbers N = 82 for neutrons and Z = 50
for protons. At large elongation the fragment gets more
spherical and the shell structure of double magic 132Sn
comes into play.

The fission fragment mass yield is obtained by solving
the quantum mechanical problem of the collective Hamil-
tonian which describes the fission process in the three di-
mensional space (3D) composed of the deformation pa-
rameters R12, a, α4 defined above.

In our calculation all transport parameters: potential
energy surface and six components of the inertia ten-
sor, were tabulated in 33915 grid points in the effec-
tive 3D spaces spanned by the R12 (0.75, 0.80, . . . , 2.45),
a (0, 0.01, . . . , 0.5), and α4 (−0.18,−0.16, . . . , 0.18) coor-
dinates. They were obtained on the basis of 515592 grid
points in the original 4D modified Cassini ovals space
(eqs. (1)–(4)) spanned by the α, α1, α4, and α6 deforma-

tion parameters. The eigenproblem of the Ĥperp Hamil-
tonian (12) was solved by the diagonalization method in
the basis of 2D harmonic oscillator wave functions from
the major shells with the phonon number smaller than or
equal to Nmax = 16.

First one has to prepare a set of the 2D mass distribu-
tion probabilities

|Ψ(a, α4;R12)|2 = |ϕ0(a, α4;R12)|2 (20)

on the plane (a, α4) by solving the eigenproblem of a corre-
sponding 2D collective Hamiltonian for fixed elongations
R12 [21]. One has to bear in mind that it is very unlikely
that fission occurs at some fixed R12 or when the sys-
tem reaches the scission line/surface. The problem is much
more complicated and one has to take into consideration
the size of the neck.

Looking at the probability distributions integrated
over α4 for 236U presented in the top part of fig. 3

w(a, R12) =

∫
|Ψ(a, α4;R12)|2dα4, (21)

one cannot see any qualitative change with respect to the
results which we have published in ref. [13] for the cal-
culation made in the (R12, a) plane. Both distributions,
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Fig. 2. (Color online) Macroscopic-microscopic PES (upper row), the relative distance component MR12R12
of the inertia tensor

(middle row), and the neck radius κ = rneck/R0 (lower row) on the (Af , α4) plane for different values of the elongation R12.

i.e. the one corresponding to Af(1) = 140 for smaller R12

and the one for Af(1) = 132 at R12 close to the scission
line are only slightly broader. So, the problem to repro-
duce the experimental distribution of fission fragments,
seen in the 2D space [13], remains also in the 3D space.
The only solution is to assume that fission occurs with a
certain probability before (or after) reaching the critical
elongation Rcrit

12 at which the liquid drop splits into two
fragments. Depending on the neck radius a fissioning nu-
cleus has to make its choice to fission or not to fission.
When it decides for fission it would leave the phase-space
of collective coordinates. Of course this is not a Hamlet
dilemma, where there is only the choice between yes or no.
We are rather faced here with a statistical problem and
the answer yes is given with a certain probability which
one then will have to take into account in the distribution
probability (20) in the phase space. The geometrical cri-
teria introduced above for the appearance of fission are in
line with the idea of the macroscopic-microscopic model
used here to evaluate the potential energy surface, where
the charged nuclear liquid drop plays a dominant role.

Following such an assumption a part of the events
(read trajectories in the Langevin approach, or distri-
butions in our quantum mechanical model) disappears
from the phase-space and leads to a kind of weighting
of the mass distribution corresponding to different elon-
gations R12. To do this one has to evaluate the neck ra-

dius in the whole 3D space. The neck radius parameter
κ = rneck/R0 is plotted in the lower row of fig. 2 on
the (Af , α4) plane for three different values of the elon-
gation parameter R12. The slight wiggles in fig. 2 are
caused by the approximate minimization with respect to
the α6 on the mesh with finite grid size. It is seen that
on average the neck radius decreases with growing R12.
For a constant R12 the neck radius varies strongly with
α4 and Af . One commonly agrees that fission takes place
when the neck radius becomes of the order of the size
of a nucleon. This is the case for κ ≈ 0.2, which is re-
alized at R12/R0 = 2.0 for α4 = −0.18; R12/R0 = 2.25
for α4 = 0, and R12/R0 > 2.5 for α4 = 0.18 and the
asymmetry parameter a ≈ 0.2. From the optimal shape
approach [18] one knows that the scission shape corre-
sponds to rneck ≈ 0.3R0 and Rcrit

12 ≈ 2.3R0. In the case of
the Cassini parametrization used in the present paper the
rneck can be somewhat smaller.

One could try to parametrize the neck-rupture proba-
bility P in the following form:

P (a, α4, R12) =
k0

k
Pneck(κ), (22)

where k is the momentum in the direction towards fis-
sion (or simply the velocity along the elongation coor-
dinate R12), while κ = κ(a, α4, R12) is the deformation-
dependent relative neck size. The scaling parameter k0
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Fig. 3. (Color online) Probability distribution (21) (top) and
the fission probability (25) (bottom) calculated at few fixed
elongations of the fissioning nucleus.

plays no essential role, and will disappear from the final ex-
pression of the mass distribution when one normalizes it.
The geometry-dependent part of the neck breaking prob-
ability is taken in the form of a Fermi function

Pneck(κ) =
(
1 + e

κ−κ0

d

)−1

. (23)

The parameters κ0 and d have to be fixed by comparing
the theoretical fission fragment mass distributions with
the experimental ones. Our goal is to fix these parameters
in a kind of universal way, independent of the specific fis-
sion reaction that one wants to investigate. The present
investigation has to be treated only as a first attempt in
this direction.

The momentum k which appears in the denominator of
eq. (22) has to ensure that the probability depends on time
in which one crosses the subsequent intervals in R12 coor-
dinates: ∆t = ∆R12/v(R12), where v(R12) = �k/M(R12)
is the velocity towards fission. The value of k depends on
the difference E−V (R12) and on the part of the collective
energy which is converted into heat Q,

�
2k2

2M(R12)
= Ekin = E − Q − V (R12). (24)

In the quantum mechanical picture the heat Q can be
replaced by the imaginary part of the collective poten-
tial [13]. In the Langevin picture the method should be
almost the same but one has also to work at least in the

3D space. In our present calculations we have put Q = 0,
i.e., we assumed a “complete acceleration” scenario: no
dissipation takes place, which is reasonable since at low
excitation energies the friction force is very week.

The M in (24) is the cranking inertia relative to the
R12 deformation parameter. In principle, we used the def-
inition of cranking inertia, but for the reasons explained
above the contributions from the diagonal matrix elements
were removed.

The fission probability w at a given R12 and a will be
given by the integral

w(a, R12) =

∫

α4

|Ψ(a, α4;R12)|2P (a, α4, R12) dα4. (25)

The dependence of the fission probability (25) on the mass
asymmetry is shown in the bottom part of fig. 3 for a
few values of R12. One observes that due to the Fermi
function in (23) the contribution of larger R12 (smaller
necks) is enhanced and contributions from smaller R12

are suppressed.
From the maps of the potential energy surface shown

in the top part of fig. 2 one observes that for R12 ≤ 2.1
the neck parameter is α4 = −0.05 while for R12 ≥ 2.2 the
minimum at the PES is at α4 = −0.15. This means that a
large part of the distribution probability |Ψ(a, α4;R12)|2
will undergo fission also at smaller elongations and one
has to subtract this part from the phase-space, i.e. to di-
minish the initial distribution by subtracting the events
which have already fissioned. The final (measured) mass
distribution of the fission fragments will be the sum of
those subtracted events.

Such an approach means that the fission process should
be spread over some region of R12 and that for given R12

at fixed mass asymmetry one has to take into account the
probability to fission at previous R12 points. I.e., one has
to replace w(a, R12) by

w′(a, R12) = w(a, R12)

⎛

⎜⎜⎝1 −

∫

R′

12
≤R12

w(a, R′
12) dR′

12

∫
w(a, R′

12) dR′
12

⎞

⎟⎟⎠ .

(26)
The effect of the replacement (26) is demonstrated in
fig. 4. It is seen there that it substantially reduces the mag-
nitude of the fission probability at large R12 as expected.

The mass yield will be the sum of all partial yields at
different R12,

Y (a) =

∫
w′(a, R12) dR12

∫∫
w′(a, R12) dR12 da

. (27)

As it is seen from (27) the scaling factor k0 in the expres-
sion for P , eq. (22), has vanished and does not appear in
the definition of the mass yield. Our model will thus only
have two adjustable parameters, κ0 and d, that appear in
the neck-breaking probability (23).
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Fig. 4. (Color online) Comparison of the fission probabili-
ties (21) (dashed line) and (26) (solid line) for a few values of
the mass asymmetry a = asymm.
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Fig. 5. Comparison of the measured mass distribution of fis-
sion fragments (points) in the reaction 235U+nth [22] with the
values (27), calculated with κ0 = 0.16, d = 0.09 (solid line).

A comparison of the measured [22] and here calculated
(eq. (27)) fission fragment mass distributions is shown in
fig. 5 for the thermal neutron-induced fission of 235U. One
can see that the calculated mass distribution is very close
to the experimental values. The double-peak structure,
the position and the relative magnitude of the peaks are
reproduced rather well.

4 Conclusions

The extended Cassini ovals deformation parameters and
the macroscopic-microscopic model (ELD plus the Woods-
Saxon single-particle potential) gives yields for 236U a PES
with an asymmetric fission valley corresponding to Af ≈
140 when the relative distance between the fragment mass
centers is smaller than R12 = 2.3R0. At larger elongations
the bottom of the fission valley is shifted towards Af ≈
132. This shift has an important consequence, it allows
to describe the second (inner) peak in the measured mass
distribution.

We have shown that the three-dimensional quantum
mechanical model which couples the fission, neck and mass
asymmetry modes is able to describe the main features of
the fragment mass distribution when the neck-dependent
fission probability is taken into account. The obtained
mass distribution is slightly shifted, by approximately 2
mass units, towards symmetric fission as compared with
the experimental mass yield, but reproduces nicely the
structure of the distribution observed in the experiment.
This shift could be partly due to a too large stiffness of
the LD energy in the mass asymmetry degrees of freedom
and/or to a lack of the nonadiabatic effects (beyond the
Born-Oppenheimer approximation) [13] which makes the
distributions slightly wider than the sole adiabatic ones.
Also the energy dissipation, not taken into account in the
present investigation, could modify somewhat the theoret-
ical distribution.
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