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a b s t r a c t

The nuclear Hamiltonian with a Yukawa-folded mean-field potential is diagonalized within the basis of a
deformed harmonic-oscillator in Cartesian coordinates. The nuclear shape is characterized by the equiv-
alent sharp surface described either by the well known Funny–Hills or the Trentalange–Koonin–Sierk
parametrizations. They are both able to describe a very vast variety of nuclear deformations, including
necked-in shapes, left–right asymmetry and non-axiality. The only imposed limitation on the nuclear
shape is the z-signature symmetry, which corresponds to a symmetry of the shape with respect to a ro-
tation by an angle π around the z-axis. On output, the computer code produces for a given nucleus with
mass number A and charge number Z the energy eigenvalues and eigenfunctions of themean-field Hamil-
tonian at chosen deformation.

Program summary

Program title: yukawa

Catalogue identifier: AEYI_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEYI_v1_0.html
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No. of lines in distributed program, including test data, etc.: 78599
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Distribution format: tar.gz

Programming language: Fortran 77.

Computer: Any PC machine.

Operating system:Windows or a system based on Linux.

RAM: bytes: 0.5 GB or more

Classification: 17.19.

Nature of problem: The full single-particle nuclear Hamiltonian composed of the Yukawa-folded central,
spin–orbit and Coulomb potentials is generated and diagonalized. The only symmetry of the problem is
the so called z-signature symmetry which limits the nuclear shapes to those, being invariant with respect
to a rotation by an angle π around the z-axis.

Solution method: The mean-field Hamiltonian is expressed in matrix form in the basis of an anisotropic
harmonic-oscillator potential written in Cartesian coordinates, where the basis parameters are adjusted
to the actual deformed nuclear shape. The eigensolutions of the Hamiltonian are determined by
diagonalization of the corresponding matrix.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
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Running time: For a nucleus of spherical shape, with the inclusion of NMAX = 14 major oscillator shells
and including the option of printing out all the eigenfunctions, one program run takes around 7 s on an
average dual-core 2 GHz notebook of 1 GB RAM memory. The same type of calculation for a complicated
non-axial left–right asymmetric shape requires around 11 s.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Oneof the basic problemsof theoretical nuclear physics consists
in getting a realistic description of the structure of the nuclear N-
particle systemas a function of its deformation. For several decades
the macroscopic–microscopic model has played a predominant role
in this context. Nowadays, microscopic approaches of the selfcon-
sistent mean-field type (Hartree–Fock, Hartree–Fock–Bogoliubov,
etc.) based on some effective nucleon–nucleon interactions have
become quite performant and have the advantage that the self-
consistent mean-field is determined by the solutions of the eigen-
value problem of the Hamiltonian. In spite of the undeniable
success of such selfconsistent mean-field methods, the macro-
scopic–microscopic approach is still useful to obtain reliable es-
timates of nuclear properties, in particular in the context of
large-scale nuclear structure calculations, where the selfconsistent
methods are oftenmuchmore time consuming. As an example one
can give by nuclear deformation-energy landscape of nuclei which
require to perform many selfconsistent mean-field calculations
under the constraint of some deformation measure, like the mass
quadrupole and higher multipolarity moments. An illustrative ex-
ample is e.g. given by the deformation-energy landscape of a nu-
cleus obtained under the constraint of themass quadrupole and/or
some higher multipole moments. To obtain such a deformation-
energy landscape in a selfconsistent method would require a very
large number of constrained mean-field calculations. To perform
such a calculation for a single nucleus but for more than two such
constraints is already very demanding, to make it for a whole nu-
clear region is a task addressed for powerful multiprocessor com-
puter clusters. To perform such calculationswithin a selfconsistent
mean-field approach is, even today, hardly possible for the average
physicist. Such a calculation is, however, often performed in the
context of the macroscopic–microscopic model as demonstrated
in Ref. [1].

The basis of such a macroscopic–microscopic method is a
liquid-drop, droplet (LD) or any othermacroscopicmodel of atomic
nuclei that is able to yield, together with the microscopic energy
corrections, to be discussed in detail below, not only realistic
nuclear masses, but also realistic nuclear energies as functions
of the shape of nuclear surface, in particular, fission barrier
heights [2]. These purely quantal-type (shell and pairing energy)
corrections are calculated for a given nucleus on the basis of single-
particle energy spectrawhichmay change considerably as function
of the nuclear shape. It is also obvious that the knowledge of the
nuclear mean-field Hamiltonian and its eigensolutions is crucial as
basis for an appropriate treatment of dynamic nuclear processes
like nuclear fission, fusion, rotations, collective excitations as giant
resonances and so on.

2. Descriptions of the nuclear surface

One of the basic problems in nuclear mean-field theory
based on the macroscopic–microscopic Strutinsky model [3]
is the adequate description of nuclear shapes. Within the
macroscopic–microscopic approach the nuclear shape is usually
understood as the presupposed shape of the surface, where for
example, the density of nucleons reaches half of its saturation
density. One should remember that density fluctuations due to
intrinsic nuclear shell structure are neglected. In addition, the
nuclear surface, defined in this way, differs, in general, from the
surface defined by themean-field potential. This point is developed
in more details in the following.

In the mean-field model study of heavy-ion reactions, of
nuclear fusion and fission phenomena, nuclear rotations and
collective vibrations, the nuclear potential energy surface (PES)
plays a key role. It is therefore clear that the parametrization
of the nuclear shape used to generate the PES needs to be both
simple and flexible, i.e. involving only a few relevant collective
deformation parameters, corresponding to degrees of freedom
that have identified from long-standing experience in this kind of
studies. Those parameters should allow for a reliable description
of the large variety of nuclear forms occurring in the description of
above quoted phenomena. For example, in the case of the nuclear
fission process, some crucial geometric degrees of freedom are the
elongation of the nucleus, the width of the neck and, for certain
regions of nuclei or nuclear deformations, themass asymmetry and
nonaxiality.

In the following nuclear shapes are described in terms of the
famous ‘‘Funny–Hills’’ (FH) [4] as well as the so-called Trenta-
lange–Koonin–Sierk’’ (TKS) nuclear shape parametrizations [5]. In
the latter, the nuclear surface is developed in the series of Legen-
dre polynomials, as explained in detail below.

2.1. Funny–Hills shapes

A very efficient parametrization of the nuclear surface, in
particular in the description of the nuclear fission process, was
proposed in Ref. [4]. It describes the axially-symmetric nuclear
surface in cylindrical coordinates as a function of three indepen-
dent parameters {A, B, α} and the twoparameters {z0, zsh}depend-
ing, in general on the above three, as:

ρ2
s (u) =


R2
0 c

2 
1 − u2 

A + αu + Bu2 , B ≥ 0
R2
0 c

2 
1 − u2 [A + αu] exp(Bc3u2), B < 0.

(1)

Above,ρs(z) is the distance of the nuclear surface from the symme-
try axis (chosen as the z-axis) and R0 is the radius of the spherical
nucleus having the same volume as the deformed one. According
to Ref. [6] we shall assume in the following that

R0 = 1.16 (1 + ϵ̄),

ϵ̄ = −0.147/A1/3
+ 0.33


N − Z

A

2

+ 0.00248 Z2/A4/3. (2)

The dimensionless coordinate u is defined as

u =
z − zsh

z0
, (3)

where z0 = cR0 is ameasure of the elongation of the nuclear shape,
such that 2 z0 is the distance between the left and right end points
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zmin and zmax. The parameter zsh ensures that the nuclear centre of
mass is always localized at z = 0, i.e.

zcm =
2π

 zmax
zmin

ρ2
s (z)z dz

2π
 zmax
zmin

ρ2
s (z) dz

=
R0c

 1
−1(1 − u2) (A + αu + B u2)u du 1

−1(1 − u2) (A + αu + B u2) du
= 0, (4)

what yields

zsh(c, α) = −
1
5
αc3 z0. (5)

In Eq. (4), the positions of end points of the (in the most general
case) left–right asymmetric shape are at zmin = −z0 + zsh and
zmax = z0 + zsh, which in the case of left–right symmetry obviously
become zmin = −z0 and zmax = z0.

The volume conservation condition

V =
4π
3

R3
0 =

 2π

0
dϕ

 zmax

zmin

dz
 ρs(z)

0
ρ dρ

= z0c2R2
0 π

 1

−1
(1 − u2)(A + αu + B u2) du (6)

allows to determine the elongation parameter c as function of A
and B as

c (A, B) =


A +

1
5
B
−1/3

. (7)

The parameter c measures simply the length of the nucleus in units
of the radius R0.

Observe that for α = 0 left–right symmetric shapes are ob-
tained and the shift parameter zsh vanishes. The meaning of the α
deformation parameter can therefore be associatedwith the asym-
metry of the shape with respect to the XOY plane, thus producing
octupole type shapes. Notice (see Eq. (7)) that the elongation c is
independent of the left–right asymmetry parameter α.

Usually, an axially-symmetric shape in the Funny–Hills
parametrization is defined bymeans of {c, h, α}parameters,where
c andα are defined above, while the parameter h, that has not been
introduced yet, can be expressed through the neck B and elonga-
tion c parameters by the relation

h(B, c) =
1
2
B −

1
4
(c − 1). (8)

It has been chosen such that h = 0 corresponds in the {c, B}
plane approximately to the average liquid-drop path to fission. The
latter corresponds to the curve in the liquid-drop deformation-
energy surface along which the liquid-drop energy is minimal for
different elongation c andwhich goes from the sphericalminimum
(c = 1, B = 0) through a saddle point towards the scission
configuration. The use of {c, h, α} deformations given as the
combinations of {A, B, α} turns out to be convenient, notably for
the description of the nuclear fission process due to their intuitive
meaning as the elongation in R0 units along z-axis, the width of the
neck (a parameter absolutely necessary to obtain the two-fragment
scission configuration) and the left–right asymmetry parameters,
respectively. The fact that, for negative B values, a slightly different
form (containing the exponential) of the shape function ρ2

s (u) has
been used in (1) is due to the fact that the purely polynomial
form turns out to be insufficient for the description of prolate,
compact and convex (diamond-like) shapes which occur near the
ground state of some (e.g. actinide) nuclei. For the description
of the nuclear fission process of e.g. transuranic nuclei, and for
substantially elongated (c ≥ 1.3) non-compact, necked-in shapes
Fig. 1. Variety of nuclear shapes that can be reproduced by the shape
parametrization of Eq. (1).

far beyond the ground state, only the polynomial form in (1) will,
however, come into play. The two definitions in (1) are, of course,
joined smoothly [4].

The large variety of nuclear shapes that can be obtained with
the nuclear shape parametrization of Eq. (1) is visualized in Fig. 1
(see also Fig. 5 of Ref. [7]).

Even if the shapes shown in these figures seem to cover a large
variety of nuclear deformations, onemay question the ability of the
shape parametrization (1) to yield deformation energies that are
close to the experiment. Through the work of F. Ivanyuk (see [8]
and references therein) we know, however, that these Funny–Hills
shapes are, indeed, very close to the so-called Strutinsky ‘‘optimal
shapes’’ that are obtained through a variational principle [9]. What
nuclear fission barriers are concerned, we also know that the
Funny–Hills shapes give an excellent description of barrier heights
in the actinide region as has been demonstrated in Ref. [10]
through liquid-drop fission barrier of 232Th obtained with the
Funny–Hills shapes, Eq. (1) and, in comparison, with an expansion
of the nuclear shape in spherical harmonics, which constitutes an
expansion in a basis that can be truncated at any order. It thus turns
out that one needs in this expansion to include terms Yℓm beyond
ℓ = 12 to obtain a description of the barrier that yields a barrier
height lower than the one obtained with the Funny–Hills shapes.

2.2. Trentalange–Koonin–Sierk shapes parametrization

The Funny–Hills shapes are described through the surface shape
function ρ2

s (z) that is given, except for diamond-like shapes, by a
fourth order polynomial in the dimensionless coordinate u = (z −

zsh)/z0 defined in Eq. (3). This can be understood as an expansion of
the function ρ2

s (u) in the basis of powers of uwhich is truncated at
fourth order. One could also imagine other basis functions for such
an expansion, like e.g. Legendre polynomials. Following this idea
presented by Trentalange, Koonin and Sierk in Ref. [5] wewrite the
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shape function ρ2
s (z) in the form

ρ2
s (u) = R 2

0

N
n=0

αn Pn(u), (9)

where the dimensionless coordinate u is given by Eq. (3) and Pn(u)
is the Legendre polynomial of the nth order. The elongation param-
eter z0 and the centre-of-mass shift parameter zsh, are defined in
the same way, as for the Funny–Hills shapes. The advantage of this
Trentalange–Koonin–Sierk (TKS) parametrization consists in the
fact that one is not limited to a given form as in (1) and that this ex-
pansion can be truncated at any orderN . Since the end points of the
shape are located at zmin = zsh−z0 and zmax = zsh+z0, one obtains,
taking advantage of the fact that Pn(1) = 1 and Pn(−1) = (−1)n,
the following relations:

α0 = −


n=2,4,...

αn and α1 = −


n=3,5,...

αn, (10)

which fixes e.g. the two lowest-order parameters. The fact that
upon deformation the shape should keep its volume fixed

V =
4π
3

R3
0 =

 2π

0
dϕ

 zmax

zmin

dz
 ρs(z)

0
ρdρ

= πR2
0

 zmax

zmin

∞
n=0

αn Pn


z − zsh

z0


dz

= π R2
0 z0

 1

−1

∞
n=0

αn Pn(u) du = 2πR2
0 z0 α0 (11)

determines the elongation parameters z0 or c through α0

z0 =
2
3
R0

α0
⇐⇒ c =

z0
R0

=
2

3α0
, (12)

where we have used the orthogonality relation of Legendre poly-
nomials 1

−1
Pℓ(x) Pℓ′(x) dx =

2
2ℓ + 1

δℓℓ′ . (13)

In the presence of deformations including odd multipolarities one
has to introduce an additional condition which fixes the position
of the mass centre of the deformed shape at the origin of the coor-
dinate system:

zcm =


V z d3r
V d3r

=
π

 zmax
zmin

ρ2
s (z) z dz

π
 zmax
zmin

ρ2
s (z) dz

= 0, (14)

what together with (9) leads to

πR2
0

 zmax

zmin

z
∞
n=0

αnPn


z − zsh

z0


dz

= π R2
0 z0

 1

−1
(z0u + zsh)

∞
n=0

αnPn(u)du = 0.

This allows to evaluate the shift zsh as

zsh = −
1
3

α1

α0
z0 = −

2
9

α1

α2
0
R0. (15)

As an example we show an explicit expression for nuclear
shapes including up to hexadecapole deformations. To that aim,
let us specifically consider {α2, α3, α4} deformations. The nuclear
shape (9) is then described by a fourth-order polynomial in u:

ρ2
s (u) = R2

0


α0 −

1
2
α2 +

3
8
α4 +


α1 −

3
2
α3


u

+


3
2
α2 −

15
4

α4


u2

+
5
2
α3u3

+
35
8

α4u4


. (16)
Some example of shapes described by Eq. (16) are presented in
Fig. 2. Using Eqs. (10) one can rewrite the last equation in a form
similar to Eq. (1):

ρ2
s (u) = R2

0(1 − u2)


−

3
2
α2 −

5
8
α4 −

5
2
α3u −

35
8

α4u2


(17)

to find, in this very special case a relation between the set of
deformation parameters of the Funny–Hills, Eq. (1) and the TKS
parametrization, Eq. (9):

A =


−

3
2
α2 −

5
8
α4


c−2

α = −
5
2
α3c−2 (18)

B = −
35
8

α4c−2.

The 4th order polynomial (17) has the following roots:

u1,2 = ±1 and u3,4 =

−4α3 ∓ 4


α3
3 −

21
5 α2α4 −

7
4α

2
4

7α4
. (19)

The first two solutions correspond to the tips of the nucleus at
u = ±1, while the next two correspond, in the case u3 = u4, to the
scission configuration which leads then to the following equation
for the scission line:

α3
3 −

21
5

α2α4 −
7
4
α2
4 = 0. (20)

When u3 ≠ u4 one may obtain either two separated fragments
with a region of negative (unphysical) ρ2

s values between them, or,
in the case of complex roots u3, u4 some unphysical shapes when
ρ(0) > 0 and u2

3,4 < 1. This last condition yields an equation
for the line which separates ‘‘allowed’’ (physical) and ‘‘forbidden’’
(unphysical) shapes.

As already mentioned above, the average liquid drop path to
fission corresponds roughly to h = 0, so that one can estimate the
parameters (αfiss.

2 , α
fiss.
4 ) along the scission line as:

α
fiss.
2 = −

2
3c

+
4
35

(c − 1)c2 (21)

α
fiss.
4 = −

4
35

(c − 1)c2.

2.3. Nonaxial case

Neither the Funny Hills, Eq. (1), nor the Trentalange–Koonin–
Sierk parametrization, Eq. (9), presented above is able, as such, to
describe three-axial shapes which appears, e.g. in some actinide
nuclei on their path to fission, in the vicinity of the first barrier. In
order to be able to consider also non-axial shapes, let us assume,
to simplify the description, that the cross section of the deformed
liquid drop perpendicular to the symmetry z-axis is of the form of
an ellipse with half axes a and b

x2s
a2

+
y2s
b2

= 1. (22)

In polar coordinates the above equation reads

ρ2
s =

a2b2

b2 cos2(ϕ) + a2 sin2(ϕ)
. (23)

One can introduce now the non-axiality deformation parameter η
defined as

η =
b2 − a2

a2 + b2
, (24)
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Fig. 2. Variety of nuclear shapes that can be reproduced by the shape parametrization of Eq. (16).
which defines the importance of the nonaxiality of the drop. In
order to keep the same volume, Eq. (6), as for the axial case, one
assumes that the value of the surface of the ellipse (22) at given z
value is independent of the parameter η, i.e.

πρ2
s = πab, (25)

where ρ2
s is given e.g. by Eq. (1) or (9). The half axis of the cross

section of the shape at given z are therefore of the form

a = ρs(z)

1 − η

1 + η

1/4

,

b = ρs(z)

1 + η

1 − η

1/4

. (26)

Finally, after exploiting the constant-volume condition (6), the
square distance of an arbitrary surface point (z, ϕ) to the z-axis
is given by

ρ 2
s (z, ϕ) = ρ2

s (z)


1 − η2

1 + η cos(2ϕ)
. (27)

The non-axiality parameter η defined in (24) could, in general,
depend on z but, to simplify the description, we assume in the
following that it is z-independent.

2.4. Ellipsoidal case for Funny–Hills shapes

For a vanishing neck parameter, B = 0, Eq. (27) describes a pure
spheroid with the following main half axes:

A = R0/
√
c

1 − η

1 + η

1/4

,

B = R0/
√
c

1 + η

1 − η

1/4

,

C = R0 c. (28)
Fig. 3. Transformation from the (β, γ ) to (c, η) coordinates for FH shapes in the
pure spheroidal case.

In the traditional quadrupole Bohr (β, γ ) parametrization these
axes are expressed as [11]

A = R(β, γ ) [1 − k cos(γ − π/3)],
B = R(β, γ ) [1 − k cos(γ + π/3)],

C = R(β, γ ) [1 + k cos(γ )], (29)

where k =


5
4π β and

R(β, γ ) = R0 ([1 − k cos(γ − π/3)] [1 − k cos(γ + π/3)]

× [1 + k cos(γ )])−1/3 . (30)

The transformations between the coordinates {c, η} and {β, γ } are
shown (both ways) in Fig. 3.
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3. Folded Yukawa density and mean-field nuclear potential

A diffuse proton and neutron density distribution can be
generated, from any sharp edged shape, in the most general way
with the help of a folding procedure presented in details in Ref. [12]
as

ρ(r⃗ ) = ρ0


V
d3r ′ g(|r⃗ − r⃗ ′

|), (31)

whereρ0 is the uniformdensity distribution and integration is over
a sharp-edge surface enclosing a volume V such that

V
ρ0 d3r = ρ0 V = N , N = N or Z . (32)

The volume V over which the above integrations extend can be
defined by any of the shape functions (1), (9) or (27), or any
other shape defined in a similar way. In this way a diffuse-
surface density distribution of arbitrary shape can be generated.
The folding function in Eq. (31) that produces such a diffuse-surface
density needs, obviously, to be normalized

∞

−∞

g (r⃗ ) d3r = 1, (33)

where integration is over the whole space. The folding function
g(|r⃗1 − r⃗2|) can e.g. be chosen to be of the form of the Yukawa
function with a width parameter a that will be of the order of the
pion Compton wavelength

g (|r⃗1 − r⃗2|) =
1

4πa3
e−|r⃗1−r⃗2|/a

|r⃗1 − r⃗2|/a
. (34)

The length of the vector |r⃗1 − r⃗2| can be expressed in cylindrical
(ρ, ϕ, z) coordinates as

|r⃗1 − r⃗2| =


ρ2
1 + ρ2

2 − 2ρ1ρ2 cos(ϕ1 − ϕ2) + (z1 − z2)2. (35)

Let us insist here on the fact that the function g (|r⃗1 − r⃗2|) should
not be misunderstood as to represent the interaction potential
between two nucleons, but rather that a short-range interaction
between the constituents of an N-particle system will generate
a density distribution with a diffuse surface, where this surface
diffuseness should be of the order of the interaction length of the
nucleon–nucleon force, i.e. of the order of 1 fm.

3.1. Coulomb potential

Having defined a diffuse-surface density and charge distribu-
tion through Eq. (31), the Coulomb interaction potential can be cal-
culated as (see, e.g. Ref. [12])

Vc(r⃗1) = e

V
d3r2

ρ(r⃗2)
|r⃗1 − r⃗2|

= e ρ0


V
d3r3


V
d3r2

1
|r⃗1 − r⃗2|

g(|r⃗2 − r⃗3|). (36)

Using the folding theorem (see, e.g. Ref. [13])
∞

−∞

d3r2 f (r⃗1 − r⃗2) g(r⃗2 − r⃗3)

=


∞

−∞

d3k f̂ (k⃗) ĝ(k⃗) ei k⃗ (r⃗1−r⃗3), (37)

where f̂ (k⃗) and ĝ(k⃗) are the Fourier transforms of f (r⃗12) and g(r⃗23),
one obtains for the Coulomb potential of Eq. (36)

Vc(r⃗1) =
4πeρ0

(2π)3/2


V
d3r3


∞

−∞

d3k
1
k2

ĝ(k) ei k⃗ (r⃗1−r⃗3), (38)
where it turns out that the Fourier transform ĝ(k) of g(|r⃗23|)
depends, because of the specific form of g(|r⃗23|), only on the
magnitude of k⃗. For the Yukawa folding function of Eq. (34) one
finds

ĝ(k) =
1

(2π)3/2

1
1 + a2 k2

(39)

which then yields for the Coulomb potential Vc of Eq. (38)

Vc(r⃗1) =
eρ0

iπa2


V
d3r3

1
|r⃗1 − r⃗3|


∞

−∞

dk
ei k⃗ (r⃗1−r⃗3)

k (k2 + a−2)
. (40)

The k-integration in the above equation can be evaluated by
contour integration in the complex plane and the residue theorem,
which then allows to write the Coulomb potential as the sum of
two terms

Vc(r⃗1) = V (sharp)
c (r⃗1) + △Vc(r⃗1), (41)

where the first terms, that yields the dominant contribution,
corresponds to the Coulomb potential of a sharp-surface density
distribution

V (sharp)
c (r⃗1) = e ρ0


V

d3r2
|r⃗1 − r⃗2|

(42)

and where the corrective term, generated by the diffuse surface, is
given by

△Vc(r⃗1) = −e ρ0


V
d3r2

e−|r⃗1−r⃗2|/a

|r⃗1 − r⃗2|
. (43)

Converting the volume integrals into surface integrals by the use of
the Gauss–Ostrogradsky theorem, one obtains explicit expressions
for V (sharp)

c (r⃗1) and ∆Vc(r⃗1) which, in addition, turn out to be
more convenient for numerical integration by the Gauss–Legendre
quadrature method used in the corresponding code

V (sharp)
c (r⃗1) = −

ρ0e
2


S
[dS⃗2 · (r⃗1 − r⃗2)]

1
|r⃗1 − r⃗2|

,

∆Vc(r⃗1) =
ρ0e
a


S
[dS⃗2 · (r⃗1 − r⃗2)]


|r⃗1 − r⃗2|

a

−3

×


1 −


1 +

|r⃗1 − r⃗2|
a


e−

|r⃗1−r⃗2 |

a


. (44)

3.2. Mean-field nuclear potential

Since the mean-field potential in which the nucleons evolve
and which is generated by their mutual interaction should have a
shape that follows the one of the nucleon density distribution, one
should be able to obtain these proton and neutron potentials by
a convolution of the nuclear density with a Yukawa-like function.
The latter can be considered here as a spin independent two-
body interaction (interaction between two infinitesimal volume
elements of a nuclear drop (see, e.g. Ref. [12]))

VN (r⃗1) =


V
d3r2 ṽ(r12)

ρ (r⃗2)
ρ0

, (45)

where

ṽ(r12) = −
V0

4πλ3

e−|r⃗1−r⃗2|/λ

|r⃗1 − r⃗2|/λ
, r12 = |r⃗1 − r⃗2|. (46)

In general, one assumes that the range λ of the Yukawa interaction
is slightly different from the range a of the folding function of
the same type used to generate the diffuse density distribution in
Eq. (31).
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Proceeding in the same way as for the Coulomb potential, one
obtains the nuclear part of the mean-field potential as the sum of
two terms

VN(r⃗1) = V (sharp)
N (r⃗1) + ∆VN(r⃗1). (47)

Converting again the spatial integrals into surface integrals
through the Gauss–Ostrogradsky theorem and remembering that
the diffuseness parameters a and λ used to generate respectively
the diffuse density and the nuclear mean-field potential are, in
general different, one obtains with r⃗12 ≡ r⃗1 − r⃗2

V (sharp)
N (r⃗1) =

V0

4πλ3


S


dS⃗2 · r⃗12


|r⃗1 − r⃗2|

λ

−3

×


1 −


1 +

|r⃗1 − r⃗2|
λ


e

|r⃗1−r⃗2 |

λ


(48)

and

∆VN(r⃗1) = −
a2

a2 − λ2
V (sharp)
N (r⃗1)

+


S


dS⃗2 · r⃗12


|r⃗1 − r⃗2|

a

−3

×


1 −


1 +

|r⃗1 − r⃗2|
a


e

|r⃗1−r⃗2 |

a


. (49)

In cylindrical coordinates (ρ, ϕ, z), the surface element dS⃗ can
be written as

dS⃗ =


1 +

1
ρ2


∂ρ

∂ϕ

2

+


∂ρ

∂z

2

ρ dz dϕ n⃗, (50)

where n⃗ is the unit vector normal to the surface at a given point
(ρ, ϕ, z)

n⃗ =


1, − 1

ρ

∂ρ

∂ϕ
, −

∂ρ

∂z



1 +

1
ρ2


∂ρ

∂ϕ

2
+


∂ρ

∂z

2
. (51)

The last two equations lead to the following form for the vector
surface element

dS⃗ =


ρ, −

∂ρ

∂ϕ
, −ρ

∂ρ

∂z


dz dϕ, (52)

where we have used the decomposition of the vector dS⃗ in the
cylindrical coordinate basis vectors


e⃗ρ, e⃗ϕ, e⃗z


.

The splitting of folded quantities like the Coulomb and
the nuclear potential into a sharp and a diffuse component is
mathematically strict, but, as was demonstrated in Ref. [12], not
really necessary since the effect of the density diffuseness can
be practically mocked up by a renormalization of the diffuseness
parameter λ of the sharp-density contribution. In addition, the
diffuse-density correction turns out to vary very slowly with the
nuclear deformation. For these reasons the diffuseness corrections
∆Vc(r⃗1) of Eq. (43) aswell as∆VN(r⃗1) of Eq. (49) are no longer taken
into account in the numerical applications of the theory developed
below.

The non-local spin–orbit component of the single-particle
mean-field potential can be generated using the central part of the
potential VN , Eq. (45), in the standard way

Vs.o. = i W (q)
s.o.


h̄

2Mc

2

∇⃗VN ·


σ⃗ × ∇⃗


, q = {n, p}, (53)

whereM is the nucleonmass and σ⃗ denotes the 2×2 Paulimatrices
(σx, σy, σz).
Table 1
Constants used in the Yukawa-folding procedure [6].

Constant Value Unit Constant Value Unit

λ 0.8 [fm] J 35.0 [MeV]
a 0.7 [fm] Q 25.0 [MeV]
Vs 52.5 [MeV] c1 3

5
e2
r0

[MeV]
Va 48.7 [MeV] M 938.9 [MeV/c2]

Following Ref. [6] we have used the following parametrization
of the depths of the central parts of the single-particle potentials
for protons and neutrons:

V p
0 = Vs + Va δ̄,

V n
0 = Vs − Va δ̄, (54)

where

δ̄ =


I +

3
8
c1
Q

Z2

A5/3


/


1 +

9
4

J
Q

1
A1/3


, I =

N − Z
A

(55)

where c1,Q and J are the dropletmodel constantswidely discussed
e.g. in [6]. Quantities Vs and Va that are called symmetric and
asymmetric potential-depth constants by the authors of Ref. [6]
are determined from considerations other than nuclear masses
(for more details, see [6] and references therein). Please also note
that the strength parameter Ws.o. of the spin–orbit field which
according to Eq. (53) is a dimensionless quantity has to be chosen
slightly differently for protons and neutrons. According to Ref. [6]
we take

W (p)
s.o. = 6.0


A

240


+ 28.0 and

W (n)
s.o. = 4.5


A

240


+ 31.5. (56)

Recall that the model constants a and λ describe the range
of the Yukawa function used to generate the nuclear charge
distribution (not further used in the following calculations) and the
central potential, respectively. The parameter λ and the spin–orbit
parameters of Eq. (56) have been determined from an adjustment
of calculated single-particle levels to experimental data for the
rare-earth and actinide nuclei for details see references in [6]. All
parameters used in the calculations are collected in Table 1.

At the end of our discussion of folded potentials, let us compare
in Fig. 4 the form of the Yukawa-folded potentials with the
correspondingWoods–Saxon potential obtainedwith the so-called
universal set of parameters [14] for nuclei in different regions
of the periodic table, namely actinide, rare-earth and light nuclei
(240Pu, 156Gd and 56Fe) always imposing spherical symmetry. One
notices that the Yukawa-folded mean field, Eq. (48), and the
Woods–Saxon central potentials are very close to each other.
A slight difference of ≈0.5 MeV is observed in the depths of
the proton and neutron wells of Pu and Gd nuclei and of about
≈1.5 MeV in Fe.

4. Diagonalization of a triaxial mean-field potential in a
harmonic oscillator basis

The knowledge of the single-particle energies and wave-
functions of an atomic nucleus is the starting point to various
nuclear-structure investigations. For the description of the average
single-particle field in the absence of spherical or axial symmetry
the Cartesian coordinate system seems to be the most suitable.
In this case all three coordinates are treated on the same footing
and, in principle, no symmetry conditions are imposed on the basis
wave-functions. Of course, in such a coordinate system the angular
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Fig. 4. Comparison of the spherical Yukawa-folded (solid line) andWoods–Saxon (dashed line) nuclear potentials of 240Pu (top), 156Gd (middle) and 56Fe (bottom) isotopes
for protons (l.h.s.) and for neutrons (r.h.s.)
momentum algebra cannot be applied directly to the resulting
wave functions even if the symmetry of the system turns out to
be accidentally spherical or axial. In the following we present the
expressions for the matrix elements of all components of the total
single-particle Hamiltonian. Recall that the Hamiltonian matrix is,
in general, Hermitian and, through an adequate choice of phase
factors, real.

4.1. Construction of the harmonic-oscillator basis states

To simplify the calculation in the absence of the above
mentioned symmetries, one generally uses the well-known
eigenfunctions of a triaxial harmonic oscillator Hamiltonian as the
basis inwhich the eigenfunctions of any givenmean-field potential
can then be developed, i.e. one starts from

Ĥh.o. =
− h̄2

2m
∆̂ +

m
2


ω2

xx
2
+ ω2

yy
2
+ ω2

z z
2


, (57)

where the ωi , i = {x, y, z} are the oscillator frequencies in the
three Cartesian directions. Its eigenvalues are given as

E(nx, ny, nz) = h̄ωx


nx +

1
2


+ h̄ωy


ny +

1
2


+ h̄ωz


nz +

1
2


(58)
and the corresponding normalized harmonic-oscillator eigenstates
as

|nx, ny, nz, Σ⟩ ≡ inyΨnx(x)Ψny(y)Ψnz (z) χ (Σ)

= iny
√
axayaz Hnx(ξ)Hny(η)Hnz (ζ ) χ(Σ) e−

1
2 (ξ2+η2+ζ 2), (59)

where χ(Σ) is the spinor with two possible choices only,
corresponding to spin up or down orientation (χ(Σ) = |↑⟩ or
χ(Σ) = |↓⟩). Here Hn is the nth order normalized Hermite
polynomial

Hn(u) =


1

√
π2n n!

H̃n(u), (60)

where the non-normalized Hermite polynomial H̃n(u) can be
obtained through

H̃n(u) = (−1)n eu
2 dn

dun
e−u2 , n = 0, 1, 2, . . . (61)

The phase factor iny in (59) is chosen to ensure the Yukawa mean-
field Hamiltonian matrix elements to be real numbers.

One can define characteristic lengths

ai =


Mωi

h̄
(62)
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in each of the three Cartesian directionswhich then allow to define
dimensionless variables

ξ ≡ a1 x, η ≡ a2 y, ζ ≡ a3 z (63)

on which the Hermite polynomial in Eq. (59) depend. The three
oscillator constants ωi can, however, not be chosen arbitrarily,
but are related by the fact that the volume of the equipotential
harmonic oscillator surface does not change with deformation. In
addition, the ratios ωx/ωz and ωy/ωz are chosen in such a way
that the surface of the deformed nucleus and the equipotential
harmonic oscillator surface are as close as possible. Calling ω0 the
oscillator frequency corresponding to the spherical shape, one has

ωx ωy ωz = ω3
0, (64)

where in numerical application a value of h̄ω0 = 41 MeV/A1/3

is generally used. This corresponds roughly to the energy spacing
between major shells in the harmonic oscillator spectrum.

Let us in the following recall a certain number of properties of
the above defined Hermite polynomials which we have used to
evaluate the different types of matrix elements in our computer
code:

H̃n+1(u) = 2uH̃n(u) − 2nH̃n−1(u), (65)

d
du

H̃n(u) = 2nH̃n−1(u). (66)

Multiplying both sides of Eq. (65) by H̃n′(u) one obtains

H̃n+1(u) H̃n′(u) = 2uH̃n(u) H̃n′(u) − 2nH̃n−1(u) H̃n′(u). (67)

In order to eliminate the undesired factor 2uH̃n′(u) on the right-
hand side of this equation we apply again Eq. (65) with index n
replaced by n′

2uH̃n′(u) = H̃n′+1(u) + 2n′ H̃n′−1(u). (68)

Introducing the normalization of Hermite polynomials H̃ and
substituting n → n′′

− 1 in Eq. (67) one finally obtains

Hn′′Hn′ =


n′ + 1
n′′

Hn′′−1Hn′+1 +


n′

n′′
Hn′′−1Hn′−1

−


n′′ − 1
n′′

Hn′′−2Hn′ . (69)

Another very useful property of normalized Hermite polynomials
(60) is their orthogonality relation

∞

−∞

Hn(u)Hn′(u) e−u2 du = δnn′ . (70)

Matrix elements of the one-body kinetic-energy operator

Tkin = T (xyz)
kin + T (zxy)

kin + T (yzx)
kin (71)

in the basis of the triaxial h.o. potential can be easily derived
analytically between states of the same spin projections Σ with
the help of relations (65)–(70):

⟨n′

x, n
′

y, n
′

z, Σ ′
| T (xyz)

kin | nx, ny, nz, Σ⟩

= δΣ ′Σ


h̄ωz

1
2


nz +

1
2


δnzn′

z
−

1
4


nz(nz − 1) δnz−2,n′

z

−
1
4


n′
z(n′

z − 1) δnz ,n′
z−2


δnxn′

x
δnyn′

y


, (72)

where the matrix elements of the other two terms in (71) are
calculated by cyclical variation of indices (x, y, z) in Eq. (72),
i.e. (x, y, z) → (z, x, y) → (y, z, x).
Let us now calculate thematrix elements of the localmean-field
potential Vsp which can be any local potential (VN , Eq. (45), or Vc ,
Eq. (36)), of arbitrary shape

⟨n′

x, n
′

y, n
′

z, Σ ′
| Vsp | nx, ny, nz, Σ⟩

= ⟨n′

x, n
′

y, n
′

z | Vsp | nx, ny, nz⟩ δΣ ′Σ , (73)

where

⟨n′

x, n
′

y, n
′

z | Vsp | nx, ny, nz⟩

= i(n
′
y−ny)


∞

−∞

dξ e−ξ2 Hn′
x
(ξ)Hnx(ξ) ·

×


∞

−∞

dη e−η2 Hn′
y
(η) Hny(η)

·


∞

−∞

dζ e−ζ 2
Hn′

z
(ζ ) Hnz (ζ ) V (ξ , η, ζ ). (74)

The largest part of the abovematrix elements can be calculated re-
cursively by virtue of the relation (69) and using the orthogonality
relation (70). The matrix elements of the single-particle potential
Vsp can then be rewritten as

⟨n′

x, n
′

y, n
′

z | Vsp | nx, ny, nz⟩

=


n′
z + 1
nz

⟨n′

x, n
′

y, n
′

z + 1 | Vsp | nx, ny, nz − 1⟩

+


n′
z

nz
⟨n′

x, n
′

y, n
′

z − 1 | Vsp | nx, ny, nz − 1⟩

−


nz − 1
nz

⟨n′

x, n
′

y, n
′

z | Vsp | nx, ny, nz − 2⟩. (75)

Similar relations can be derived for recursion in the x and y
direction.

In the code one can immediately identify, simply by studying
the parity of the integrand in Eq. (74), the matrix elements which
are, by the parity symmetry conditions, equal to zero. As an
example let us take a potential which is symmetric with respect
to the z-axis (not necessarily strictly axially symmetric). As a
consequence, a certain number of matrix elements vanish due to
the fact that Vsp in Eq. (74) is then an even function in x-direction
(V (x, y, z) = V (−x, y, z)) and one obtains a zero result if the sum
of quantum numbers (n′

x +nx) of the basis states turns out to be an
odd number. A similar reasoning can be applied to the two other
(y and z) directions.

Let us now come to the description of the term in the
Hamiltonian which couples the spin and the orbital motion in
the quantum system, referred to as the spin–orbit potential. This
potential, as given in Eq. (53) for the two nucleon charge states
(n and p), can be obtained from the respective nuclear central
potential, so that this potential can be rewritten, after obvious
algebraic transformations, as a linear combination of products
involving spatial and spin operators in the following form:

Vs.o. = i Ws.o.


h̄

2Mc

2 
σ̂x

∂Vsp

∂z
∂y −

∂Vsp

∂y
∂z


+ σ̂y

∂Vsp

∂x
∂z −

∂Vsp

∂z
∂x


+ σ̂z

∂Vsp

∂y
∂x −

∂Vsp

∂x
∂y


. (76)

Keeping in mind that the spin–orbit potential is different for
protons and neutrons (see, Eq. (53)), the charge index q is omitted
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in what follows and one can simply write

⟨n′

x, n
′

y, n
′

z, Σ ′
| Vs.o. | nx, ny, nz, Σ⟩ = i Ws.o.


h̄

2Mc

2

·


⟨n′

x, n
′

y, n
′

z, Σ ′
|σ̂x

∂Vsp

∂z
∂y −

∂Vsp

∂y
∂z


|nx, ny, nz, Σ⟩

+ ⟨n′

x, n
′

y, n
′

z, Σ ′
| σ̂y

∂Vsp

∂x
∂z −

∂Vsp

∂z
∂x


| nx, ny, nz, Σ⟩

+ ⟨n′

x, n
′

y, n
′

z, Σ ′
|σ̂z

∂Vsp

∂y
∂x −

∂Vsp

∂x
∂y


|nx, ny, nz, Σ⟩


. (77)

For further applications it is convenient to express the Cartesian
spin operators {σ̂x, σ̂y, σ̂z} in terms of the ladder operators

σ̂+ = (σ̂x + iσ̂y), σ̂− = (σ̂x − iσ̂y), σ̂0 = σ̂z, (78)

which act on the spin part of the general wave function in the
following way:

σ̂+ |↓⟩ = |↑⟩, σ̂−|↓⟩ = 0 , σ̂z |↓⟩ = |↓⟩,

σ̂+ |↑⟩ = 0 , σ̂− |↑⟩ = |↓⟩, σ̂z |↑⟩ = |↑⟩. (79)

Since the partial derivatives of an arbitrary local potential, that
appear in (77), can, in the general case, not be determined
analytically, it is convenient to perform in (77) an integration
by parts that generates some partial derivatives of the basis
wave functions. Keeping in mind that these wave functions Ψn(u)
vanish at infinity, one finds together with the explicit form of the
derivative of the Ψn relations like
dΨnx(axx)

dx
= Nnx

√
ax


ax H ′

nx−1(axx) − a2x x Hnx(axx)

e−

1
2 a

2
x x

2

= ax


nx

2
Ψnx−1(x) −


nx + 1

2
Ψnx+1(x)


(80)

which yields

⟨n′

x, n
′

y, n
′

z, Σ ′
| Vs.o. | nx, ny, nz, Σ⟩

=
i
2
Ws.o.


h̄

2Mc

2
⟨Σ ′

|σ+|Σ⟩B−

+ ⟨Σ ′
|σ−|Σ⟩B+ + 2⟨Σ ′

|σz |Σ⟩Bz


, (81)

where

B± ≡ Bx ∓ By, (82)

with

Bx =
1
2


1 − (−1)n

′
y+ny


ayaz

×


−


n′
z(ny + 1)


n′

x, n
′

y, n
′

z − 1, |Vsp|nx, ny + 1, nz


−

ny(n′

z + 1)

n′

x, n
′

y, n
′

z + 1, |Vsp|nx, ny − 1, nz


+


n′
y(nz + 1)


n′

x, n
′

y − 1, n′

z, |Vsp|nx, ny, nz + 1


+


nz(n′

y + 1)

n′

x, n
′

y + 1, n′

z, |Vsp|nx, ny, nz − 1


,

By =
1
2


1 + (−1)n

′
y+ny


axaz

×


−


n′
x(nz + 1)


n′

x − 1, n′

y, n
′

z, |Vsp|nx, ny, nz + 1


−

nz(n′

x + 1)

n′

x + 1, n′

y, n
′

z, |Vsp|nx, ny, nz − 1


+

n′
z(nx + 1)


n′

x, n
′

y, n
′

z − 1, |Vsp|nx + 1, ny, nz


+

nx(n′

z + 1)

n′

x, n
′

y, n
′

z + 1, |Vsp|nx − 1, ny, nz


, (83)
Bz =
1
2


1 − (−1)n

′
y+ny


axay

×


−


n′
y(nx + 1)


n′

x, n
′

y − 1, n′

z, |Vsp|nx + 1, ny, nz


−


nx(n′

y + 1)

n′

x, n
′

y + 1, n′

z, |Vsp|nx − 1, ny, nz


+

n′
x(ny + 1)


n′

x − 1, n′

y, n
′

z, |Vsp|nx, ny + 1, nz


+

ny(n′

x + 1)

n′

x + 1, n′

y, n
′

z, |Vsp|nx, ny − 1, nz


.

As one can see from Eq. (81), the terms in the spin–orbit
interaction, that are proportional to B− and B+, couple only
antiparallel spin states, whereas those containing Bz acts between
states of parallel spin orientation. This is different from the case
of the central potential which gives non zero contributions only
between states of the same spin projection. This unique feature of
the spin–orbit potential leads to thewell-knownenergy splitting of
each single-particle level (except for s-states) into two levels of the
same orbital angular momentum but opposite spin orientations.

In order to build the full matrix of the central potential
recursively it is enough to calculate numerically all diagonal
matrix elements, as well as a few of those off-diagonal matrix
elements which, for certain combinations of {nx, ny, nz}, cannot
be determined by recursion. The number of such elements adds
up to only a few percent of the total. The rest of the off-diagonal
matrix elements are determined in successive, parallel lines to
the main diagonal of the matrix. After the computation of the
average-potential matrix elements, one has to do the same for the
spin–orbit potential with the help of the relation (81).

It is also possible to calculate them purely recursively under the
condition that one first calculates a few additionalmatrix elements
of the central potential for which nx + ny + nz = Nmax + 1,
(where Nmax denotes the cut-off condition referring to the number
of spherical oscillatormain shells used in the expansion of the total
wave function).

4.2. Matrix representation of the mean-field Hamiltonian in the case
of z-signature symmetry

Let us recall that the formalism presented in the previous
subsection is valid for an arbitrary potentials without imposing
any additional spatial symmetry, only requiring time-reversal
symmetry.

Let us now restrict the class of nuclear shapes to those charac-
terized by the so-called z-signature symmetry, R̂z , corresponding to
a rotation by an angle π about the z-axis. Requiring the invariance
of the potential V (x, y, z) with respect to the R̂z operation, one ob-
tains

V (x, y, z) = V (−x, −y, z). (84)

The two above presented shape parametrizations, the Funny–Hills
and the Trentalange–Koonin–Sierk shapes (see Sections 2.1 and
2.2) have in the case of a spheroidal section perpendicular to the z-
axis (see Section 2.4) exactly this symmetry. One could, of course,
imagine a vast variety of other geometrical shapes for which the
condition (84) is also valid.

The action of R̂z on spin states |s =
1
2 , Σ =

1
2 ⟩ ≡ |+⟩ and

|s =
1
2 , Σ = −

1
2 ⟩ ≡ |−⟩ yields

e−iπΣ/h̄
|+⟩ = (−i)|+⟩, e−iπΣ/h̄

|−⟩ = (+i)|−⟩. (85)

The quantum number associated with this symmetry, can there-
fore be given in the simplified form as [15]

rz = (−1)nx+ny Σ

|Σ |
, (86)
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where Σ is the projection {1/2, −1/2} of the spin onto the
quantization z-axis. Notice that we do not impose any limitations
concerning the symmetry of the shape in z-direction. Then rz given
by (86) as the only good quantum number of our eigenvalue
problem, splits the Hamiltonian matrix into two identical blocks
with rz = 1 and rz = −1, respectively.

Hence, it will be sufficient to diagonalize only one of these
blocks and, according to theKramer’s theorem, every state can then
be occupied by two particles. We can therefore conclude that the
here discussed symmetry transformation contains already the time
reversal operation. Schematically the Hamiltonian matrix may be
presented as (with e.g. | bodd ↑⟩ denoting the basis state (59) for
which nx+ny is an odd number with spin projection+1/2, marked
symbolically by |↑⟩):

By analogy, the meaning of the three other types of basis states
is obvious. The quantities Vcentr and Vs.o.;ν are given respectively by
Vcentr = Vkin + VN for neutrons and Vcentr = Vkin + VN + VCoul for
protons, while Vs.o.;ν , (ν = {1, 2, 3}) corresponds to the spin–orbit
term, entering Eq. (81), proportional respectively to Bx, By, Bz .
Keeping in mind the above reasoning, we conclude that the upper-
left and the lower-right blocks of the full matrix must be identical,
i.e. must have the same eigensolutions.

4.3. Numerical accuracy of the calculations

The primary source of error in calculating the single-particle
energies and wave functions is the truncation of the harmonic
oscillator basis expressed in terms of the maximum number
Nmax (or NMAX as used in the code) of oscillator shells taken
into account. Integration errors involved in the calculation of the
matrix elements, folding of the potential and diagonalization of the
Hamiltonian matrix can, in practice, be made negligibly small as
compared to this truncation error.

The strongly bound single-particle state, lying close to the
bottom of the potential well, converges for NMAX ≥ 14 oscillator
shellswithin thewhole deformation range, as shown in the bottom
part of Fig. 5, whereas the state lying substantially above the
Fermi surface converges only for NMAX ≥ 18 shells (note
that in numbering of single-particle states the two-fold Kramer’s
degeneracy is taken into account).

We can state therefore that the unbound levels from the
energy-continuum approach to zero energy as the basis becomes
infinite. This statement is true since we know that any positive
energy is a solution of the Schrödinger equation. In order to
simulate the energy continuum the density of the unbound
levels must approaches infinity what is possible only when the
basis is going to be infinitely large. Thus, levels calculated with
a finite basis do not represent strictly speaking any physical
resonant states. Nevertheless, they are often used to calculate the
microscopic (shell and pairing) energy corrections which require
the knowledge of levels, also above the Fermi level.

Since for practical applications an upper limit of the number
of oscillator basis states is required, we introduce a so called
‘‘energy cut-off ’’ parameter Ecutoff expressed in terms of the average
Fig. 5. Convergence of a loosely bound proton state as function of the deformation
parameter c and the oscillator shell number NMAX in a 232Th nucleus (top) and for
a strongly bound proton state (bottom).

distance between major oscillator shells ∆Eshell = h̄ω0, and the
energy of the last effective oscillator shell numbered by Ncutoff (or
NCUT in the code). Both these quantities are related by

Ecutoff = Ncutoff h̄ω0 = Ncutoff h̄(ωxωyωz)
1/3, (87)

where ωi, i = {x, y, z} are the respective oscillator frequencies
in x, y and z direction of Eq. (64) and ω0 denotes the frequency
of the corresponding spherical oscillator as explained in the
previous section. The quantities ωi, determined in the subroutine
OMEGAS, called by the YUKA subprogram, play the role of the basis
parameters.

In connection with the cut-off energy, one introduces another
important parameter NMAX which is part of the PARAMETER
statement of the three subroutines YUKA, VTOTAL and RNEWMA.
This quantity corresponds to the number of the highest spherical
oscillator shell included in the calculation, thus determining
the maximal total number of basis states NDEG that are taken
into account. That number, determined by NMAX, neglecting the
Kramer’s degeneracy is given as

NDEG(NMAX) =
1
6

(NMAX + 1)(NMAX + 2)(NMAX + 3). (88)

The test choice made in our computer code is NMAX = 14 and
corresponds to NDEG(14) = 680 basis states. The quantity NDEG
represents themaximal number of basis states, taking into account
the fact that this number can still be reduced since a certain
number of these states might have energies beyond the cut-off
energy introduced in Eq. (87) and will therefore not be taken into
account in the calculation. As seen in Table 2, the actual number
NDIAG of basis states that are really included in the calculation
is evidently, due to the cut-off condition, smaller or equal to
NDEG. It is clear that the number of such ‘‘out-of-bounds’’ states
increaseswith increasingNMAX.On the contrary, somebasis states
corresponding to higher oscillator shells might have their energy
come down substantially with increasing deformation and one has
to be very cautious, not to artificially eliminate physically relevant
basis states by a too small choice of NMAX.

For a given nuclear deformation, one can decide, according
to the energy of the eigenstate, Eq. (58), about the order of the
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Table 2
Dimension of the basis NDIAG as function of oscillator shell number NMAX and deformation parameter c.

c Dimension of the basis NDIAG
NMAX = 10 NMAX = 12 NMAX = 14 NMAX = 16 NMAX = 18 NMAX = 20

0.8 286 455 680 968 1262 1462
1.0 286 455 680 969 1292 1534

1.2 286 455 680 959 1248 1492
1.4 286 455 679 939 1195 1408

1.6 286 455 673 912 1141 1328
1.8 286 455 664 886 1093 1264

2.0 286 453 649 847 1025 1174
2.2 286 448 632 813 973 1112
harmonic-oscillator eigenstates, which are defined through the
set of quantum numbers {nx, ny, nz}. Arranging these basis states
by increasing energy, one defines arrays NX(n), NY(n), NZ(n) of
dimension NDIAG that attribute to the nth oscillator eigenstate the
corresponding quantum numbers, until the total number NDEG of
basis states is reached, i.e. such that for all states that are included
in the diagonalization nx + ny + nz ≤ NMAX + 1. It could now
very well happen, in particular for very large deformations, that,
due to the values of the oscillator constants ωx, ωy, ωz some basis
states do not longer fulfil the cut-off condition (87), and should
therefore not be included in the list of basis states that are used to
diagonalize the mean-field Hamiltonian. On the other hand, some
of these states are needed for a complete construction of all of the
matrix elements, via the recurrence relations given in Section 4.1.
That is why a second ensemble of arrays NXR(n), NYR(n), NZR(n)
is defined that, in contrast to the above mentioned fields NX(n),
NY(n), NZ(n), do not contain those basis states that fail to fulfil
the cut-off condition (87). It is therefore the single-particle states
defined by the quantum numbers NXR(n), NYR(n), NZR(n) that
define the basis in which the diagonalization of the Hamiltonian
matrix is carried out.

It is obvious from what has been said above that the
resulting eigensolutions of our problem are becoming practically
independent on the specific choice of the oscillator frequencies ωi
if NMAX is chosen larger and larger. It is, indeed, clear that for
NMAX → ∞, this basis is going to be complete for any choice of
the ωi. Thus one will be able to expand any eigenstate in that basis.
We have, however, concluded studying Fig. 6 that to obtain an
acceptable convergence of the eigensolutions within a wide range
of the here considered quadrupole, octupole and hexadecapole
deformations, e.g. from oblate, through prolate shapes up to
the scission configurations, the number of oscillator shells for
the states around the Fermi surface should be chosen at least
NMAX = 14. For the heaviest elements, where the number of
occupied single-particle states is getting still larger, one might
have to further increase NMAX. Please, keep in mind that the
diagonalization time is crudely proportional to the third power of
NDIAG, the solution of the eigenvalue problem takes, depending
of course on the algorithm used, about one order of magnitude of
computing timemore forNMAX = 20 than it does forNMAX = 14.

Once the basis states are prepared, the nuclear and the Coulomb
potentials are calculated through the subroutine POTENTIAL and
stored at the Gauss–Hermite (GH) mesh points x(GH)

i determined,
together with the corresponding weights w

(GH)
i as function of

the number NGH of Gauss–Hermite integration points by the
subroutine GAUHER. Let us recall here that the Gauss–Hermite
quadrature approximates the integral of any integrable function
f (x) on the interval (−∞, +∞) in the following form


+∞

−∞

f (x)e−x2dx ≈

NGH
i=1

w
(GH)
i f (x(GH)

i ). (89)
It should be noted that the Gaussian factor of the basis function
(59), does not appear explicitly in the code, but is already contained
in the used Gauss–Hermite quadrature weights {w(GH)

}. Let us in-
sist here on the fact that the number of Gauss–Hermite integration
points NGH needs to be sufficiently large to obtain an acceptable
accuracy of the calculated integrals. In Fig. 7 the convergence of
the four proton and neutron single-particle states close to Fermi
surface is shown as a function of the number of Gauss–Hermite in-
tegration nodes NGH and the nuclear elongation c.

Taking into account that the GH quadrature of order NGH is
able to calculate accurately the integral of any polynomial of
order 2NGH + 1 with a Gaussian fall-off, one can conclude that
the knowledge of a minimal number of 2NMAX + ∆NGH mesh
points is required. Here NMAX refers to the highest order of a
Hermite polynomial appearing in the product basis state (59) in
any of the three Cartesian directions. The fact that the central
potential appearing in the matrix elements (74) is almost flat in
the interior region that extends over 3.5–5 fm in light and 5–7 fm
in heavy nuclei and then goes rapidly to zero over a distance of
approximately 1 fm as seen in Fig. 4, such a behaviour is practically
impossible to describe by a combination of low-order Hermite
polynomials. We therefore conclude studying Fig. 7 that ∆NGH
needs to be sufficiently large. For all studied nuclei, in particular for
heavy nuclei, like those in the actinide region, with deformations
extending over the whole range 0.8 ≤ c ≤ 2.0, reliable results can
be obtained with ∆NGH ≈ 12.

Notice that, in contrast to the well-known phenomenological
mean-field in the formof, e.g. Nilsson potential, which can be easily
determined analytically, the Yukawa-folded potential is defined, in
general, by a triple spatial integral over the product of a nuclear
density and the Yukawa-folding functions (see, Eq. (45)). For such
a form of a volume integral, the Gauss–Ostrogradsky theorem
can be applied in order to transform the volume into a two-
dimensional surface integral. In our computer code such two-
dimensional integrals with finite lower and upper boundaries, xl
and xu respectively, are solved numerically by means of a standard
Gauss–Legendre (GL) quadrature, with NGL mesh point, which for
an arbitrary integrable function g(x) can be written as xu

xl
g(x) dx ≈

NGL
i=1

w
(GL)
i g(x(GL)

i ), (90)

where x(GL)
i are the GL mesh points and w

(GL)
i the corresponding

weights supplied by the subroutine GAULEG.
Finally, it is worth mentioning that a minor numerical problem

appears while integrating terms that include |r⃗1 − r⃗2| expression,
as it shows up both in the Coulomb (44) and in the Yukawa-folded
potential (45). In the case when r⃗1 is close to r⃗2, the expression
|r⃗1 − r⃗2| has a kind of kink which is practically impossible to
reproduce, within the Gauss–Legendre quadrature method (90),
by a linear combination of Legendre polynomial of reasonably low
order. To avoid numerical inaccuracy associatedwith that problem,
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Fig. 6. Behaviour of neutron (N (n)
f − 2)th (l.h.s. top) and proton (N (p)

f − 2)th (l.h.s. bottom) single particle states in 232Th isotope as function of deformation parameter c

and oscillator shell number NMAX with the use of NGH = 48 GH integration nodes. The same is shown for neutron (N (n)
f + 2)th and proton (N (p)

f + 2)th states in the r.h.s.

top and bottom panels. Quantities N (n)
f and N (p)

f correspond respectively to (A − Z)th and Zth neutron and proton single-particle state.
Fig. 7. Accuracy of determination of neutron (N (n)
f − 2)th (l.h.s. top) and proton (N(p)

f − 2)th (l.h.s. bottom) single particle state respectively in 232Th isotope as function of

deformation parameter c and number of Gauss–Hermite integration nodes NGH for NMAX = 18 shells. The same is plotted for neutron (N(n)
f + 2)th and proton (N (p)

f + 2)th

states in the right panel. Meaning of N (n)
f and N (p)

f as in caption to Fig. 6.
one splits the total integration interval in each surface point, where
r⃗1 = r⃗2 into two sub-intervals. This operation has in particular
been applied for the domain in the vicinity of nuclear surface. On
the other hand, for all contributions, where |r⃗1 − r⃗2| is large, the
factor exp(−|r⃗1 − r⃗2|/a) will be so small that their contribution to
the total integral is practically negligible.

5. Input and output description

The input to the yukawa.f program is contained in the file
yukawa.inp. Having compiled the code yukawa.f one can execute
it using, e.g. the command ./yukawa< yukawa.inp> yukawa.out
in the Linux command line. Input parameters are read from that file
using theNAMELIST/YPAR/ andNAMELIST/DANE/. Further on, they
are transmitted to the main subroutine YUKA in COMMON blocks.

In the first namelist YPAR, the basic parameters of Table 1,
determining the Yukawa-folded and spin–orbit potentials are
collected. On the basis of the latter, the rest of necessary
parameters are calculated through Eqs. (54)–(56).

In the DANE namelist are collected those constants which can
be freely changed, namely the nuclear charge ZNUC, the mass
number ANUC of the considered nucleus and its deformations.
The input parameter IFH selects between the Funny–Hills (IFH =

1) C,H,ALPHA and the Trentalange–Koonin–Sierk (IFH = 2)
ALPH(1:NDTKS) shapes. The parameter NDTKS gives the number
of TKS deformation parameters used in Eq. (9). Notice that the ETA
deformation parameter describing nonaxial nuclear deformations
is common for both the deformation-parameter sets. The input
parameter IWF decides whether only energy eigenvalues (IWF =

0) of the Yukawa mean-field Hamiltonian, or eigenvalues and
eigenvectors (IWF = 1) are generated.

The main parameters of the program, i.e. NMAX, NH, NDTKS as
well as the numbers of the Gauss–Legendre integration nodes NG1,
NG3 used to generate the Yukawa-folded and Coulomb potentials



A. Dobrowolski et al. / Computer Physics Communications 199 (2016) 118–132 131
Fig. 8. Block diagram showing the organization of the yukawa program.
are put in PARAMETER statements in /yuk-sizesdirectory. They are
called in individual subroutines by INCLUDE statement.

The parameter NCUT, corresponding to the quantity Ncutoff
appearing in Eq. (87), denotes the maximum number of oscillator
shells taken into account and determines the energy cut-off (87)
beyond which no basis state is included in the diagonalization
procedure. If the NCUT parameter is chosen sufficiently large,
e.g. 100 or higher, then there is effectively no cut-off condition that
allows to limit the number of oscillator basis states. A reasonable
choice of NCUT is however already given by NCUT = 12.

The output appearing at the screen and copied to the file
levels.dat contains, apart from the potential parameters of both
namelists, the proton and neutron eigenenergies of the mean-field
Hamiltonian printed in five columns. For a total number of NDX en-
ergy eigenvalues to be printed out, these are arranged, separately
for protons and neutrons, in a field of 5 columnswith NDX/5 eigen-
values each. In the attached output, NDX = 200was chosen but its
value can be adjusted freely by the user. If the parameter IWF is set
to IWF = 1, also all NDIAG normalized orthogonal eigenvectors are
printed out into the file eigenfunctions.dat. Such an eigenvector
is uniquely determined by giving the expansion coefficients of that
state in the basis states of Eq. (59). These expansion coefficients
VR(i, k) give the contribution of basis state i to the eigenvector k
according to the relation

Ψk(x, y, z) =

NDIAG
i=1

VR(i, k) | nx(i), ny(i), nz(i), Σ(i)⟩. (91)

If for a certain reasons the explicit shape of the nth eigenstate
Ψn(x, y, z) is required, it can easily be constructed in this way.

Let us conclude by giving the reader an idea about the involved
computation times:
For the eigensolutions of 208Pb nucleus of spherical shape, with
NMAX = 14 oscillator shells, the FH shape parametrization (IFH =

1) and the option (IWF = 1) of printing out the eigenvectors to the
file eigenfunctions.dat requires about 7 s on an average dual-core
2 GHz notebook of 1 GB RAMmemory.

The same kind of input, but for a rather complicated non-axial
left–right asymmetric shape, as given e.g. by the FH parameters
C = 1.4, H = 0.20, ALPHA = 0.3, and ETA = −0.15 requires
approximately 11 s. Similar CPU times are obtained with the TKS
shape parametrization.

6. Structure of the program

The program yukawa.f is coded in Fortran 77 with a double-
precision representation of real numbers. Complex numbers do not
appear in the entire program. This code of about 1770 lines long is
composed of ten subroutines and two functions. The structure of
the program is presented in Fig. 8.

7. Summary

The main purpose of the present work, and of the simple com-
puter code that comes along with it, is the diagonalization of a
single-particleHamiltonianwith amean-field potential that is gen-
erated by a well known Yukawa-folding procedure, that has been
applied successfully for over forty years now. The eigenvalue prob-
lem is solved in Cartesian coordinates by an expansion of the eigen-
vectors in the basis of a deformedharmonic oscillator. In its present
form, the code is particularly destined to describe predefined elon-
gated, necked-in, left–right asymmetric non-axial nuclear config-
urations, where the only imposed symmetry on the mean field is
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the time reversal and the so-called z-signature symmetry. As al-
ready said, such kind of shapes occur in various nuclear processes,
such as ground-state properties, giant resonances, as well as in
any large-amplitude collective motions, like nuclear fission, fu-
sion and heavy-ion reactions. The nuclear shapes are defined in
cylindrical coordinates (but still allowing for non-axial deforma-
tions) by the Funny–Hills or the Legendre polynomial expression,
referred here as Trentalange–Koonin–Sierk shapes. These shape
parametrizations have proven to be flexible for the description of
axial nuclear shapes along the path to fission, comparably with the
widely used expansion in spherical harmonics (see e.g. [16] with
maximum multipolarity λ = 7). As commonly known, the latter
workswell for nuclear shapes close to the ground state, but require
too many deformation parameters for configurations close to the
scission points.

Let us mention, however, that any shape parametrization could
be easily incorporated into our code. In its present form, our
code has the advantage that it practically does not impose any
complicated symmetry restrictions, except time reversal and z-
signature symmetry, as mentioned above.

The use of a nuclear Hamiltonian with a mean-field potential
obtained by a Yukawa-folding procedure ensures not only that
the volume of the nucleus is automatically conserved when
the nucleus is deformed, a condition which would otherwise
necessitate a normalization of the potential at each deformation
which is always quite time-consuming in large-scale calculations.
It also guarantees in addition a kind of selfconsistency between
the nuclear density and the nuclear mean-field potential that
generates the density, but which in turn, is determined by it, an
effect that is not present in the competitive non-selfconsistent
mean-field approaches.

Studying the structure of the code it becomes obvious that
both the POTENTIAL and the RHO2Z subroutines, describing
respectively the central potential as well as the nuclear surface
shape, can easily be extended by adding other definitions of
the central field and/or the nuclear shape, keeping the rest of
the routines untouched. One has, however, to remember that
any new surface parametrization that is incorporated into the
program should always be able to generate shapes which show the
required symmetries, i.e. time reversal and z-signature, otherwise
more fundamental modifications of the code would be necessary.
The other parts of the code, in particular the construction of
the harmonic-oscillator basis states, the decomposition of the
eigenstates of the Hamiltonian in the basis, the calculation of
the resulting matrix elements and, finally, the diagonalization
of the Hamiltonian, are completely general and could be used
in connection with any nuclear shape and any analytically or
numerically expressible mean-field potential.
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