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Abstract: Potential energy surfaces and fission barriers of superheavy nuclei are analyzed in a macroscopic-micro-
scopic model. The Lublin-Strasbourg Drop (LSD) model is used to obtain the macroscopic part of the energy,
whereas the shell and pairing energy corrections are evaluated using the Yukawa-folded potential; a standard flood-

ing technique is utilized to determine barrier heights. A Fourier shape parametrization containing only three deform-

ation parameters is shown to effectively reproduce the nuclear shapes of nuclei approaching fission. In addition, a

non-axial degree of freedom is taken into account to better describe the structure of nuclei around the ground state

and in the saddle region. In addition to the symmetric fission valley, a new highly asymmetric fission mode is pre-

dicted in most superheavy nuclei. The fission fragment mass distributions of the considered nuclei are obtained by

solving 3D Langevin equations.
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I. INTRODUCTION

Theoretical studies of the properties of superheavy
nuclei (SHN) are of great importance as validation with
experimental data offers a stringent test for any nuclear
model. Most nuclear theories can produce a fair descrip-
tion of mass and other properties of nuclei near the 3-sta-
bility line; however, their predictions often deviate for
nuclei far from stability, e.g., in the SHN region. The pre-
dictive power of these theoretical approaches not only
aids in better understanding the relevant physics but also
plays an essential role in guiding the challenging experi-
mental quest for the so-called SHN island of stability and
the limits of existence of bound nuclei.

Superheavy nuclei [1,2] with a charge number Z of up
to 118 have been produced by two types of fusion reac-
tions. The first is cold fusion at GSI, Germany [3,4], and
RIKEN, Japan [5], which uses the doubly magic target
208 Pb or its neighbour 2%’ Bi; the second is hot fusion with
the *8Ca projectile at JINR Dubna, Russia, and Liver-
more Nat. Lab., USA [6,7]. Further attempts to synthes-
ize Z = 119,120 isotopes are in progress, (see [8,9]). Sev-
eral theoretical studies were also performed in the past
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years to investigate the properties, possible decay modes,
and fission fragment mass yields [10-16], as well as the
synthesis possibility of nuclei in this region [17-20].

This study is a continuation of our work on the fis-
sion fragment mass yields of even-even Ra-Th and actin-
ide nuclei [21-23], in which we presented a macroscopic-
microscopic (mac-mic) model based on the Lublin-Stras-
bourg Drop (LSD) formula [24] and demonstrated that
the Yukawa-folded single-particle potential [25] effect-
ively describes fission barrier heights and fission frag-
ment mass yields (FMY). In the present study, we aim to
predict the fission barrier heights and FMY of SHN us-
ing the same set of model parameters. The calculation is
performed in 4D Fourier deformation parameter space
[26,27].

The Born-Oppenheimer+Wigner model used in Ref.
[22] is not expected to describe a situation with two com-
peting fission modes. Therefore, in this study, we evalu-
ate FMY by solving 3D Langevin equations, similar to
that in Ref. [23] done for some actinides. This alteration
is because, in some isotopes of SHN, our mac-mic model
predicts two well-separated fission valleys: one corres-
ponding to symmetric fission and the other correspond-
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ing to asymmetric fission, which leads to heavy frag-
ments around 2% Pb.

This paper is organized in the following way. Section
II presents details of the theoretical models used in the
present study, Section III shows the collective potential
energy surface evaluated within the mac-mic model for
the selected isotopes and our fission barrier height estim-
ates, Section IV contains the estimated FMY, and conclu-
sions and perspectives from further investigations can be
found at the end of the paper.

II. THEORETICAL MODEL

The potential energy surfaces (PES) of fissioning nuc-
lei are studied within the mac-mic model in four-dimen-
sional space built on deformation parameters describing
the elongation, left-right asymmetry, neck, and non-axial-
ity of the nucleus. A detailed study of the evaluated PES
for SHN allows for the estimation of equilibrium deform-
ations, possible shape coexistence and shape isomers, fis-
sion barrier height, and fission valleys. The dissipative
fission dynamics of the obtained PES are described by
Langevin equations, which estimate the possible fission
modes and corresponding FMY. Below, we briefly
present the main features of our model.

A. Fourier nuclear shape parametrization

The axial symmetric shape-profile function of a fis-
sioning nucleus written in cylindrical coordinates (p,z) is
expanded in a Fourier series [26,27] as follows:

P2 ()
2
RO

=a, cos(u) + a3 sin(2u) + a4 cos(3u)

+ as sin(4u) + agcos(Su) + ..., )

where Ry is the radius of a spherical nucleus and u =
m/2-(z=zsn)/20 With  Zmin = =20 +Zsn <2 <20+ Zsh = Zmax -
The volume conservation condition gives zo=Ron/
(ay—as/3+ag/5—...)/3. The shift in the z-coordinate zg,
ensures that the centre of mass is located at the origin of
the coordinate system. The Fourier expansion coeffi-
cients can be used as free deformation parameters, but it
is more effective to combine them {g,} into what are
called optimal coordinates [27]:

0 0
qz=a(2)/az—az/a(2), q3=as,

qs = as+ [(q2/9) + (a2, o

qs =as—(q2—2)az/10,

go = a6~ /(@2/1007 + @'

The deformation parmeters g,({a;}) were chosen in
such a way that the liquid-drop energy as a function of

elongation ¢, becomes minimal along a trajectory that
defines the liquid-drop path to fission. The “(2?1) in Eq. (2)
are the expansion coefficients of a spherical shape given
by a(zon) =(=1)y""132/7%/(2n—1)>. The optimal deforma-
tion parameters introduced in Eq. (2) have the following
meaning: parameters ¢, and g3 describe the elongation of
the nucleus and its reflection asymmetry, respectively, g4
is mainly responsible for the neck of the nucleus, and
parameters ¢s and g¢ mainly regulate the deformation of
fission fragments and the elongation of the neck.

Non-axial shapes can easily be obtained assuming
that, for a given value of the z-coordinate, the surface
cross-section has the form of an ellipse with half-axes
a(z) and b(z) [27]

2

- b—

1 with 7=-"-"2, @3)
14712 +2ncos(2p) a+b

0% (z,¢) = p2(2)

where the parameter n describes the non-axial deforma-
tion of nuclear shapes. The volume conservation condi-
tion requires that p?(z) = a(z)b(z).

B. Macroscopic-microscopic model

In the mac-mic method, first proposed by Myers and
Swiatecki [28], the total energy of the deformed nucleus
is equal to the sum of the macroscopic (liquid-drop type)
energy and the quantum energy correction for protons
and neutrons generated by shell and pairing effects

Ew = ELSD + Egpen + Epair . (4)

The LSD model [24], which effectively reproduces all ex-
perimental masses and fission barrier heights, is used in
this study to evaluate the macroscopic part of the energy.
The shell corrections are obtained by subtracting the av-
erage energy E from the sum of the single-particle (s.p.)
energies of occupied orbitals

Eghent = Zek -E. %)

k

For the s.p. energies ¢;, we use the eigenvalues of a
mean-field Hamiltonian with the Yukawa-folded s.p. po-
tential [25]. The average energy E is evaluated using the
Strutinsky prescription [29-32] with a 6™ order correc-
tion polynomial. The pairing energy correction is determ-
ined as the difference between the BCS energy [33] and
the s.p. energy sum from which the average pairing en-
ergy [32] is subtracted

Epair = Epcs — Z €k — Epair~ (6)
k
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In the BCS approximation, the ground-state energy of
a system with an even number of particles is given by

2
EBCS = Z 26/(\/]% -G (Z ukvk) — GZ V2 - 85 , (7)

k>0 k>0 k>0

where the sums run over the pairs of s.p. levels belong-
ing to the pairing window defined below. The coeffi-

cients v and u; = /1 —vi are the BCS occupation amp-

litudes, and & is the energy correction due to the particle
number projection performed in the GCM+GOA approx-
imation [34]

Z[(ek — D) —v2) + 2Auvi + G/ E2
8@ — k>0

0 Z E/ZZ

k>0

@®)

Here, E; = +/(ex — )% + A? are the quasi-particle energies,
and A and A are the pairing gap and Fermi energy, re-
spectively. The average projected pairing energy for a
pairing window, symmetric in energy with respect to the
Fermi energy, of width 2Q, is equal to

1 Q Q) -
E v =—= 8A* + —=gGAarctan| = | - log| = | A
pair g 2g arc an(A) Og(A)

2
3. Q/A Q
+ZG—~/arctan(Z)— -G, )

where g is the average single-particle level density, and A
is the average pairing gap corresponding to a pairing
strength G

A:ZQexp(—GLg). (10)

The pairing window for protons or neutrons contains
2VISN (N =N or Z) s.p. levels closest to the Fermi en-
ergy states. For such a window, the pairing strength ap-
proximated in Ref. [35] is given by the following expres-
sion:

0
G= W : (11)

The same value go =g = gj = 0.28%w, is taken for
protons and neutrons, where wo =41 MeV/A!/3 is the
nuclear harmonic oscillator constant.

In our calculation, the single-particle spectra are ob-
tained by diagonalization of the s.p. Hamiltonian with the
Yukawa-folded potential [25,36] using the same paramet-
ers as in Ref. [37].

C. Multidimensional Langevin equation

To study the fission dynamics of atomic nuclei, we
use the Langevin equation formalism, which determines
the motion of the nucleus in the multidimensional space
of deformation parameters ¢; (Eq. (2)). Such a system of
coupled equations is similar to the canonical Hamilton
equations with friction; however, this additionally con-
tains a stochastic force. The Langevin equations can be
written as follows (see Ref. [38]):

dg; _
d_qt :; [M l]ijpj’

dp; oV 1 M—l}
—_— = — | pjp 12
dr aq; 2 % aq; Jk Pk (12)

v [M_l]jkpk + 8l
I j

where p; is the conjugated momentum corresponding to
the coordinate g;, M,;(g) and v;;(q) are the inertia and the
friction tensors, respectively, and V(g) is the potential en-
ergy of the fissioning nucleus.

The inertia tensor is calculated within the incompress-
ible and irrotational liquid drop model using the Werner-
Wheeler approximation [39]. For the nuclear surface de-
scribed by the function p2(z,¢) (Eq. (1)), the inertia tensor
is given by the following formula [38]:

Zmax

1 T A7
Mij(@) = 7pm f LHEX) [AiAj+ g @A} dz. (13)

Zmin

Here, pn, = Mo/(%ﬂ'Rg) is the density of nucleus and zp;,
and zn.x are the z-coordinates of both ends of the nucle-
us. The velocity expansion coefficients A; in Eq. (13)
have the following form:

L 9 f = 2 ad? (14)
i= 5., < z
pX(z,q) 0qi J.

and A} = 0A;/0z.

During the fission process, the temperature of the
nucleus changes due to the existence of friction forces.
To take this effect into account, another type of the poten-
tial must be used, known as the temperature dependent
Free Helmholtz energy F(g), instead of the temperature
independent potential V(g) in the Langevin equation (12)
(see [38]):

F(g)=V(g)-a(@)T?, (15)
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where T is the temperature of the nucleus

T = \E*/a(g) . (16)

Here, E* is the thermal (statistical) excitation energy
of the nucleus, and a(g) is the s.p. level density paramet-
er. In our calculation, the parameter a(g) is taken from
Ref. [40].

The collective potential in Eq. (4) in the mac-mic ap-
proximation is given by the sum of the macroscopic and
the microscopic parts V = Vipae + Vinic . The first term 1is al-
most temperature independent at low excitation energies,
while the temperature dependence of the microscopic en-
ergy correction may be approximated as follows [40]:

_ Viic(q,T = 0)
Vimic(q,T) = 11051003 ° (17)

Also, the friction forces vary with temperature; they
vanish in a cold system and grow with the excitation of
the nucleus. We consider their temperature dependence
using the following function:

0.7 -y‘.”.au
mic _ ) i
Yij T p07-1)]025 (18)

which approximates the estimates performed in Ref. [41].
Here, the friction tensor ¥ is given by the wall-for-
mula [42]

Z apz apz 21-1/2
s s

wall _ T )
Yij ‘2”’"”] 9q; 9q;

Zmin

1{8p?
2, - K 1
ps+4(az) &z, (19)

where v is the average internal velocity of nucleons in the

nucleus; its value is related to the Fermi velocity vy as
3

V= —VF.

The final term of the second equation in Eq. (12) rep-
resents the random Langevin force. Its amplitude g;; is
the square-root of the diffusion tensor D;; and I' =¢- /7,
which is a time-dependent random function, where ¢ is
defined as a random Gaussian distribution with proper-
ties similar to those of white noise

£=0,8=2, (20)

and 7 is the time step used when solving the Langevin
equations.

The diffusion tensor is obtained using the Einstein re-
lation

Dij=zgikgjk=7ij'T, (21)
%

Unfortunately, the Einstein relation, which is valid for
systems that have relatively high temperatures, does not
take into account the quantum fluctuations present at low
excitations of nuclei. To extend the application of the
Langevin equations to low energy fission, the temperat-
ure T in Eq. (21) is replaced with the effective temperat-
ure T [43,44] as follows:

E, . Eo
7% = 20 coth =2 | 2
2 “Yar (22)

where Ej corresponds to the zero-point energy of collect-
ive vibrations of the order 1 MeV.

The irrotational flow inertia tensor (Eq. (13)) and the
wall friction tensor (Eq. (19)) are evaluated using the For-
tran codes published in Ref. [45].

III. POTENTIAL ENERGY SURFACES

The nuclear potential energies of even-even super-
heavy nuclei are evaluated in the equidistant grid of 4D
collective space built on the ¢, g3, g4, and n deforma-
tion parameters. The total energy function of a nucleus is
obtained as described in Sec. II.B. As it is challenging to
graphically present such a 4D object, in the following
section, we will only show several selected 2D cross-sec-
tions of full PES.

In Appendix A, the cross-sections (g2,77) (Lh.s.
column) and (g2,¢3) (r.h.s. column) of the 4D potential
energy surface of elements Ds to Z = 120 are shown. For
each element, five pairs of maps corresponding to differ-
ent isotopes are displayed. To better understand the prop-
erties of the cross-sections presented in the Appendix,
two cross-sections of the 394120 isotope are investigated
below.

In the top panel of Fig. 1, the (g2, ) cross-section of
the PES of 304120 nucleus is presented. Each energy
point in the plot is minimized with respect to the neck
parameter g4. Solid green lines are drawn in the figure to
guide the eye. The lines correspond to the approximate
positions of the frequently used 8 and y Bohr deforma-
tion parameters, which describe a spheroid [46]. Here,
"approximate" is used as the shapes considered in this
study are richer than the spheroidal. The lines y = 30° and
150° correspond to the largest non-axial deformations,
while y =0, 120° correspond to the prolate shapes of the
nucleus and y=60° and 180° correspond to the oblate
forms. In addition, the green dashed line shows the
v =10° direction. To orient the reader with the elonga-
tion of the nucleus, the line corresponding to 8=10.3 is
displayed. The bottom panel shows the cross-section
(g2, q3) of the PES of 394120 for the axial symmetric case
(n7=0). Each energy point on the map is minimized to g4
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Fig. 1. (color online) Potential energy surface of 3*120 iso-
tope minimized with respect to g4 at (g2,7) (top) and (g2,93)
(bottom). The lines corresponding to y = 10°,30°,60°, 120°,
and 150°, as well as the line corresponding to g = 0.3, are
marked in the (¢2,77) maps.

deformation. The layers in both maps correspond to the
total energy of the nucleus, measured relative to the LSD
energy spherical nucleus. The distance between the solid
line layers is 2 MeV, while the dotted lines correspond to
the half-layers.

The nucleus %4120 is spherical in the ground-state
and possesses two oblate shape isomers of comparable
energies; shape coexistence is also suggested. The least
energy path to fission reminds the situation observed in
rotating nuclei [47]. First, it becomes oblate and then un-
dergoes fission via triaxial shapes. The effect of a non-
axial degree of freedom ceases around ¢, =0.8 and
n=0.12 (or y=10°). At larger deformations, the n de-
gree of freedom does not play an essential role; therefore,
it can be omitted when fission dynamics are discussed.
The fission barrier reduction due to the breaking of the
axial symmetry in 394120 is approximately 3 MeV.

In the bottom panel of Fig. 1, the (g2, g3) cross-sec-
tion of the PES of 34120 is shown. Taking into account
the left-right (octupole like) asymmetry diminishes the
fission barrier of 34120 by approximately 1 MeV. At
smaller elongation ¢, < 0.3, the minimum energy corres-
ponds to ¢g3=0. Beyond the saddle point at
(2 0.4, g3 ~0.13, 7 = 0.14), the role of the octupole de-
formation becomes more important. Two fission valleys
are formed with growing elongation of the nucleus. The
first is left-right symmetric (g3 = 0), which goes through a

local minimum at ¢, ~0.5 and ends at scission at
g2 ~ 2.3, giving the symmetric in mass fission fragment
distribution. The second valley for g3 ~ 0.2 causes highly
asymmetric fission with the masses of the heavy frag-
ments concentrated around 4 = 208. This is the effect of
the double magic 28 Pb. The potential existence of such a
decay mode of SHN was also predicted by Poenaru et al.
[48] and Warda and co-workers [49] as a cluster emis-
sion. Additionally, Ref. [49] shows that such a mode may
be treated as super-asymmetric fission.

The maps presented in the Appendix for 2>4-262Rf,
258-266Gg  264-2T2 g 276-284Dg  278-286Cp  282-290F]
286-2941 y, 290-298(Qg_ and 294302120 effectively illustrate
the interplay between the non-axial and left-right asym-
metric deformations of fissioning super-heavy nuclei.
This is only a selection of similar results that we have ob-
tained for 18 even-even isotopes chains of each element
with 104<Z<126. It is seen in Figs. A1-A9 that at elong-
ations ¢ % 0.8, the axially symmetric shape is the prefer-
able shape of fissioning nuclei. Hence, the non-axial de-
formation should not influence further fission dynamics
toward scission configuration. This justifies using only
3D deformation parameter space when finding the
Langevin trajectories that lead to various scission points
corresponding to the different masses of the fission frag-
ments. Investigating such a broad range of superheavy
isotopes is not only interesting from the point of view of
their possible synthesis but also important for astrophys-
ical models (see Refs. [50-52]).

As a regular article does not contain sufficient space
to discuss the details of the (q2, ¢3) and (g2, 7) maps for
each isotope, we only systematically present their fission
barrier heights in Fig. 2.

The barrier heights are evaluated using the flooding
technique in 4D space. The results for each element, start-
ing from Rf to Z = 120, are indicated by different colors.
The ground-state energy for Rf isotopes is taken as to
zero, and for each subsequent element, this is shifted by 2
MeV. In other words, one has to subtract (Z — 104) MeV
from the displayed value of the barrier height of element
Z. Alternatively, the difference between the ground state
energy (indicated by the dashed line of the same color) of
each element and an appropriate solid curve can be ob-
served.

The maximum barrier height for each element varies;
this value is 7 MeV for Rf to Ds nuclei, reaches 9 MeV
for 2°4F1, and then decreases for elements up to Z = 120,
which has an upper value of approximately 5 MeV. Fol-
lowing this, the effect of the semi-magic proton number
appears, and the barrier height grows with the Z number,
reaching a value 3.76 MeV for the hypothetical isotope
304126. A good comparison between the fission barrier
heights evaluated in different mac-mic and self-consist-
ent models for three selected superheavy elements is
presented in Fig. 11 of Ref. [54]. Comparing the barrier
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(color online) Fission barrier heights of even-even

Fig. 2.
superheavy nuclei evaluated in our 4D mac-mic model. The
ground-state energy for Rf isotopes is taken as zero, while for
each subsequent element, it is shifted by 2 MeV. The barrier
plots are also shifted by the same amount. The ground state
energy values corresponding to each element are marked on
the r.h.s. vertical scale. The experimental data for the lower
limit of the barrier heights [53] are marked by crosses and ar-
rows of the same colors as the element symbols.

heights shown in Fig. 2 with those reported in Ref. [52]
shows that our estimates of the barrier heights for Cn iso-
topes differ from the finite range liquid droplet model
(FRLDM) results [55] by approximately +0.5 MeV. Fur-
thermore, they are approximately 2 MeV higher than the
mac-mic Woods-Saxon (WS) findings presented in Ref.
[56]. The self-consistent estimates for Cn isotopes ob-
tained in the SkM* [57] and NL3 [58] models are approx-
imately 1 MeV and 3—4 MeV below the present results,
respectively. However, this tendency changes when ele-
ments with higher charge numbers are examined. There-
fore, in the case of Fl (Z = 114) isotopes, our estimates
are close to the results obtained in FRLDM (x1 MeV)
and are approximately 3 MeV higher than those obtained
in the WS model. Both self-consistent models predict
lower barriers. Those obtained with SkM= forces are ap-
proximately 1.5 MeV lower, while the relativistic model
with NLS parameters predicts barriers that are approxim-
ately 5 MeV lower than our estimates. The barrier heights
for the hypothetical element with Z = 120, estimated in
different models, are the highest for the SkM=x force
(8-10 MeV) and the lowest for NL3 (3—5 MeV). Our es-
timates for these isotopes are the closest to those ob-
tained in the WS model and are approximately 2 MeV
lower than the optimistic predictions of the FRLDM
model.

A question to consider is whether our 4D deforma-
tion space (g2, g3, g4, 1) is sufficient to describe the fis-
sion barriers and valleys as several other researchers have
taken into account more deformation parameters to ob-
tain similar results (see Ref. [13]). It is shown in Refs.
[27,59] that the 4D Fourier shape parametrization used in
this study effectively describes the main features of the
potential energy of fissioning nuclei. The influence of the
higher order Fourier expansion terms on the estimates of
PES of fissioning actinide nuclei was studied in Ref. [59],
which found that this effect is rather small. In the super-
heavy region of nuclei, changes in PES due to the ¢s and
gs deformations are not large, even at nucleus elonga-
tions close to the scission configuration. Fig. 3 shows the
(g3, q4) cross-section of the PES of %4Cn at the signific-
ant elongation ¢, =2.1. The upper panel corresponds to
the case in which the deformations ¢s and g¢ are not
taken into account, while the bottom panel shows the PES
minimized by these high order deformations. The shapes
of the nucleus in the local minima are also shown in the
upper panel. Comparing both maps in the vicinity of the
minimum at g3 =0 and g4 = —0.13, corresponding to the
symmetric fission valley, the PES are shown to be almost
unchanged. Some effect of ¢s and g is seen around the
local minimum at g3 = 0.23 and ¢4 = —0.13, correspond-
ing to the highly asymmetric fission valley. Considering
the ¢s and g¢ deformations broadens this minimum and
reduces the barrier height separating both minima.

The PES cross-section of 2#4Cn, corresponding to the
minimal energy as a function of g3 for the constant elong-
ation ¢, = 2.1, is presented in Fig. 4. The thick violet line
corresponds to the case in which each point of the curve
is minimized with respect to ¢4, g5, and gg, while the thin
green line shows the potential energy when the effect of
gs and g is neglected. The influence of the higher-order
deformations on the energy values in the minima is barely
observed.

Our group presented similar estimates of the SHN
barrier height in Ref. [60]. The main difference between
those and the present results originates mainly from a bet-
ter and more accurate description of the pairing correla-
tion effect (see Eqgs. (7)—(9)), as well as using a denser
and more extended 4D mesh in the deformation paramet-
er space.

IV. FISSION FRAGMENT MASS YIELDS

Having introduced the details of generating PES, we
may switch to the statistical approach based on the
Langevin formalism to find the fragment mass distribu-
tions of fissioning nuclei. The set of coupled Langevin
equations defined in the Fourier deformation space,
which leads to a bundle of stochastic trajectories between
the ground state and a scission configuration on the scis-
sion surface, has previously been described in Subsection
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Fig. 3.
284Cn taken at the elongation ¢, =2.1. The upper plot corres-

(color online) The (g3,44) cross-section of the PES of

ponds to the case in which the higher order deformations are
not taken into account, while the bottom panel shows the PES
minimized with respect to gs and gg.

T T T T T
=20 |+ min(d4,9s,de) -
min(g4;95=0,06=0) —— qx=2.1
5 30r 284Cn g
g =]
= 40 F % .
e <
- <
50 - © R
5
60 F i'(; 4
1 1 1 1 1
0.3 0.2 0.1 0 0.1 0.2 0.3
as
Fig. 4. (color online) PES cross-section corresponding to the

clongation ¢, =2.1 as a function of the g3 deformation. The
thick violet line corresponds the PES minimized with respect
to q4, gs, and ge, while the thin green line indicates the case in
which gs and g are not considered.

II.C.

All deformation dependent transport coefficients in
Eq. (12) were stored for each nucleus at equidistant
(Agz =0.05,Aq3 = 0.03, Agq = 0.03) mesh points in the 3D
Fourier deformation parameters space. The values of the
PES and the transport function and their derivatives
between grid points are obtained using the Gauss-Hermite
approximation method [61]. The non-axial degree of free-
dom 5 in Eq. (3) is not taken into account as its contribu-
tion at a large nuclear elongation is negligible.

The Langevin calculation of each M trajectory be-
gins at a starting point {g;""}. As the starting point can be
chosen, to some extent, arbitrarily, a natural question

arises: Which configuration should be taken as the begin-
ning of the trajectories? Should it be the location of the
ground state, the first or second saddle point, or the exit-
point after tunneling of the potential energy barrier in the
spontaneous fission case? To answer these questions, we
discuss the following two types of starting points: those
around the highest saddle and those at the exit point after
quantum mechanical tunneling of the fission barrier. Both
choices roughly correspond to neutron-induced fission
and spontaneous fission, respectively. We are allowed to
treat such a low energy system with Langevin type dy-
namics since instead of the thermodynamical temperat-
ure used in the Einstein relation Eq. (21), we take 7* (Eq.
(22)), which roughly describes the effect of quantum
mechanical fluctuations when 7 — 0 [43,44]. Because the
initial configuration cannot be sharp, we assume that the
beginning of each Langevin trajectory will be randomly
distributed around the starting point; the elongation g5*"
remains constant, and g3 and ¢4 and their conjugate mo-
menta p,, p3, and p, are assumed to be randomly distrib-
uted around their starting value with the following condi-
tion:

Econ =V(q3,94:65*™) = V(g™ g5 g5
1
+ = Z Mijpipj=Eo, (23)

i=34;j=34

which ensures the same initial collective energy (Ecop) in
each random trajectory. Here, Ey is the so-called zero-
point energy, equal to 1 MeV in our calculation. The sys-
tem of Langevin equations has been solved using a dis-
cretization method in the time variable.

The Langevin trajectory proceeds randomly towards
fission within the following rectangular 3D box with the
collective variables:

73" <q
027 <q5
-0.21 <g4

7

<0.2
<0.21 (24)
with reflective walls that ensure none of the trajectories
will escape before reaching the scission configuration at
larger elongations ¢,. Because the box (Eq. (24)) is suffi-
ciently large, sticking of the walls occurs very rarely. A
given trajectory ends when the neck radius of the fission-
ing nucleus reaches values of approximately 1 fm, which
roughly corresponds to the "size" of a nucleon. The time-

step when solving Langevin equations is taken to be

2 . .
At =0.017/MeV ~ 510’23 s. Typically, 20,000 trajector-

ies have to be generated to obtain sufficiently smooth fis-
sion fragment mass yields, as presented in Figs. 6-8.
Our Langevin estimates of the fission fragment mass
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yields of 292Rf are compared in Fig. 5 with empirical data
taken from Ref. [62]. The agreement between the two is
satisfactory and none of the model parameters have been
"tuned" to this data set in the region of SHN. It should be
noted that their values are the same as those produced
from calculations for actinide nuclei. This proves that the
choice of Langevin calculation parameters is reasonable
and is expected to provide realistic estimates for the heav-
ier nuclei presented below. The predicted small splitting
of the symmetric peaks visible in Fig. 5 originates from a
tiny light asymmetric valley (g3 ~ 0.03), which is visible
in the (g2, ¢3) PES of the lighter Rf isotopes in Fig. Al
(r.h.s. column).

In Fig. 6, the fission fragment mass yields of the
2710-282Dg isotopes are displayed. More precisely, these
are pre-fission yields, i.e., the mass distribution before
neutron emission. The Lh.s. column shows the yields cor-
responding to the case in which the saddle point is taken
as the starting point, while the r.h.s panel represents the
mass yields when the exit point from the fission barrier
was used as the starting point. In this calculation and in
the results presented in Figs. 7 to 8, the initial temperat-
ure of the fissioning nucleus is assumed to be zero
(T =0), independent of the starting point. The cases
presented in the lLh.s. columns roughly correspond to
neutron-induced fission, while those in the r.h.s. columns
correspond to spontaneous fission. In all the figures, the
symmetric fission peaks dominate; however, two smaller
peaks corresponding to highly asymmetric fission, with a
heavier fragment mass around 4 = 208, are also visible.
The asymmetric peaks are significantly smaller when the
exit from the barrier (i.e., the spontaneous fission case)
was taken as the starting point. This property of FMY is
unsurprising because the higher excitation energy accu-

Yield(%)

Yield(%)

Yield(%)

Yield(%)

mulated in the potential energy of the nuclear system of- g_:\;j
4
6
T 4 E 3
=3 g
2
1t
U: ]

Fig. 6. (color online) Fission fragment mass yields of six Ds
isotopes. The Lh.s. column corresponds to the case in which
the Langevin trajectories begin in the vicinity of the saddle
point (low energy fission), while the r.h.s. columns present the
estimates made for the spontaneous fission when the trajector-
ies begin around the exit point from the barrier.

Fig. 5. (color online) Fission fragment mass yield (red solid
line) estimate for the 202Rf nucleus. The experimental (in the
spontaneous fission case) data (black triangles) are taken from
Ref. [62].
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Fig. 7. (color online) The same as in Fig. 6 but for Cn iso-
topes.

fers a relatively larger probability of penetrating more
exotic shape configurations that are exhibited in the peri-
pheries of PES. It must be stressed that the highly asym-
metric peaks in the predicted fission fragment mass yields
originate from the shell structure of the microscopic en-
ergy rather than fission dynamics, which is mainly re-
sponsible for the peak widths. The effect of the near
double-magic heavy fission fragment is already visible at
the elongations ¢, ~ 1.2 and g3 ~ 0.21, as shown in the
PES in Fig. A4.

Figures 7 and 8 show similar estimates of the FMY
for the 282-286Cn and 286-292F] isotopes. Symmetric fis-
sion also dominates in these isotopes; however, the con-
tribution of the highly asymmetric component becomes
large (up to 40 % trajectories for FI) when the Langevin
trajectories begin around the saddle point. Moreover, in
spontaneous fission, four times fewer trajectories lead to
the asymmetric valley. Our estimates are in line with res-
ults obtained in Ref. [12], where the 4D two-center shell
model was used to evaluate the potential energy surfaces.

V. SUMMARY AND CONCLUSIONS

Properties of superheavy elements with a charge num-
ber of 104<Z<126 were studied within the mac-mic
model in 4D Fourier deformation parameter space. All
parameters for these calculations are kept unchanged be-
cause they effectively reproduce the empirical masses and
fission barrier heights of nuclei from different mass re-

10

256F ' ‘ 286F

7 =085
g =012

Fig. 8.
topes.

(color online) The same as in Fig. 6 but for FI iso-

gions.

The potential energy surfaces of 18 even-even iso-
tope chains of elements from Rf to Z = 126 have been
carefully studied, and the flooding technique was used to
determine the fission barrier heights. An essential role of
the non-axial and left-right asymmetry degrees of free-
dom was shown when evaluating the barrier heights. The
minimum energy path to fission of the heaviest spherical
and oblate nuclei from this region goes frequently via
highly oblate and then non-axial shapes, leading to a sig-
nificant decrease in their barrier heights.

A detailed investigation of PES suggests that the
dominant fission channel of SHN (apart from the lightest
isotopes of Rf to Hs) is symmetric. In addition, in nuclei
with 42280, another highly asymmetric fission channel
appears, leading to a heavy fragment with mass 4~208.
This effect suggests that the probability of synthesis of
elements with Z>118 is low.

At larger elongations (g, > 0.8), the non-axial deform-
ation may be neglected as the nucleus' minimal energy
configurations always become axially symmetric. There-
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fore, in our dissipative dynamics calculation, this deform-
ation mode is not considered, and the Langevin equa-
tions are solved in 3D space containing the elongation
(¢2), neck (g4), and mass asymmetry (g3) degrees of free-
dom. Such a model effectively describes the main fea-
tures of the fission fragment mass yields of superheavy
nuclei. It was shown that adding higher-order terms
(gs, g¢) n the Fourier expansion (Egs. (1), (2)) does not
significantly change the properties of PES. The Langevin
calculation allowed an estimation of the interplay
between the symmetric and highly asymmetric fission
modes of SHN. We have shown that, in spontaneous fis-
sion, the fraction of trajectories leading to a heavy frag-
ment with a mass around 4 = 208 is a couple of times
smaller than in the case of, e.g., neutron-induced fission
in which the Langevin trajectories begin in the vicinity of
the saddle point. Both fission valleys, symmetric and
highly asymmetric, are well separated at a larger elonga-
tion (g ) of the nucleus.

APPENDIX A

In Figs. A1-A9, we present the (g2,7) (Lh.s. columns)
and (g2,¢3) (r.h.s. columns) cross-sections of the 4D po-
tential energy surfaces of five selected even-even iso-
topes of elements with a charge number 104<Z<120.
These plots can be useful for researchers studying this
nuclear region; however, they are merely 2D cross-sec-
tions and do not fully reflect the richness of 4D PES.
Nevertheless, several main features can be seen, such as
the location of the ground state, shape isomers, possible
shape coexistence, and different paths to fission. In Sec.
111, we described in detail the cross-sections of the 394120
nucleus with an explanation of the different curves
presented in these maps; therefore, these explanations
will not be repeated here.

As seen in Figs. A1-A3, all shown isotopes of Rf, Sg,

and Hs are prolate in the ground-state. This is due to the
deformed shell effect previously reported in 1990 by
Patyk and Sobiczewski [63]. The microscopic energy cor-
rection in the ground-state is approximately —3 MeV in
Rf isotopes, and becomes larger in Sg nuclei, reaching
4.5 MeV for 2°Sg. The deformed shell energy effect in
heavier Hs isotopes exceeds —5 MeV. In Ds nuclei, one
observes the decrease in the prolate deformation and the
appearance of gamma-instability in the ground state of
280Ds and heavier Ds isotopes. At the same time, the mi-
croscopic energy correction exceeds —4 MeV in these
nuclei. The 278-286Cn are typical transitional nuclei with
very flat PES around the spherical shape. In the 286Cn
isotope, the triaxial shape (y~30°) is preferred in the
ground state. In Rf to Cn nuclei, the axial (y=0) and
non-axial (y ~ 30°) paths to fission compete. The reduc-
tion of the saddle point energy due to non-axial deforma-
tion is less than 1 MeV in Rf isotopes and approximately
2 MeV in »8Sg. In 2627296GQg and all presented Hs iso-
topes, the axially symmetric and the non-axial fission bar-
rier are comparable. In Ds and Cn isotopes, non-axial
shape isomers appear at ¢, ~ 0.6 and n~ 0.1 (or y = 10°),
and the axial and non-axial saddles have comparable en-
ergies. In Fl isotopes, the situation is similar; however,
due to the left-right asymmetry (g3) degree of freedom,
the outer barrier of the non-axial isomers is diminished,
and hence, they do not have a chance to be populated. In
the 288-20F], Lv, Og, and Z = 120 isotopes, the path to
fission leads from at the spherical or nearly spherical
ground-state via oblate shapes and a non-axial saddle to
highly elongated prolate deformations. A significant re-
duction (up to 3 MeV in 2%6-3092120 nuclei) of the saddle
point energy due to the g3 deformation is observed in Lv
and heavier elements. In addition to the symmetric fis-
sion valley (g3~0), a highly asymmetric valley
(g3 = 0.22) appears in Ds and heavier elements.
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Fig. Al. (color online) Potential energy surface of 24-262Rf minimized with respect to g4 at (¢2,7) (Lh.s. column) and (g2,¢3) (r.h.s.
column). The lines corresponding to y = 10°, 30°, 60°, 120°, and 150° as well as the line indicating g8 = 0.3 deformation are marked in
the (g2,77) maps.
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Fig. A2. (color online) The same as in Fig. A1 but for 238-266Sg isotopes.
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Fig. A3. (color online) The same as in Fig. A1 but for 264-272Hs isotopes.
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Fig. A4. (color online) The same as in Fig. A1 but for 270-234Ds isotopes.
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Fig. AS. (color online) The same as in Fig. A1 but for Cn isotopes.
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Fig. A6. (color online) The same as in Fig. A1 but for 282-2°°F] isotopes.
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Fig. A7. (color online) The same as in Fig. A1 but for 286-2%4Lv isotopes.
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Fig. A8. (color online) The same as in Fig. A1 but for 2028 Qg isotopes.
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Fig. A9. (color online) The same as in Fig. A1 but for 2%4-302120 isotopes.
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