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Abstract: Fission properties of the actinide nuclei are deduced from theoretical analysis. We investigate potential

energy surfaces and fission barriers and predict the fission fragment mass yields of actinide isotopes. The results are

compared with experimental data where available. The calculations were performed in the macroscopic-microscopic

approximation with the Lublin-Strasbourg Drop (LSD) for the macroscopic part, and the microscopic energy correc-

tions were evaluated in the Yukawa-folded potential. The Fourier nuclear shape parametrization is used to describe

the nuclear shape, including the non-axial degree of freedom. The fission fragment mass yields of the nuclei con-

sidered are evaluated within a 3D collective model using the Born-Oppenheimer approximation.
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I. INTRODUCTION

Good reproduction of fission barrier heights and fis-
sion fragments mass yields is a test of the theoretical
models describing the nuclear fission process. An inter-
esting review of the existing fission models can be found
in Refs. [1-3]. Apart from these theories, which are based
mostly on the macroscopic-microscopic approximation of
potential energy surfaces of fissioning nuclei, there has
been considerable progress in fully microscopic studies
on nuclear fission, like the HFB+PNP [4], HFB+TDGCM
[5] or TDHF [6]. More information about the future and
present status of nuclear fission theories can be found in
Ref. [7]. Extended calculations of the fission barrier
heights can be found in Refs. [8, 9]. Readers who are in-
terested in the theory of nuclear fission can find more de-
tails in Ref. [10].

In the present paper, the fission fragment mass yields
(FMY) are obtained by an approximate solution of the ei-
genproblem of a three-dimensional collective Hamiltoni-
an, of which the coordinates correspond to the fission,
neck, and mass-asymmetry modes. The model presented
here is described in detail in Refs. [11-13]. The potential
energy surfaces (PES) of fissioning nuclei are obtained
by the macroscopic-microscopic (mac-mic) method, in

which the Lublin-Strasbourg Drop (LSD) model [14] has
been used for the macroscopic part of the energy (Viac),
while the microscopic shell and pairing corrections (Ve )
are evaluated using single-particle levels of the Yukawa-
folded (YF) mean-field potential [15, 16]. The Fourier
parametrization is used to describe the shapes of fission-
ing nuclei [17, 18]. It is shown in Ref. [19] that this para-
metrization describes the shapes of the nuclei very well,
even close to the scission configuration.

The paper is organized in the following way. In Sect.
II, we first present the details of the shape parametriza-
tion and the theoretical model. Then we show the collect-
ive potential energy surface evaluated within the mac-mic
model for the selected isotopes, and our estimates of the
fission barrier heights. The calculated FMYs are com-
pared with the existing experimental data in Sect. III. The
estimates of FMYs for Th isotopes and their dependence
on two adjustable parameters are further discussed in de-
tail in Sect. IV. Conclusions and perspectives of further
investigations are presented in Sect. V.

II. MODEL OF FISSION DYNAMICS

The evolution of a nucleus from the equilibrium state
towards fission is described here by a simple dynamical
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approach based on the PES. We assume that at large de-
formations, the shape of the nucleus should depend on
three collective degrees of freedom describing its elonga-
tion, left-right asymmetry, and neck-size. At smaller de-
formations, up to the second saddle, non-axial shapes are
also considered. In the following subsection, we briefly
present a Fourier-type parametrization of the nuclear
shape which is used in the paper.

A. Fourier nuclear shape parametrization

A typical shape for a nucleus on its way from saddle
to scission configuration is shown in Fig. 1, where p(z),
the distance from the z-axis to the surface of the nucleus
as a function of z, is plotted. Here, the nuclear surface is
treated as the surface of the nuclear liquid drop, or the
half-density surface when the microscopic density distri-
bution is considered.

The function p(z) corresponding to the nuclear sur-
face can be expanded in the Fourier series in the follow-
ing way [17]:

p?(Z) = RSZ [azn COS(M Z_Zsh)

n=1 2 <0

2nm Z—Zsh)] )

+ dpper Sin| —
2 20

Here, 7o is the half-length of the total elongation of the
nucleus and zg, locates the center of mass of the nucleus
at the origin of the coordinate system. The expansion
parameters a; can serve as parameters describing the
shape of the nucleus. The length parameter ¢ = zy/Ry is
fixed by the volume conservation condition, where Ry is
the radius of a spherical nucleus with the same volume as
the deformed one.

Contrary to the frequently used spherical harmonics
expansion (cf. e.g., Refs. [8, 9]), the Fourier series con-
verges on a realistic shape for the nuclei much earlier [17,
18] and only the few first terms are needed in practical
use. Although one can work directly with these Fourier
expansion coefficients, treating them as free deformation
parameters, it is more suitable to use their combinations

R12 =Zr-7 y X
Z?h
P
c
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~Z;+Zsh Z) Zneck Zy ZytZsh
Fig. 1. (color online) Shape of a very elongated fissioning
nucleus.

{qn}, called optimal coordinates [18], as follows:

Q= a(zo)/az —az/a(zo) ,
q3 =das,
g4 = as+ 1/(q2/9)* + (af‘o)) , 2

qs = as —(q2 —2)az/ 10,

g6 = a5~ /(g2/ 1007 + @) .

The functions ¢,({a;}) were chosen in such a way that
the liquid-drop energy as a function of the elongation ¢,
becomes minimal along a trajectory that defines the li-
quid-drop path to fission. The “(2?1) in Eq. (2) are the ex-
pansion coefficients of a spherical shape given by

32
w02n-1)3"
Ref. [18] transform the original deformation parameters
a; to the more natural parameters ¢;, which ensure that
only minor variations of the liquid-drop fission paths oc-
cur around g4 =0. Also, more and more elongated pro-
late shapes correspond to decreasing values of a,, while
oblate ones are described by a, > 1, which contradicts the
traditional definition of the elongation parameter. The
parametrization (2) is rapidly convergent. It was shown in
Ref. [19] that the effect of g5 and g¢ on the macroscopic
potential energy of nuclei is negligible for small elonga-
tions of nuclei up to the saddle points, and contributes
within 0.5 MeV around the scission configurations.

Non-axial shapes can easily be obtained assuming
that, for a given value of the z-coordinate, the surface
cross-section (the blue dashed oval in Fig. 1) has the form
of an ellipse with half-axes a(z) and b(z) [18]:

(U] — (_] )n—l

a,, The above relations proposed in

1-n? . b—a
with n= ,
1+n%+2ncos(2¢p) a+b

0z, 9) = p2(2)

where the parameter n describes the non-axial deforma-
tion of the nuclear shapes. The volume conservation con-
dition requires that p?(z) = a(z)b(z).

B. Potential energy surfaces

The nuclear potential energies of actinide nuclei are
evaluated in the following equidistant grid-points in the
4D collective space built on the ¢, g3, g4, and n deform-
ation parameters:

¢ = —0.60 (0.05) 2.35,
g3 = 0.00 (0.03) 0.21,

gs =—0.21(0.03)0.21,

n =0.00 (0.03)0.21. @)
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Here, the numbers in the parentheses are the step size,
while the numbers on the left (right) side are the lower
(upper) boundaries of the grid, respectively. The energy
of a nucleus is obtained in the mac-mic model, where the
smooth energy part is given by the LSD model [14], and
the microscopic effects have been evaluated using the YF
single-particle potential [15, 16]. The Strutinsky shell-
correction method [20-24] with a 6" order correctional
polynomial and a smoothing width ys = 1.2%wy is used to
determine the shell energy correction, where
hwy =41/A'3 MeV is the distance between the spherical
harmonic-oscillator major shells. The BCS theory [25]
with the approximate GCM+GOA particle number pro-
jection method [26] is used for the pairing correlations. A
universal pairing strength is written as GN?/3 = 0.28%wy,
with N =Z N for protons or neutrons, was adjusted in
Ref. [27] to the experimentally measured mass differ-
ences of nuclei from different mass regions. It was as-
sumed in Ref. [27] that the “pairing window” contains
2 V15N single-particle energy levels closest to the Fermi
level. All the above parameters were fixed in the past,
and none of them was specially fitted to the properties of
actinide nuclei.

A typical PES for actinides is shown in Fig. 2, where
two cross-sections, (¢2,7) and (g2,q3), of the 4D poten-
tial energy surface of 2*°Pu are shown. As one can see,
the inclusion of the non-axial deformation is important up
to elongations corresponding to the second saddle
(g2 <1.2). Apart from some neutron-deficient actinide
nuclei which have g3 #0 in the ground-state, the left-
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0.18 IV

0.12

0.06

0.00

0.18

0.12

q3

0.06

0.00

-0.4 0.0 0.4 0.8 1.2 1.6 2.0
92

(color online) Potential energy surface of 2*°Pu min-

Fig. 2.
imized with respect to ¢4 at the (¢2,7) (top map) and (¢2,43)
(bottom map) planes.

right asymmetry begins to play an important role at large
elongations of nuclei, from the second saddle (¢ ~ 1) up
to the scission configuration (g; = 2).

The first (E4) and the second (Ejp) fission barrier
heights obtained in our model for nuclei from Th to Rf
are compared in Fig. 3 with the empirical data taken from
Refs. [3, 28]. The agreement of our estimates with the
data is rather satisfactory, and is comparable with the ac-
curacy obtained in other theoretical models. The largest
deviations between our estimates and the empirical val-
ues are observed in thorium isotopes, where they are un-
derestimated. The main origin of these discrepancies is
mostly from the inaccuracy of determining the ground-
state masses in our model. To prove this, we have estim-
ated the fission barrier heights using the so-called topo-
graphical theorem of Myers and Swiatecki [29], where
the barrier height (the largest one) is defined as
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Fig. 3. (color online) Fission barrier heights of even-even

actinide nuclei in our 4D mac-mic model.
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where M5244 is the first barrier saddle point mass evalu-
ated in the macroscopic model (i.e., without microscopic
energy correction) and Mg, is the experimental ground-
state mass of the nucleus.

Using the LSD model [14] to evaluate the macroscop-
ic mass, one obtains the ‘Swiatecki’ estimates of barrier
heights, which deviate from the experimental data only
by 310 keV on average, as shown in Fig. 4. This means
that additional work has to be done to improve the estim-
ates of the ground-state masses, to give a better fit of the
pairing strength in particular. Our “universal ” pairing
force [27], used in the present work, reproduces on aver-
age the pairing gaps of nuclei from different mass re-
gions, but it might be that it does not perfectly reproduce
the pairing properties in actinides.

8 - ]
3 I Th u Cm 1
24
3o [ N
= 4 Pu Cf ]
= | exp —x— b

LSD —e—
0 | L | L | L | L | L
232 236 240 244 248
A
Fig. 4. (color online) Fission barrier heights of even-even

actinide nuclei evaluated using the topographical theorem and
the LSD model, compared with the experimental barrier
heights as a function of mass number 4 [30].

C. Simple collective model for fission

The present research is a continuation and extension
of our previous work [11-13], where a more detailed de-
scription of the collective fission model was given. The
fundamental idea of this approach is the use of the Born-
Oppenheimer approximation (BOA) to separate the relat-
ively slow motion towards fission, mainly in the ¢, direc-
tion, from the fast vibrations in the “perpendicular” g3
and g4 collective coordinates. The BOA allows us to treat
both these types of motion as decoupled, what leads, in
consequence, to a wave function in the form of the fol-
lowing product:

Y,£(92,93,94) = une(q2) 9,(q3, 943 42) - (6)

The function u,g(g2) is the eigenfunction corresponding
to the motion towards fission, while ¢,(g3,q¢4;9>) simu-
lates the n—phonon “fast” collective vibrations in the
plane “perpendicular” to the fission mode, {g3,q4}.

To determine the u,r(q;) function for a single ¢»

mode, one can use the WKB approximation, as has been
done in Ref. [11]. To obtain the function ¢,(¢3,94;q2),
one has to solve numerically for each value of ¢, the ei-
genproblem of the underlying Hamiltonian in the perpen-
dicular {g3,q4} space. However, for low energy fission, it
is sufficient to take only the lowest wave function in the
perpendicular mode and evaluate the density of probabil-
ity W(gs.q4;q2) of finding the system, for a given elonga-
tion ¢, within the area of (¢3 +dgs3,q4 £dgy) as

W(q3,94392) = 1¥(q2, 43, g = 1p0(q3,q4302)* . (7)

A further simplification we have made is to approximate
the modulus square of the total wave function in Eq. (7)
by the Wigner function in the following form

V(q3,94:92) — Vinin(q2)

= ®

W(q3,q4;q2) o< exp

where Vinin(g2) is the minimum of the potential energy for
a given elongation ¢, and T* is a generalized temperat-
ure [31] which takes into account both the thermal excita-
tion of the fissioning nucleus and the collective zero-
point energy Eo,

T* = Eo/tanh(Eo/T) . )

The temperature (7) of a nucleus with mass number 4 is
evaluated from its thermal excitation energy (E*) using
the phenomenological relation E* =aT?, with a=A/(10
MeV). The generalized temperature 7* is approximately
equal to the zero-point energy when 7 is small, while for
sufficiently high temperatures (7 > E;) it approaches T.
In the following, E, is treated as one of two adjustable
parameters of our model. Of course, one expects Ey of
the order of 1 to 2 MeV, as implied by the energy level
positions of typical collective vibrational states.

To obtain the FMY for a given elongation ¢, one has
to integrate the probabilities (8) over the full range of the
neck parameter ¢q,

w(g3;q2) = f W(q3.q94;92)dga . (10)

It is rather obvious that the fission probability may de-
pend strongly on the neck radius Rp.. Following Ref.
[11], one assumes the neck rupture probability P to be
equal to

k
P(g2.q3.44) = ;"Pneckaeneck), (11)

where Pk 1S a geometrical factor indicating the neck
breaking probability proportional to the neck thickness,
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while ko/k describes the fact that the larger collective ve-
locity towards fission, v(g;) = g2, implies that the neck
rupture between two neighboring ¢, configurations is
getting less probable. The constant parameter k plays the
role of scaling parameter, which is finally eliminated in
the calculation of the resulting FMY. The expression for
the geometrical probability factor Ppeck(Rpeck) 1S chosen
here in the form of a Gauss function [12]:

Preck(Rueck) = exp[—102(2)(Rueck /d)*1 (12)

where d, our second adjustable parameter, is the “half-
width” of the neck-breaking probability. The momentum
k in Eq. (11) simulates the dynamics of the fission pro-
cess, which, as usual, depends on both the local collect-
ive kinetic energy (Eki,) and the inertia (M) towards the
fission mode,

n2k? .
W) Exin=E-E -V(q2), (13)
with M(q,) stands for the (averaged over g3 and g4 de-
grees of freedom) inertia parameter at a given elongation
q2, and V(q,) is the potential corresponding to the bot-
tom of the fission valley. In the following calculations we
assume that the part of the total energy converted into
heat E* is negligibly small due to rather small friction
forces in low energy fission. A good approximation of the
inertia M(q), proposed in Ref. [32], is to use the irrota-
tional flow mass parameter B, which is derived initially
as a function of the distance between fragments Rj, and
the reduced mass u of both fragments,

_ OR12\"
M(Qz)=,u[1+11.5(3m/,u—1)](6—) . (14)
q92
In order to make use of the neck rupture probability
P(q3.q4;q2) of Eq. (11), one has to rewrite the integral
over g4 in probability distribution (10) in the following
form:

w(g3;q2) = f W(q3,94;92)P(q2,93,94)dqs ,  (15)

in which the neck rupture probability is now taken into
account. The above approximation describes the very im-
portant fact that, for a fixed g3 value, the fission may oc-
cur within a certain range of ¢, deformations with differ-
ent probabilities. Therefore, to obtain the true fission
probability distribution w’(gs3;q>) at a strictly given g,
one has to exclude the fission events which have oc-
curred in the “previous” ¢}, < g» configurations, i.e.,

1- [ w(gs;q5)dd,
A

[ w(gs;q5)ddq),

w(q3;92) = w(q3:92) (16)

The normalized mass yield is then obtained as the in-
tegral of partial yields over ¢;:

[w(g3:92)dq2

Y(g3) = .
S w(g3:92)dg3 dga

(17

Since there is a one-to-one correspondence between
q3 deformation and the masses of the left (AL) and right
(AR =A—-Ay) fission fragments, the yield given by Eq.
(17) can be directly compared with the experimental
FMYs. Note that due to the normalization procedure (17),
the scaling parameter ko introduced in Eq. (11) no longer
appears in the definition of mass yield.

So, there are only two free parameters in the above
model, namely the zero-point energy E, in Eq. (9) and
the half-width parameter d which appears in the probabil-
ity of neck rupture in Eq. (12).

A typical dependence of the fission fragment mass
yield on these two adjustable parameters is shown in Fig. 5,
where the FMY of 22Th at E* = 11 MeV is plotted for
different values of Ey (top panel) and d (bottom panel) as
a function of the fragment mass number (A¢). It is seen
the zero-point energy, also called collective temperature

10

Eo [MeV] |

©
[}
=
o
K
>
4+ i
2 - -
0 1 1 1 1 1
60 80 100 120 140 160
As
Fig. 5. (color online) Fragment mass yield of 2> Th at excit-

ation energy E* = 11 MeV for different values of zero-point
energy Eo = 1, 1.5, 2, 2.5 MeV (top) and neck-rupture half-
widthd=1.2, 1.8, 2.4, 3 fm (bottom).
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in some papers, mostly influences the width of the distri-
bution, which grows with increasing Ej, while the neck-
rupture related parameter d slightly changes the position
of the maximum of the fragment distribution and the rela-
tion between the asymmetric and symmetric yields.
However, it is good to mention here that the main proper-
ties of the FMY are determined by the potential energy
landscape of the fissioning nucleus.

III. FISSION FRAGMENT MASS YIELDS

Relatively good estimates of the FMYs obtained in
our previous works [12, 13] for Pu and Pt to Ra isotopes
encourage us to apply our model to describe and predict
the mass yield for the low-energy fission of actinide nuc-
lei from Th to Rf. Our main goal is to show that the in-
novative Fourier shape parametrization [17] and the mac-
mic model based on the LSD macroscopic energy [14]
with the microscopic energy correction evaluated using
the Yukawa-folded potential [15, 16] gives a good de-
scription of the existing fission valleys in the broad re-
gion of nuclei. It is worth recalling that none of the mod-
el parameters, apart from E( and d described in the previ-
ous section, were modified here to get a better descrip-
tion.

In general, the theoretical estimates of FMY depend
weakly on the choice of the free parameters Ey and d. To
obtain the best fit to the existing experimental FMYs, the
following overlap of theoretical and experimental yields:

A
HEwd)= Y, [ Wegld) - Ya(AsiEncldAr. (18)
0

is minimized with respect to Ep and d. The sum in Eq.
(18) runs over the nuclei, where the experimental data ex-
ist. Contrary to the & fit, this fitting procedure does not
overestimate the role of large deviations. The optimised
values Eg=2.2 MeV and d =1.6 fm are finally used to
obtain the FMY for all considered actinide nuclei.

It is well known that the FMY of a given nucleus is
mainly determined by its PES properties at large deform-
ations. Typical examples of PES for >*°Pu are shown in
Fig. 2, where the mac-mic energy minimized with re-
spect to g4 is plotted on the (g2,7) (top) and (g2.43) (bot-
tom) planes. The labels at the layers correspond to the en-
ergy of the deformed nucleus (in MeV) measured with re-
spect to the LSD macroscopic energy of the spherical
nucleus. The first saddle is visible around ¢, = 0.55 and
g3 =0, while the second is at ¢, = 1.10 and g3 = 0.08. As
one can see in the upper panel, the non-axial deformation
n does not influence the PES at larger ¢, deformation.
So, we do not take this degree of freedom into account in
our analysis of the FMYs. Each of the 2D energy maps
shown in Fig. 2 is only a projection of the full 4D PES,

and one has to consider other cross-sections to analyze
the fission process in detail.

The fission fragment mass yields obtained in our
model are presented in Figs. 6 to 9. Some empirical data
for the FMY have been obtained for the fission of ex-
cited nuclei. In such cases, we take the excitation energy
of nucleus (E*) into account when evaluating the Wigner
function (8) and we reduce the microscopic energy cor-
rection according to the prescription found in Ref. [33]:

Vinie(T = 0)

Vaie D) = 4 (T =1.5)/03 °

(19)

where the temperature 7 = VE*/a is expressed in MeV.
Our estimates of FMY correspond to the so-called pre-
neutron yields, i.e., the mass yields before neutron emis-
sion from fragments, and they have to be compared with
such data (red stars in Figs. 6 to 9). In the case of Th iso-
topes, we have used the fragment charge yields from
Refs. [34, 35], and to obtain the mass yields it is assumed
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Fig. 6. (color online) Fission fragment mass yields of Th
(top part) and U (bottom part) isotopes. Experimental data
(red stars) for Th isotopes are extracted from the charge-yields
of Refs. [34, 35] while the mass yields for U isotopes (botton
part) are taken from Refs. [36, 37] for the thermal neutron in-
duced fission (th). To guide the eye, for 23U we have used the
post-neutron data (blue crosses) taken from Ref. [3].
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Fig. 7. (color onlne) Fission fragment mass yields of Pu (top
part) and Cm (bottom part) isotopes. Experimental data (red
stars) are taken from Ref. [38] for the Pu chain and from Refs.
[3, 39] for Cm nuclei.

that the Z/N ratio in the fragment is the same as in the
mother nucleus. In cases when the pre-neutron data were
not available, we have plotted the post-neutron data (blue
crosses) just to get a piece of information about the ex-
perimental situation. It is shown that for the Th isotopes,
although the agreement of the estimates with the experi-
mental data is not very satisfactory, the general trend is
reproduced, i.e., a transition from symmetric to asymmet-
ric fission is reproduced with a growing mass number of
isotope. The best agreement is achieved for 2'8Th and
228-230Th nuclei. The agreement with experimental data
in the uranium chain, presented in the bottom part of Fig.
6, is much better. Here the maxima and the widths of the
fragment mass distribution are reproduced well, and a
similar transition between symmetric and asymmetric fis-
sion as in Th isotopes is evident.

The prediction of the FMYs for Pu and Cm isotopes
are compared with the experimental data in Fig. 7. The
pre-neutron experimental yields for Pu [38] and >**Cm
[39] isotopes are obtained for the spontaneous fission
case, while those for ?*Cm and ?**Cm are post-neutron
yields taken from Ref. [3]. A nice agreement with the
data obtained for the two lightest Pu isotopes, 2*Pu and
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Fig. 8.
(top) and Fm (bottom) isotopes. Experimental data for pre-
neutron yields (red stars) are taken from Refs. [37, 40] while
the post-neutron yields (blue crosses) come from Ref. [3, 41].

(color online) Fission fragment mass yields of Cf

238Py, is slightly spoiled when the number of neutrons in-
creases, i.e. for 2*?Pu and *Pu. This is mainly because
we have used the globally optimized values of Ey and d,
which are not fitted to Pu data only as done in Ref. [12].
In all the Pu and Cm isotopes investigated here, asym-
metric fission is predicted with the mass of the heavy
fragment Ar ~ 140.

The estimates of the FMY for the Cf and Fm chains
of isotopes are shown in Fig. 8. All experimental data
correspond to spontaneous fission, but only for 2>2Cf [37]
and °Cf [38] are they for pre-neutron yields. The rest of
the experimental yields presented in Fig. 8 correspond to
the post-neutron data (blue crosses). One can see that for
lighter Cf and Fm isotopes, asymmetric yields are pre-
dicted, while in the case of the heaviest Cf and Fm nuclei,
symmetric fission is foreseen. As one can deduce from
the above results, our estimates are rather consistent with
the experimental yields. A similar tendency as seen in the
Cf and Fm chains can be observed in Fig. 9 for the No
and Rf isotopes, where asymmetric fission is predicted in
the lighter nuclei, while the symmetric fission mode dom-
inates for isotopes with N > 156. The agreement with the
experimental data for 2°No and 202Rf [42, 43] is evident.
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The overall good quality of our predictions in a broad
mass region of the actinide elements is probably because
in very heavy nuclei, the fission barrier is very short, and
the fission valley forms very early, i.e., at a relatively
small elongation of the nucleus. The opposite situation
occurs in the thorium nuclei, where the fission barriers
are very broad. Figure 10 presents the fission valley po-
tential V as a function of the elongation parameter ¢,. It is
shown that the average slope of the curve from the last
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Fig. 9.
(top) and Rf (bottom) isotopes. Experimental data (crosses)
are taken from Refs. [41-43].

(color online) Fission fragment mass yields of No
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Fig. 10. Potential corresponding to the bottom of fission val-
ley as a function of the elongation parameter g;.

saddle to scission in the thorium nuclei is almost three
times smaller than in nobelium. Such a large difference in
the slope towards fission influences the fission dynamics
in both types of nuclei. This is the main reason one has to
study the PES in Th nuclei in detail to explain the change
observed here in the FMY systematics.

IV. SPECIFIC DISCUSSIONS ON TH NUCLEI

The agreement of our estimates of the FMY's with the
experimental data in the Th chain of isotopes depicted in
Fig. 6 is not quantitatively satisfactory. So, in the present
section, we would like to look for the origin of these dis-
crepancies. First, these yields for the Th nuclei are evalu-
ated using Ep and d obtained by a fit to the data for all
nuclei. The PESs for Th nuclei are very different from
those for heavier nuclei. This can be seen by comparing
the PES of *°Pu shown in Fig. 2 (bottom) with the cor-
responding maps for 28230 Thisotopes presented in Fig. 11.

In 24Py, the fission path goes directly from the
saddle point to the asymmetric fission valley. This is not
the case in 2'3Th, where the system from the 3rd minim-
um at g, ~ 1.2 has a much smaller barrier towards sym-
metric fission (<0.5 MeV) than an asymmetric one,
where the barrier is slightly higher (» 1 MeV) and thick-
er. This means that the >'® Th nucleus prefers symmetric
fission, which is confirmed by the experimental yield. In
222Th the situation is similar, while beyond ??°Th the
path leading to asymmetric fission begins to be preferred.
To better understand this process, one has to study the
PESs in the full 3D deformation space. In Fig. 12, the
(g3.q4) cross-sections of the PES for 2'8Th correspond-
ing to different elongations (¢, =1.8, 2.0, 2.2, 2.3) are
shown.

Two minima, one corresponding to the symmetric
(g3 =0) and the other to the asymmetric (g3 ~ 0.12) con-
figuration, are visible in each cross-section. At ¢, = 1.8
the asymmetric minimum is separated from the symmet-
ric one by a 2.7 MeV high barrier. The barrier separating
these two minima becomes smaller with growing elonga-
tion ¢, reaching 0.7 MeV height at ¢, =2.0. At such
elongations, the transition between symmetric and asym-
metric fission is possible. Both fission valleys are well
separated again at the largest deformations close to the
scission line (the red line in the figure). So, the Th nuclei
make the “decision” of where to go at an early stage, far
before the scission configuration. This means that one has
to modify the adjustable parameters E, and d to better de-
scribe the transition between the symmetric and asym-
metric fission modes observed in Th nuclei when the
neutron number grows. The new fit performed to the data
for Th isotopes only gives Ey = 1.5 MeV and d =2.5 fm.
The resulting mass yields are compared with the experi-
mental data in Fig. 13. This time the agreement is much
more satisfactory. The new value of the neck parameter d
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Fig. 11.
tions of 218-230Th isotopes minimized with respect to the neck
parameter g4 on the plane (¢2,¢3).

is larger than that adjusted to all nuclei. This suggests that
in Th nuclei, the choice of the preferred fission mode is
made at a thicker neck, i.e., at a fairly early stage. The
smaller value of E, used for Th isotopes is probably re-
lated to the competition between the symmetric and
asymmetric minima.

V. SUMMARY AND CONCLUSIONS

To briefly summarize our investigations, we can
write:

O.(I)O O.(I)3 0.66 0.69 0.112 0.115 0.118 0.I21
a3

(color online) Potential energy surface cross-sec-

tions of 2!8Th on the plane (g3,¢4). The panels, from top to

bottom, correspond to elongations ¢, = 1.8 to 2.3, respect-

ively. The solid red lines drawn in the bottom panels corres-

pond to the neck radius equaling the nuclear radius constant.

Fig. 12.

e The overall agreement of the theoretical FMY es-
timates with the experimental data indicates that the mac-
mic model with the LSD energy for the macroscopic
smooth part and the shell and pairing corrections evalu-
ated based on the Yukawa-folded single-particle poten-
tial gives a good description of the potential energy sur-
faces of actinide nuclei;

e The three-dimensional set of the Fourier deforma-
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(color online) Fission fragment mass yields of Th

experimental data (red stars) taken from Refs. [34, 35].

tion parameters used to describe the shape of fissioning
nuclei is fully capable of producing a wide variety of the
shapes of nuclei on their way to fission;

e The collective 3D model based on the Born-Oppen-
heimer approximation and comprising elongation, mass
asymmetry, and neck modes reproduces the main fea-
tures of the fission fragment mass yield data well;

e The Wigner function used to approximate the prob-
ability distribution related to the neck and mass asym-
metry degrees of freedom simulates this distribution
properly for low-energy fission; and

e A neck-breaking probability depending on the size
of the neck has to be introduced to improve the agree-
ment of our FMY estimates with the experimentally

measured values.

Our mac-mic model and the collective 3D approach,
which couples fission mode, neck, and mass asymmetry
collective vibrations, can describe the main features of
the fission process in actinide nuclei. The estimated fis-
sion barrier heights do not deviate much from their exper-
imental values. The measured fission fragment mass
yields are also reproduced satisfactorily. On the other
hand, one has to treat the presented collective model as a
kind of rough tool which allows the FMY to be obtained
by a relatively quick calculation. To get more precise res-
ults, one has to use more advanced models in which the
whole fission dynamics and the energy dissipation are
taken into account. Such calculations may use Langevin
dynamics (cf. Ref. [10]) or the improved quantum mo-
lecular dynamics model (ImQMD). The latter method has
been successfully applied to describe the fission process
in heavy ion induced fission reactions, where the excita-
tion energy increases, possibly leading to a shorter fis-
sion time scale and even to the occurrence of ternary fis-
sion [44, 45].

The Langevin type calculations, profiting from the
PES generated in a mac-mic approach together with the
3D Fourier shape parametrization, as well as the use of
the self-consistent method, are being carried out in paral-
lel by our group.
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