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The fission fragments mass-yield is obtained by an approximate solution
of the eigenproblem of the two-dimensional collective Hamiltonian corre-
sponding to the fission and mass asymmetry modes. The potential energy
surface was calculated by the macroscopic–microscopic method using the
liquid drop model for the macroscopic part. The microscopic corrections
were obtained using the Woods–Saxon single particle levels. The modified
Cassini ovals shape parametrization in four dimensions was used to eval-
uate the potential energy surface. The mass tensor is taken within the
cranking-type approximation.
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1. Introduction

A proper reproduction of the fission fragments mass distribution is one
of the most important tests of any theoretical model describing the nuclear
fission process. In the present paper, we are going to obtain such a distribu-
tion by an approximate solution of the eigenproblem of the two-dimensional
collective Hamiltonian corresponding to the fission and mass asymmetry
modes. The nonadiabatic and dissipative effects in low-energy fission were
taken into account in a similar way as in Refs. [1, 2]. The potential energy
surface (PES) was obtained by the macroscopic–microscopic method using
the liquid drop model for the macroscopic part of the energy, while the
microscopic shell and pairing corrections were calculated using the Woods–
Saxon (WS) single particle levels [3]. The shape of the fissioning nucleus
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was described by the four-dimensional modified Cassini ovals (MCO) [3, 4].
It was shown in Ref. [5] that the MCO describe very well the optimal in
energy shapes of nuclei even those close to the scission configuration. The
mass tensor is taken within the cranking-type approximation (confer e.g.
Sec. 5.1.1 of Ref. [6]).

Within the Born–Oppenheimer approximation (BOA), the wave func-
tion of the fissioning nucleus can be written in a form of product of the
wave function U(q) describing the motion towards fission and the function
W (α, x; q) which depends on all others coordinates

Ψ(q, α, x) = U(q)W (α, x; q) . (1)

Here, q is the fission coordinate, e.g. the distance between mass centres
of the fragments, while α stays for other collective coordinates (e.g. mass
asymmetry) and x represents the single-particle coordinates. One assumes
in the BOA that the motion towards fission is slower than in the other
degrees of freedom. In the adiabatic approximation, we assume that the
function W (α, x; q) belongs to the lowest eigenvalue of the partial (internal)
Hamiltonian Hint(α, x; q) defined for each value of q in the α, x coordinates.

The next step towards the inclusion of the finite fission velocity effects,
called in the following nonadiabatic effects, will consist of expanding the
wave function of the fissioning nucleus in a basis which describes excited
states in the α-, x-, q-space

ψ(q, α, x) =

∫∑
m,k

CmkUmk(q)Wm(α, x; q) . (2)

Here, Wm(α, x; q) is an eigenfunction of the internal Hamiltonian which
depends parametrically on q

Ĥint(α, x; q)Wm(α, x; q) = εm(q)Wm(α, x; q) . (3)

The fission wave function U(q)mk depends on the quantum numbers m of
the internal state via the energy εm(q) and on the quantum numbers k which
characterize the fission mode (energy, angular momentum etc.).

The dissipative effects which appear also in the low-energy fission process
are simulated by adding an imaginary part to the collective potential [2].

The paper is organized in the following way. First, we present shortly the
details of the theoretical model, then we show the collective potential energy
surface evaluated in the macroscopic–microscopic model for 236U and the
components of the mass tensor calculated in the cranking approximation.
The calculated fission fragments mass distribution is compared with the
experimental data in the next section. Conclusions and plans of further
calculations are presented in the summary.
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2. Model

We use in the following two collective coordinates only:

q1 = q = R12/R0 and q2 = α(V1 − V2)/(V1 + V2) , (4)

where R12/R0 is the distance between the nascent fragments in units of
the radius of the spherical nucleus, while V1 and V2 are the volumes of the
fragments. Of course, one can introduce more collective coordinates, e.g.
the one connected with the neck formation.

With these coordinates, the classical energy of the system becomes

Ha =
1

2

∑
i,j

Mij q̇
iq̇j + V

({
qi
})

, (5)

where Mij and V ({qi}) denote the mass tensor and the potential energy,
respectively.

The quantized form of this Hamiltonian is the following:

Ĥ = −~2

2

∑
i,j

|M |−1/2 ∂

∂qi
|M |−1/2M ij ∂

∂qj
+ V

({
qi
})

, (6)

where |M | = det(Mij) and MijM
jk = δki .

In the two-dimensional space (q, α) the mass tensor is

Mij =

(
Mqq Mqα

Mαq Mαα

)
. (7)

We chose a coordinate system qi = (q, α) in such a way that the mass tensor
is diagonal, i.e. Mqα = Mαq = 0. This condition can always be fulfilled in
the two-dimensional space. For simplicity, we denote in the following the
diagonal elements of the mass tensor as:

Mq ≡Mqq(q, α) , Mα ≡Mαα(q, α) . (8)

According to the above, to describe the fission process, one has then to solve
the eigenproblem with the collective Hamiltonian

Ĥ = −~2

2

1√
MqMα

[
∂

∂q

√
Mα

Mq

∂

∂q
+

∂

∂α

√
Mq

Mα

∂

∂α

]
+ V . (9)

Note that the scalar product of the eigenfunctions ϕi of the Hamiltonian Ĥ

(ϕi|ϕj) =

∫ ∫
ϕ∗i (q, α)ϕj(q, α)D(q, α)dqdα (10)
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is defined with the metric

D(q, α) =
√
Mq(q, α)Mα(q, α) . (11)

It is useful to work with the wave functions ϕ̃i which would be orthogonal
without a complicated metric

(ϕ̃1|ϕ̃2) =

∫ ∫
ϕ̃∗1(q, α)ϕ̃2(q, α)dqdα . (12)

To this aim, we perform now an unitary transformation of the Hamiltonian
Ĥ and its eigenfunctions ϕ(q, α) with the help of the function

√
D(q, α)

ϕ̃(q, α) =
√
D(q, α)ϕ(q, α) ,

H̃(q, α) =
√
D(q, α) Ĥ(q, α)

√
D(q, α)−1 . (13)

Then, the Hamiltonian takes the form

H̃ = −~2

2

[
∂

∂q

1

Mq

∂

∂q
+

∂

∂α

1

Mα

∂

∂α

]
+ V (q, α) + VG(q, α) . (14)

Neglecting the small scalar term VG(q, α), we split up H̃ into the kinetic en-
ergy operator T̃q responsible for the motion towards fission and the adiabatic
Hamiltonian in perpendicular to the fission mode direction

Had
α (α; q) = −~2

2

∂

∂α

1

Mα(α; q)

∂

∂α
+ V (α; q) . (15)

The Hamiltonian Had
α has the eigenfunctions Wm

Had
α (α; q)Wm(α; q) = εm(q)Wm(α; q) , where m = 1, 2, . . . (16)

In order to define the adiabatic part of T̃q, we introduce the average mass

M q(q) =

∫
W ∗1 (α; q)Mq(q, α)W1(α; q)/|W1(α; q)|2dα . (17)

Then, T ad
q is defined by

T ad
q (q) = − ~2

2

∂

∂q

1

M q(q)

∂

∂q
. (18)

The eigenfunctions of the total adiabatic Hamiltonian

Had(q, α) = T ad
q (q) +Had

α;q (19)
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can be written as

ϕad
nE(q, α) = UnE(q)Wn(α, x; q) . (20)

The adiabatic Schrödinger equation is(
T ad
q +Had

α

)
UnE(q)Wn(α, x; q) = E UnE(q)Wn(α, x; q) , (21)

which with Eq. (16) yields the following equation for the fission mode wave
function: (

T ad
q + εn(q)

)
UnE(q) = E UnE(q) . (22)

The energies εn(q) define the fission potential when the fission takes place
by the nth channel Wn, where n = 1, 2, 3, . . . The approximate solution of
the above eigenproblem can be obtained using the WKB formalism.

The wave function ΨE we are looking for contains in addition to the
adiabatic wave function φad1E other contributions φadnE

ΨE(q, α) = ϕad
1E(q, α) +

M∑
n>1

∫
dE′Cn

(
E,E′

)
ϕad
nE′(q, α) . (23)

We make the following ansatz for the coefficients Cn(E,E′):

Cn
(
E,E′

)
=

kmax∑
k=1

ank hk

(
E − E′

∆E

)
exp

[
−
(
E − E′

∆E

)2
]
, (24)

which allows the system to go off shell in the fission energy up to |E−E′| '
∆E. Here, hk is the Hermite polynomial of the order of k.

The coefficients ank are determined from the requirement

∂

∂ank

[∫
Ψ∗E(H − E)2ΨE N

2(q) dqdα

]
= 0 , (25)

where N2(q) = |U1E(q)|−2 is the normalization factor.
The above variational procedure leads to a system of linear equations for

the coefficients ank [2]. The width ∆E is determined from the requirement
that the norm of (H − E)ΨE(q, α) should be as small as possible.

Energy dissipation on the classical part of the fission path from the turn-
ing qturn point to the scission point qsci is included by adding an imaginary
part to the fission potential which was chosen here of the simplest linear
form

Vimag =

{
0 for q < qturn ,
c(E − V ) for qturn ≤ q ≤ qsci ,

(26)

where c is an arbitrary coefficient and qturn corresponds to the point in which
V = E. More elaborated expression for Vimag was derived in Ref. [2].
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3. Results

The potential energy surface was evaluated for 236U at zero temperature
within the macroscopic–microscopic model in which the macroscopic part of
the energy was obtained using the liquid drop formula and the microscopic
shell and pairing corrections were calculated using the Woods–Saxon single-
particle potential. All parameters of the calculation are described in Ref. [4].
The inertia tensor was evaluated using the cranking approximation. The
calculations were performed in a 4-dimensional space of deformation param-
eters α0, α1, α4, α6 [4]. For each value of α4 and α6, the potential energy was
transformed from α0, α1 to R12, α coordinates defined in Eq. (4). The energy
of each grid point in the (R12, α) space was minimized then with respect to
α4 and α6. An example of the so-minimized PES and the components of
the inertia tensor for 236U is shown in Fig. 1. These quantities were used to
construct the collective Hamiltonian (9). For simplicity, we have neglected
here the nondiagonal component of the mass tensor as |Mqα| � Mαα. All
parameters of the collective model are the same as in Ref. [2].
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Fig. 1. PES and cranking inertia tensor for 236U as functions of the elongation
(R12/R0) of nucleus and the mass asymmetry.
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The probability distributions for the masses of the fission fragments are
obtained from the total wave function (23) for q ' qsc

|PE(α)|2 = |ΨE(q = qsc, α)|2 . (27)

The evaluated fission fragment mass distributions are presented in Fig. 2
for different elongation (R12/R0) of the fissioning nucleus. The mass-yield
obtained without dissipation is presented in the left panel, while the result
obtained with the dissipation (Vimag 6= 0) are shown in the right panel.
It is seen in the both figures that a sudden change of the predicted mass
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Fig. 2. Fission fragment mass distribution of 236U obtained without (l.h.s.) and
with Vimag (r.h.s.) as function of the mass of the heavier fragment Af . Different
curves correspond to the various elongations of the fissioning nucleus.

yield takes place when the elongation varies from 2.1 to 2.2. This effect
appears due to the minimization procedure when the information on higher
order deformations is partly lost. This minimization makes possible to “see”
only one fission valley. Hence, the PES of Fig. 2 demonstrates that the
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Fig. 3. Weighted sum of the mass yields corresponding to the Af = 140 and Af =

132 valleys mixture compared with the data [7].
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minimization (which follows always the minimum valley) leads to a jump
from the A = 140 mode at shorter R12 to the A = 132 mode at larger R12.
Including the neck degree of freedom will permit to preserve both valleys all
along the R12 axis, and thus the proposed approach would populate them
according the their depth and inertia features. A mixture of the theoretical
mass yields corresponding to the two above valleys is compared in Fig. 3
with the data [7]. The yield for R12/R0 = 1.9 is taken in Fig. 3 with the
weight 5/8 and that for 2.2 with 3/8.

4. Conclusions

We have shown that the two-dimensional quantum mechanical model
which couples the fission and mass asymmetry modes is able to describe
the main features of the mass distribution of the fragments. The extended
Cassini ovals deformation parameters and the macroscopic–microscopic
model (ELD plus the WS s.p. potential) lifers for 236U a PES with the asym-
metric fission valley corresponding to Af ≈ 140. The nonadiabatic effects
(beyond the Born–Oppenheimer app.) make the distributions slightly wider
than the sole adiabatic ones. The energy dissipation (due to the presence of
a imaginary part in the fission potential) enlarge further the distribution to-
wards larger mass asymmetry. The neck degree of freedom should be added
to the model as the third collective coordinate in order to obtain the proper
scission configurations.

This work has been partly supported by the Polish National Science
Centre, grant No. 2013/11/B/ST2/04087.
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