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Deformation-energy landscapes for nuclei at finite angular momentum
are presented and analysed with respect to possible shape transitions known
as Maclaurin, Jacobi and Poincaré instabilities. To be able to perform
such a study, it turns out that a vast variety of nuclear shapes needs to be
considered. For such an analysis, we rely on the recently developed Fourier
shape parametrization, together with the macroscopic—microscopic model,
an approach which proves to yield excellent results.
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1. Introduction

One of the greatest challenges in the theory of nuclear structure and
reactions consists in describing the enormous variety of shapes a nucleus
can take, between the oblate side encountered in the transition region cor-
responding to the progressive filling of the pf shell and the prolate defor-
mations realized in the rare-earth region, but much more so in the very
large deformations found in the fission process. In some areas of the nuclear
chart, on the contrary, the nuclear shape is very sensitive to structural ef-
fects and can change from one nucleus to its neighbour. Apart from these
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very rapid shape changes with proton or neutron number, the shape can
also change, within the same nucleus, with increasing excitation energy or
angular momentum. Such changes are caused by a rearrangement of the or-
bital configuration of the nucleons or by a dynamic response of the nuclear
system to rotation. It is this last effect that is the subject of the present
investigation.

In a seminal publication, more than 40 years ago, Cohen, Plasil and
Swiatecki 1] have investigated the equilibrium configurations of rotating
charged or gravitating bodies (with a special emphasis on rotating nu-
clei), thus persuing the investigations of many illustrious mathematicians
and physicists, such as Newton, Maclaurin, Jacobi, Riemann, Poincaré and
Chandrasekhar on celestial bodies bound by the gravitational force. Let us,
in particular, mention in this context the monumental work on FEllipsoidal
Figures of Equilibrium [2] by Chandrasekhar. Exactly like in Lagrangian or
Hamilton Mechanics, the equilibrium configurations are identified by a care-
ful mapping of the potential energy as a function of the degrees of freedom.
In the following, we will concentrate, as also done in Ref. [1], on the nuclear
problem and consider only the macroscopic liquid-drop type contribution to
the energy, thus describing the evolution with increasing angular momentum
of the dominant nuclear bulk behaviour.

Apart from the smooth dependence of the nuclear shape on angular
momentum, as this is observed at low values of the angular momentum,
where the nucleus has the tendency to take on an oblate shape, known as
the Maclaurin regime, there are two kinds of instabilities discussed in the
literature already in the 19*" century: the Jacobi transition [2,3] that pre-
serves left—right symmetry but breaks axial symmetry at some critical value
of the angular momentum, thus favouring triaxial shapes and the Poincaré
instability [4] that breaks left-right symmetry, thus leading to pear-like de-
formations. After presenting the theoretical model used to investigate these
shape transitions in Section 2, we will present in Section 3 some deforma-
tion energy landscapes for nuclei from different regions of the periodic table
in order to identify the presence and locations of these transitions, where
they exist. Conclusions and future fields of investigations are presented in
Section 4.

2. Model

The nuclear deformation-energy landscapes that are presented below are
determined in a liquid-drop type approach, where the macroscopic energy is
evaluated in the Lublin—Strasbourg Drop (LSD) [5], that contains, in addi-
tion to the standard volume, surface and Coulomb contributions, a curvature
(proportional to A'/3) and a so-called congruence energy term [6]. All theses
contributions, except for the volume term, carry their deformation depen-
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dence. Thus approach has proven [5] not only to yield excellent nuclear
masses, with an r.m.s. deviation from the experimental values of less than
0.7 MeV, but also to reproduce very well nuclear fission-barrier heights.
Based on this macroscopic model, microscopic energy corrections can be
taken into account through the Strutinsky shell corrections and pairing cor-
relations, as determined e.g. through the BCS approach. In this way, one
is able to obtain some quite precise evaluation of the nuclear deformation-
energy landscape to a point where one is even able to make predictions about
the fission-fragment mass distribution |7, 8|.

To go beyond this standard procedure and to be able to describe the
nuclear structure at finite angular momentum, it is sufficient to add a rota-
tional term to the LSD liquid-drop type energy, which then writes

Emac(Z, Nidef) = ay (1 — kyol?) A+ as (1 — rsI?) A3 By(def)
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All the deformation dependence of E\,,. is contained in the shape functions
By (see e.g. [11]) and the congruence energy Econg [6]. Since we are only
concerned with the macroscopic nuclear energy in the present investigation,
no pairing is present here, and the description of the rotational energy with
a rigid-body moment of inertia is consistent.

As already pointed out in the introduction, it is absolutely essential for
a correct description of the nuclear potential energy surface to be able to
describe the physically relevant deformation degrees of freedom in a way, as
close to the physical reality, as ever possible. In the past, we have worked
for many years with the so-called Modified Funny-Hills parametrization [12]
that has proven extremely successful, but which has the slight disadvantage
that one is not able to test its convergence. We have recently proposed
a Fourier expansion of the nuclear surface [13| that writes in cylindrical
coordinates as

2 o0
z 2n — w2z — zgp . Z — Zsh
ps]%):E [agncos<( 5 ) zob >+a2n+1 sin <n7r ZOS )} ,

n=1
(2.2)
where ps(z) is the distance from the symmetry axis to the surface of the
nucleus at coordinate z, and Ry is the radius of the corresponding spherical
shape having the same volume. The extension of the nuclear shape along the
symmetry axis is 2zg with left and right ends located at zyi, = zsn — 20 and
Zmax = Zsh + 20, where p?(z) vanishes, a condition which is automatically
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satisfied by Eq. (2.2). The shift coordinate zg, is chosen such that the center
of mass of the shape is always located at the origin of the coordinate system
(see Refs. [8,13] for a more detailed discussion).

It turns out [13] that the LD path to fission goes towards decreasing
values of as and growing negative values of a4, which is somehow contrary
to common practice. It is, therefore, convenient to introduce new, physically
more intuitive, collective coordinates which ensure, in addition, an optimal
presentation of the potential energy landscape and a fast convergence of the
shape parametrization:

2
2 = ago)/@ - ‘12/@;0) ) g3 =a3, Q4 =a4+ \/((]2/9)2 + <aio)>

g5 = as — ag(q2 — 2)/10, g6 = Qg — \/(Q2/100)2 + (aéo))2 s (2.3)

where a(20) = 1.03205, aio) = —0.03822, and aéo) = 0.00826 are the expansion
coefficients for a sphere. These definitions (2.3) have been made in such a
way that the bottom of the LD fission valley corresponds roughly to ¢4 =
gs = 0, and the definitions of ¢5 and ¢g ensure the smallest stiffness of the
LD energy towards g3 and gy, respectively, when g5 = gg = 0. This means,
as we will show in what follows below, that even for a collective motion
as the fission process, where a very large variety of nuclear deformations is
explored, all the encountered shapes can be described very precisely by only
4 deformation parameters.

Till now, we have only considered axially symmetric shapes. To be able
to describe non-axial shapes, we assume that the cross section perpendicular
to the z-axis has the form of an ellipse with half axis a(z) and b(z)

2 2
z Yy
In polar coordinates, the above equation leads then to the shape function
1-— 772
1412+ 2ncos(2¢) ’

03 (2, 9) = p2(2) (2.5)
where, to better distinguish the function ps(z, ) from the surface paramet-
rization in the axially symmetric case, as given by Eq. (2.2), we have thus
introduced the two writings, p,(z) and o4 (z, ).

We are going to show in the following that with only 4 deformation
parameters, namely a quadrupole parameter gqo, an octupole parameter gs
and a hexadecapole parameter g4, plus one non-axiality parameter 1 we are
able to cover quite precisely all nuclear shapes encountered in the fission
process and able to describe the shape transitions we are interested in.
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3. Results

One of the possible transitions, we are particularly interested in, is the
Poincaré instability that would favour asymmetric (pear-like) deformations
relative to left—right symmetric ones. In the language of nuclear deforma-
tion energies, that would say that, in rotating nuclei, an asymmetric local
minimum would be lower in energy than the corresponding symmetric one.
In their pioneering publication [1|, Cohen, Plasil and Swiatecki have pre-
dicted that such an instability should occur in a non-rotating nucleus for a
fissility parameter x < 0.4 (the so-called Businaro—Gallone point) and that
this tendency is even favoured with increasing rotational angular momen-
tum. This analysis had been performed at that time with a rather crude
macroscopic model and a very limited shape parametrization. One of the
aims of the present investigation is to test these conclusions with a much
more precise nuclear model as presented above. We first show in Fig. 1 the
deformation-energy landscapes of four nuclei from different regions of the
periodic table (and different fissility parameters x), namely 59Ti (x &~ 0.21),
WNZr (x ~0.36), 132Cd (z ~ 0.39) and 23)Th (z ~ 0.72) for the non-rotating
case (L = 0). One, indeed, observes a slight distortion of the energy land-
scape that is more pronounced for the light nucleus %gTi, but the left-right
symmetric shape stays the energetically favoured one.
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Fig. 1. Nuclear deformation energies for four nuclei from different regions of the
periodic table as a function of the elongation parameter ¢, and the left—right asym-
metry parameter g3. Throughout the landscapes, the energy has been minimized
with respect to the hezadecapole parameter g4, but the regions of the stationary
points are always found to have g4 = 0.
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Let us now investigate how this landscape, in particular for that light
nucleus, evolved with increasing value of the rotational angular momentum.
We thus show in Fig. 2 the same kind of deformation energy as in Fig. 1, as a
function of g2 and g3, only for 35Ti, but for 4 different values of L, namely for
L =0, 20, 35 and 40 h. These energies have been minimized with respect
to the two other deformation parameters, g4 and 7. Please note that for
L = 20 h, there are two minima of equal depth appearing. Both of these
minima, one on the oblate side with g2 < 0 and 1 = 0, one on the prolate
side (g2 > 0) with finite 7, correspond, in fact, to exactly the same oblate
shape because such a shape can be obtained by either considering the z- or
say, the x-axis as symmetry axis. In the first case, with rotation around
the z-axis, the half axis a and b are equal and larger than the elongation
parameter zg and, consequently, one has an axially symmetric shape with
1n = 0. In the other case, with rotation around the z-axis, one would have
b = 29 > a and, consequently, n > 0. This simply means that one needs
to use some caution when analysing these landscapes, making sure not to
introduce some double counting of shapes.
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Fig.2. Deformation energy, as in Fig. 1, for the nucleus 35Ti for different values of
the angular momentum as indicated inside the figures.

For an angular momentum of L = 35 A, the nucleus has already left the
oblate side (Maclaurin regime) and become triaxial (the minimum energy
is now obtained at a value of g2 > 0 with a non-axiality parameter n > 0). At
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a still larger values L = 40 h, the stationary point is obtained at very large
g2 with 7 approaching again zero value. One has now arrived close to the
prolate side and close to the scission instability.

Figure 3 shows the same kind of analysis for 39Cd. The conclusions are
the same as for 39Ti. The nucleus stays in the Maclaurin regime of more
and more pronounced oblate deformation, as L increases, up to somewhere
between 60 and 70h of angular momentum where the Jacobi instability
into triaxial shapes sets in. For the still heavier nuclear system 1%Pt, one
observes again the same picture, except that for an angular momentum of
L = 75 h, the centrifugal scission point is already reached. In none of these
cases, neither at low, nor at high angular momentum, a Poincaré instability

into octupole deformed shapes is observed.
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Fig. 3. Deformation energy, as in Fig. 2, for the nucleus '33Cd for different values
of the angular momentum as indicated inside the figures.

Let us now look more specifically at the Jacobi transition into triax-
ial shapes. Many years ago, we have already investigated this transition
for the nucleus 9Zr [14] in the framework of the selfconsistent semiclassi-
cal approach, known as the Extended Thomas—Fermi (ETF) method [15]
generalized to rotating nuclei in Ref. [16]. The result of that investigation
performed at that time for the Skyrme SkM* interaction [17] is schematically
shown, as traditionally done, in the B plane in Fig. 4.
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Fig. 4. Deformation of the ETF energy, given in the 37 plane, for the nucleus *°Zr
as a function of the angular momentum.

We would like now to investigate the same nuclear system to check the
ability of our new shape parametrization to describe such a transition. The
result of this study is shown in Fig. 5. As one can see from the different de-
formation energy landscapes, one observes the Jacobi transition into triaxial
shapes to occur at an angular momentum of L = 55k and the disruption of
the nucleus due to the centrifugal force beyond L ~ 70 A which is in perfect
agreement with the results obtained earlier in the ETF framework.
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Fig. 5. Deformation energy, as in Fig. 3, for the nucleus “°Zr for different values of
the angular momentum as indicated inside the figures.
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One would finally like to check the convergence of the Fourier paramet-
rization with respect to higher order terms. We have thus investigated the
liquid-drop ground state energies obtained at different L values with re-
spect to the potential impact of higher multipolarity terms and performed
that study for several nuclear systems, but show the results, as an example,
just for the previously studied ?°Zr nucleus. When plotting the energy as
a function of the higher-order deformation parameters q5 and gg, one no-
tices, however, as seen in Fig. 6, that the minimal energy is always obtained
at a zero value of these higher order parameters, thus ensuring the very
rapid convergence of the Fourier expansion (2.2), when expressed in the g,
coordinates, even for very large deformations.
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Fig.6. The liquid-drop type nuclear energy as a function of the higher-order de-
formation parameters g5 and gg for different values of the angular momentum L.
The lower-order Fourier parameters ¢ to q4 are those of the ground state at these
L values.

4. Summary

We have shown that our new Fourier shape parametrizations is very
rapidly converging when expressed in the ¢, deformation parameters and
perfectly able to describe the behaviour of rotating nuclei, in particular, what
the different regimes, namely of Maclaurin type and the Jacobi bifurcation
into triaxial shapes is concerned. We have also evidenced a distortion of
the energy landscape in the direction of left-right asymmetric shapes, in
particular, for light nuclei, but no Poincaré instability has been observed.
One rather observes that rotation stabilizes the nuclear system against such
left—right asymmetric distortions. This conclusion might, of course, change
for certain nuclear systems when shell effects are taken into account.
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