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Abstract: Since more than 40 years the Strutinsky concept of the shell correction plays an important role in 
studying of the nuclear structure [1 – 2]. In this method the smooth energy of nucleus is obtained by folding 
of  the  single-particle  (s.p.)  energy  density  in  the  s.p.  energy  space  (e-folding).  An  alternative  way  of 
obtaining of the smooth energy by folding of the single-particle energy sum in the particle number space (N 
1/3-folding) was proposed in Ref. [3]. In both types of smoothing the same folding function was used: the 
Gauss function multiplied by a correctional polynomial. In each case the smearing width was obtained from 
the plateau condition. It was shown in [3 – 4] that for degeneracy of the s.p. spectra the both types of folding 
give the smooth energies which are close to each other. Completely another situation origins from the case of 
strongly degenerated spectra which appear at sphericity or in the region of shape isomers. The smooth energy 
obtained by the N1/3-folding is a couple MeV larger than the traditional Strutinsky average energy. We are 
going to clarify this smooth energies difference and show that it can serve as a simple tool for searching the 
magic or quasi-magic structure in the s.p. spectra. I.e. it can be used to predict the shape isomers in the 
multidimensional deformation space.

1. Introduction

Investigation of the ground state equilibrium shapes, fission dynamics and saddle points of 

nuclear energy surface [5] demands the proper knowledge of the nuclear single-particle (s.p.) level 

structure dependent on deformation and temperature. We have investigated the s.p. levels density 

and disappearance of shell structure with temperature in various theoretical models an have got the 

best  agreement of the nuclear density parameter with experimental  data  for the Yukawa folded 

single  particle  potential  [6].  The  evaluation  of  shell  effects  can  be  done  by  two  ways.  In  the 

traditional Strutinsky method the levels were smoothed in the energy space (e-smoothing), what 

conserved only on average the nucleon number and brought the difficult sometimes problem of the 

choice of smoothing parameter fulfilling the plateau condition [1]. The method proposed in [3] - 

smoothing the s.p. levels sum in the nucleon number space (N-smoothing) allowed to avoid these 

problems, but has given much smaller (larger in absolute values) shell corrections for spherical 

case. The difference decreases with deformation. This effect is connected with the degeneration of 

s.p. levels which appears in the points of magic structure, closed subshells and "empty" places in 

the s.p.  scheme.  As these  information is  important  especially  for  the  new,  unknown nuclei,  as 

superhavies the idea of analysing the s.p. levels scheme by the difference of the both: e-smoothing 

and  N-smoothing  shell  corrections  seems  to  give  the  promising  indicator  of  nuclear  shells  in 

dependence on deformation.
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2. Nuclear energy

In the macroscopic-microscopic method the total energy of a nucleus in a given deformation 

point (def) can be calculated as a sum of macroscopic energy and corrections due to shell and 

pairing effects of protons and neutrons

E def  = Emacr def   δE shell
 p 

def  δE shell
 n

def  δE pair
 p 

def δE pair
 n 

def   

(1)

We are only interested in shell effects and the s.p. levels structure. The shell corrections can be 

obtained by subtracting the average s.p. levels sum from the real one. The averaging can be made in 

the energy space (e-smoothing), as in the traditional Strutinsky method [1] or in nucleon number 

space (N-smoothing) as proposed in [3]. Both methods give similar results for non degenerated 

levels schemes, but in the case of degeneration, which appears in magic places in deformation 

surface the differences between both shell corrections become large up to a few MeV. We can treat 

them as a good test of s.p. levels degeneration looking for the subshells in various deformation 

points. We define the difference of the smoothed energies in nucleon number (N) and energy (e) and 

space equal to the opposite difference of shell corrections:

        dE q
def  = δE shell

q 
def ;e  −δE shell

 q 
 def ; N   (2)

where q= {p , n }  denotes protons or neutrons. The way of calculating the shell corrections will be 

described in section 4.

3. Yukawa folded mean field

The  s.p.  levels  are  obtained  here  by  diagonalisation  of  the  Yukawa  folded  mean-field 

hamiltonian [7] which potential part consists of the central  V sp ,  spin-orbit  V so  and Coulomb 

V Coul  terms

V YF
=V sp V so V Coul                   (3)

The s.p. nuclear potential is given by the folding integral
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             V sp r 1 =∫ d 3 r2 V  r 12
ρ0 r 2 

ρ0

,  

(4)

where the folding function V  r12  has its origin in the finite range nucleon-nucleon interaction 

          V  r12 =
V 0

q

4 πλ2

e
−∣r 1 − r2∣/λ

∣r 1 − r 2∣/ λ
, r12 =∣r 1 − r 2∣  

(5)

and the diffused density ρ0 r 2   is obtained by folding the sharp density distribution ρ0  over the 

deformed nuclear volume 

ρr 2  = ρ0 ∫
V

d 3r 1 g ∣r 1 − r 2∣ , 

(6) 

where g ∣r 1 − r 2∣  is the Yukawa function with the width parameter a

           g ∣r 1 − r 2∣ =
1

4πa2

e
−∣r 1 − r2∣/a

∣r 1 − r 2∣/a
.                   (7)

The Yukawa folding function is normalized to unity

  ∫ g  r  d 3r = 1 . 

The Coulomb potential can be calculated with the charge density distribution of the nucleus in the 

form 

V Coul r 1  = e ∫ d 3 r2

ρr 2 

∣r 1 − r 2∣
. 

                  (8)

where e is the elementary charge.
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The spin-orbit term of the total single-particle mean-field can be obtained from the central 

part as 

 V so = iλq  ℏ

2 MC 
2
∇V sp⋅ [σ × ∇ ] ,

   (9)

where σ  is the vector of two dimensional Pauli matrices σ x , σ y , σ z  , M – nucleon mass, C – 

light velocity.

As the deformation points we use the modified Funny-Hills parameters: elongation c  and 

neck parameter h  proposed in [2].

We have used the following parametrization of the s.p. potentials for protons and neutrons 

[17]:

       V 0
p
= V s  V a

δ , V 0
n
= V s − V a

δ ,  (10)

where

δ =  I3
8

c1

Q
Z 2

A5 /3  / 1 9
4

J
Q

1
A1/3  , I =  N−Z /A ,

                 λ p
= 6 .0  A

240  28. 0, λn
= 4.5  A

240   31.5, (11)

Table 1. Yukawa folded potential parameters

constant λ a Vs Va J Q C1 r0

unit fm fm MeV MeV MeV MeV MeV fm
0.8 0.8 0.7 52.5 48.7 35.0 25.0 3

5
e2

r 0

1.16

4. Shell correction methods

The shell-correction energy can be expressed as the difference between the sum of s.p. 

energies and the corresponding smoothed energy.
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δE shell
 q 

=∑
v occ

ev
q 

− E  q

, (12)

We will discuss two methods of calculating these shell corrections: the traditional Strutinsky 

approach [1], consisting of a smearing of the s.p. energy spectrum in energy (e) space and the 

proposed in [3] smoothing in particle number (N) space.

⋅• The traditional Strutinsky method gives the shell corrections through (12) with 

          E  q
def ;e  = ∫

−∞

λq

g e  e de , (13)

where the average Fermi energy λq  is fixed by the particle number condition while the function 

   g e  =
1
γ s
∫
−∞

∞

g e '  j 
e− e '

γs
 de '  

(14)

is obtained from the exact s.p. level density through smoothing procedure with a Gauss function 

multiplied by a 6th  order correctional polynomial [18]

       j u  =
1
π

e−u2

35
16

−
35
8

u2


7
4

u4
−

1
6

u6 . (15)

It  can be shown [3]  that  the  smoothed energy  E  q
def ;e   calculated  in  this  way is  not  the 

average sum of s.p. energies. The plateau condition usually taken at γ s = 1 . 2 ℏω0  is not very well 

fulfilled and difficult to establish.

 • In the N-averaging method (more precisely one should speak about an averaging in the 

N1/3 space)  the smoothed energy  E  q
def ; N)  has,  as  function of  the  particle  number  N,  the 

following form:

E  q
def ; N  = S N  δN 1/3

V 0 N  , (16)

5



where  S N  is  the  average  of  the  difference  Sn  between  the  sum  of  s.p.  energies  and  the 

corresponding average global energy dependence of a harmonic oscillator potential subtracted only 

in order to smooth numerically the smaller quantity.

    Sn =∑
v=1

n

ev − b n4/2
− V 0 n . 

(17)

The quantity S N  be determined using a Gauss-Hermite folding procedure

         S N = ∑
n=N min

N max
2

3n2/3
S n j  N 1/2

− n1/2

γ  , (18)

where the weight function  j u   is defined in (15) and  γ = 0.78 is the smearing width [3], for 

which the plateau condition is always fulfilled. The parameters b  and V 0  of Eqs. (6) and (7) are 

fixed by minimizing the mean-square deviations:

          ∑
n=N min

N max

Sn
2
= min , (19)

with  Nmin  and  Nmax given  by  (N1/3
 
∓

 3γ)3.  As  opposed  to  the  traditional  procedure  this  new 

approach yields a smooth energy which is, indeed, the average of the s.p. energy sum in Eq. (12). 

The shell  corrections estimated with both procedures turn out to be different  for spherical,  but 

almost the same for deformed nuclei.

5. Results

The calculations were performed for a few nuclei around  240Pu and  264108. In Fig. 3 we 

present the s.p. levels schemes in the three deformation points for protons of maximal  dEp and 

neutrons dEn seen in Figs. 1, 2. One can see the traditional magic numbers in the spherical point and 

some new subshells for maxima energies in of Figs. 1, 2 written in the breaks of the s.p. levels 

schemes. Our indicator has shown the magic structure properly.
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Fig. 1. Difference dE p  between the proton energies in 240Pu smoothed in energy (e) and nucleon number 

space as function of elongation c and neck parameter h obtained with theYukawa folded mean field.

In Figs.1, 2 the maps of smoothed energies difference of protons ( dE p ) and neutrons ( dE n

) for 240Pu on (c, h) plane are shown. One can see the strong pick in spherical point: c = 1, h = 0 and 

the sign of magic structure for the top of the fission barrier:  c  = 1.6,  h  = 0.3. There is also the 

"suspected" deformation point for neutrons in c = 1.3, h = 0.2. 

Fig. 2. Difference dE n  between the neutron energies in 240Pu smoothed in energy (e) and nucleon number 

space as function of elongation c and neck parameter h obtained with the Yukawa folded mean field.
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Fig. 3.Single particle levels schemes of 240Pu for protons (upper row) and neutrons (lower row) in the magic 

points of deformation c, h obtained with the Yukawa folded mean field .

6. Conclusions

The following conclusions can be drawn from our analysis:

1. The Strutinsky shell-correction obtained by the e-smearing are in magic places up to 

10 MeV higher than those by the new N-folding procedure.

2. Shell  corrections obtained by smoothing the s.p.  energies in the nucleon number 

space fulfill the plateau condition better than those calculated traditionally in energy 

space.

3. The nucleon number is  exactly  conserved in the s.p.  levels  smoothing in the  N-

folding while only on average in the e-folding procedure

4. The large  differences  in  shell  corrections  calculated  in  e and  N space  show the 

deformation points with strong magic shell structure .

In order to test the single particle levels structure in various deformation points we are going 

to perform calculations for superheavy nuclei [19].
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